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ABSTRACT Islanding detection with the rising grid supporting inverter-based distributed generation is
becoming more critical protection due to its high droop gains and overall decreased system inertia leading
to rapid changes in the electrical parameters. Traditional methods for islanding detection in this regard
are susceptible to significant problems such as non-detection zone, false-positive detection, and inefficient
mode of validation. Therefore, to attenuate these problems, this paper proposes a hybrid islanding detection
technique based on unsupervised anomaly detection using autoencoders. This technique uses the rate
of change of frequency as primary and phase angles of the voltage and current as secondary detection
parameters, demonstrating improved performance, reliability, and robustness due to its shared advantage of
both active frequency drift and autoencoder. Furthermore, a dialectic model of offline and online validation
schemes is also proposed to ensure the reliability of detection. Extensive simulations and validations have
been carried out on multiple networks to generate data sets used to train, test, and validate the technique and
compute its statistical significance, thereby confirming its effectiveness. The optimal islanding detection
time for the base cases was recorded as 20 milliseconds with an F1-score of 0.991, dependability index
of 0.998, security index of 0.995, with total harmonic distortion of 4.56% and zero non-detection zones,
which complies with IEC 61000-3-2 and IEEE standard 1547’s requirement of detection within two seconds
after islanding.

INDEX TERMS Islanding, distributed power generation, microgrids, unsupervised learning.

I. INTRODUCTION
‘Renewables-2020’, a report published by International
Energy Agency (IEA) forecasts a thirty-three percent share of
renewables in total electricity generation by 2025. This cor-
responds to the fact that 2,257 TWh of additional renewable
electricity generation is about to be added within a period
of five years, which is twenty-three percent of the current
renewable generation capacity of the world [1]. This will
create a huge demand for sophisticated control, optimization,
and management technologies to address the challenges and
risks associated with this expansion. With this rising dis-
tributed energy resources (DER) penetration in the existing
system, islanding detection (or loss of main) will be critical
protection to ensure equipment and personal safety and avoid
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false tripping leading to cascaded outages. Islanding detec-
tion has been a classical problem whose literature is widely
scattered over the technical comparisons of its non-detection
zone (NDZ), methodology of implementation, inverter con-
figuration type, System type, selectivity of tripping criteria,
and fault ride-through cases.

A. THE ISLANDING DETECTION PROBLEM
According to IEEE, ‘‘islanding is defined as a condition in
which a portion of the utility system that contains both load
and distributed resources remains energized while isolated
from the remainder of the utility system’’ [2]. Thus, DERs
isolated under such conditions are called islanded and the por-
tion of the system including the islanded DER along with the
local load is regarded as an island. It is analogous to consider
a grid supporting inverter-based DER as a current source that
is connected to the local load and the grid. During islanding,
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especially for a shorter duration, the loss of grid reference
parameters for the inverter may introduce a large phase error
difference eventually resulting in an asynchronous re-closure
with large surge currents damaging the DER itself [3]. On the
other hand, the presence of voltage on the grid side can be
hazardous for the maintenance team. Therefore, it is stan-
dardized by IEEE std. 1547.2018, to detected islandingwithin
two seconds after the occurrence of the event [4], [5].

B. CLASSIFICATION OF ISLANDING EVENTS
Islanding events have been categorized into various types
based on their duration, nature of causality, topology, and
operational philosophy. For instance, islanding events with
a run on times of less than a second are classified as ‘short
termed’ whereas islanding events with a run on times equal
to one second or more are classified as ‘long termed’ [3].
Islanding events have also been categorized into ‘intentional’
or ‘unintentional’, with intentional islanding events, further
sub-categorized into scheduled and unscheduled [4]. Sched-
uled intentional islanding is usually performed by means of a
local operator at the DER or through a manual operation by
grid operator or maybe through an advance control operation
such as an Automatic Generator Control (AGC). Unsched-
uled intentional islanding is an autonomous operation that
occurs as a result of an anomaly at the node of interconnection
between DER and the grid.

The topological classification for islanding events is split
into ’remote’ and ’local’ methods, such that, remote methods
are traditionally telecommunication based and are relatively
expensive to deploy than a local method. These meth-
ods include transfer trips [6] and power line carrier [7].
Local methods are more popular and are known for their
superior accuracy, selectivity, and reliability. These are
sub-categorized into ‘active’ and ‘passive’ methods. Active
methods are characterized by techniques that usually intro-
duce a small perturbation into the inverter current as an active
feature for islanding detection, whereas passive methods do
not change the characteristics of the system at all and purely
rely on the sensor-based approaches, which may include
analog or data-driven techniques. Active and passive methods
are further discussed critically in the next section.

Over time, passive methods have been greatly improved
using data-driven techniques. Nevertheless,U.Markovic, et al.
in [8] have presented a satisfactory argument for the inef-
fectiveness of passive islanding detection methods with the
increasing grid supporting DERs. However, the initiatives
to improve active methods using data-driven techniques are
rarely seen in the literature. This is due to their complicated
methodology of implementation in the inverter control and
their already superior selectivity to the NDZ problem com-
pared to traditional passive methods.

This inspired us to propose a hybrid islanding detection
technique based on the combination of active frequency drift
and unsupervised learning, which does not only demonstrates
a shared advantage of active early detection and intelli-
gent leaning based methodology at the same time but also

advocates its statistical significance by an F1-score of 0.991,
dependability index of 0.998 and security index of 0.995.
It was observed from the past unsupervised learning-based
approaches that a single training parameter such as voltage
(sag/swell) can lead to nuisance tripping due to its sensitivity
towards the load variations and high impedance faults [9]. For
this reason, we selected three out of six best parameters for
our training, which were validated in a dialectical mode of
operation, i.e. online and offline.

The major contribution of the proposed technique is to
establish a framework for intelligent detection schemes based
on adaptive/learnable settings (i.e. cost/error function) rather
than programmed settings for physical parameters. This
means that the pickup of the fault is not restricted to any
specific threshold of electrical parameter, rather it is depen-
dent on the dissimilarity index of the subjected signal with
the trained signal. Secondly, the proposed technique also
presents a framework capable of quantifying the statistical
significance of intelligent islanding detection schemes based
on the values of its indices and dialectic mode of valida-
tion. furthermore, the technique also promises to be com-
putationally very efficient, fast responding, and low-quality
compromising. This is due to the autoencoder, which is
exceptionally efficient for anomaly detection applications,
especially for complex non-linear pattern recognition prob-
lems using dimensionality reduction.

This article is arranged into sections as follows: Section II
discusses the background of islanding detection methods.
Section III discusses the technical implications of unsuper-
vised anomaly detection for the islanding detection problem.
The detailed hierarchical methodology for islanding detec-
tion is proposed in section IV. Section V demonstrates the
base case simulation results and statistical significance of
the technique. Then finally, the discussion and conclusive
remarks are made n order to compare the effectiveness
of the proposed technique in comparison with the other
recently published techniques in section VI and section VII
respectively.

II. ISLANDING DETECTION METHODS
IEEE 1547 demonstrates a standardmodel to explain and ana-
lyze the characteristics of an islanding condition, as shown
in Fig. 1. In this model, node ‘O’ represents the common
intersection between the load, the grid, and the DER. This
common node of intersection is formally called point of
common coupling (PCC). Before islanding, the power flow
from DER to the PCC can be stated as PDG + jQDG and the
power flowing from PCC to the local load can be stated as
Pload + jQload . The utility grid in such a situation may be
providing or consuming power which can be mathematically
expressed as:

1P = Pload − PDER (1)

1Q = Qload − QDER (2)

During islanding conditions, 1P and 1Q converges to
zero as neither power is absorbed nor supplied by the gird.
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FIGURE 1. IEEE 1547 model for islanding detection.

However, the values of the voltage and frequency are deter-
mined by the residual conditions (1) (2), which may exceed
the upper or lower limit of the over/under frequency relay
(U/OFR) or over/under voltage relay (U/OVR) [3]. The oper-
ating parameter limits defined by IEEE Std 929 and IEEE
1547 are considered as a benchmark for simulation and exper-
iments for islanding as shown in table 4. (see appendix)
Power mismatch case is usually referred to as the condition

when 1P = 1Q = 0. It is the case when either the
active power produced by DER has matched the load’s con-
sumption or the load-displacement power factor at resonant
frequency has converged to unity (i.e.ωo = ωres). Under such
circumstances, there are no significant changes in voltage
and frequency during the islanding event and as a result,
the U/OFR and U/OVR are unable to detect islanding, thus
forming an NDZ.

The non-detection zone (NDZ) for an inverter-based
islanding detection method (IDM) is determined by the selec-
tivity of its non-detection over its active and reactive power
mismatch conditions. It is a function of its inverter control
topology which is classified broadly into two categories,
i.e. grid forming and grid supporting inverter controls. Grid
forming inverters are governed by droop control law and
use self-computed values for subsequent voltage and fre-
quency utilizing active and reactive power set-points. For
this reason, they behave analogous to voltage sources in an
electrical power system (EPS), with standalone character-
istics of their own. Gird following inverters, on the other
hand, are not standalone inverters and they totally rely on the
on-grid system’s voltage and frequency values to compute
their active and reactive power response. Therefore, in this
inverter control topology, the inverter behaves analogously
to a current source. Grid following inverter control is con-
sidered as one of the significant and underdeveloped areas
in modern power systems. These can be further divided into
grid feeding (constant power) and grid supporting inverters
(constant current). The grid feeding inverters are designed to
give constant power output to the EPS (i.e. both gains are
set to zero). However, the grid supporting inverters provide
a dynamic power output based on their predefined gains to

FIGURE 2. Non-detection zone for power mismatch cases.

support the grid in all conditions [8]. The NDZ characteristics
of a grid feeding inverter can be described mathematically
as (3) (4) and visualized as shown in Fig. 2.
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Passive methods usually detect islanding directly through
traditional relaying (OV, UV, OF, UF) without changing the
electrical characteristics of the power system. Few classical
passive methods are based on the rate of change of frequency
(ROCOF) [10], rate of change of voltage phase angle [11]
and vector shift [12]. But these methods suffer from a large
NDZ problem. Selecting a threshold for passive islanding trip
settings is difficult to determine, and arbitrary low values can
result in nuisance tripping. However, the NDZ problem can be
improved by various techniques based on frequency domain
and data-driven approaches [13]. Popular frequency-domain
methods are based on discrete wavelet transforms [14], [15],
harmonic distortions [16], mathematical morphology [17]
and duffing oscillators [18]. Similarly data-driven methods
are usually based on decision tree [19], random forest [20],
support vector machine (SVM) [21], and neural network [9].

Active methods are based on perturbing and observing
principles. These are slightly complex to implement and are
based on distorting the inverter current wave by a frequency
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drift operation as shown in Fig. 5. During islanding conditions
the frequency drift augmented to the inverter current creates
a large change in active and reactive power flow at the PCC,
resulting in a drastic change in voltage and frequency (5)
(6). This increases the chances of U/OVR and U/OFR trip-
ping and detection of islanding earlier than the traditional
methods. Traditional active methods include active frequency
drift (AFD) [22], slip mode phase shift (SMS) [23], san-
dia frequency shift (SFS) [24] and positive feedback-based
methods [25].

Pload = V0
V0
Rload

(5)

Qload = V0

[
V0
ωL
−

V0
(1/ωC)

]
(6)

The recently presented literature about classical active
islanding includes positive feedback-based control loop
designs. In [26], a linear feedback loop is designed to improve
the NDZ problem with a total harmonic distortion (THD)
ranging from 1.68-2.68% under different loading conditions.
Moreover, a composite islanding technique was presented
in [27], which uses voltage and frequency-based detection
with an improvised definition of chopping factor based on
harmonic injections. The technique claims to reduce the THD
of the classical AFD by 60%. On the other hand, [28] and
[29] presents d and q axis-based islanding detection schemes
that utilize either pattern watchdog schemes or band-pass
filters and mean of absolute frequency variation-based
schemes.

The classical active techniques as stated above, in general,
degrade power quality and energy output for long-spread
networks considerably. Since a frequency drift which is ear-
lier than usual, is subjected to the static threshold of UVR /
OFR, the frequency perturbation had to be set higher to meet
the sensitivity of the relays for all quality factor conditions.
Impedance measuring techniques in this regard demonstrate
a superior detection response, reduced NDZ, and less com-
promised power quality compared to classical active meth-
ods. These techniques may use fundamental frequency or
sub/inter harmonic components as injection signals to the
EPS. Despite their sophisticated methodology, these methods
encounter various limitations, among which, the canceling
effect during parallel operation of multiple inverters is one
of the prominent. When multiple inverter-based DERs with
the synchronous harmonic injection are connected to an EPS,
they may contribute collectively a closed-loop current control
of voltage source for a specific harmonic to the system. This
may lead to transient instability of the system, flickering,
and magnetic saturation issues for the electromagnetic com-
ponents in an EPS. Another limitation of these techniques
is their interference with the control and protection system
(as many EPS protections are based on harmonic currents
including earth faults).

For this reason, a sophisticated inverter control, is required
to resolve the canceling effect problem. Few communication-
based techniques including [30] propose a complex control

scheme whose effectiveness is still questionable due
to its ambiguous reliability concerns. However, micro-
inverters-based techniques are getting quite popular these
days for their modular approach and their effectiveness
in regards to the canceling effect, without communication
between parallel operating inverters. A comprehensive math-
ematical framework for sub/inter harmonic current injec-
tion and their limitations, especially in the case of parallel
operation of DERs is discussed in [31]. The paper proposes
an effective strategy to deal with the distortion effect of
Pdc-MICs output and the canceling effect (compensating
integer multiple of synchronous harmonic injections to the
EPS) by means by introducing a time delay parameter in the
control loop.

Another harmonic injection-inspired design and simu-
lation technique for flyback inverters application is dis-
cussed in [32]. This technique presents a comprehensive
framework for the parallel operation problem as discussed
above. A deviation of 12-17% between the experimental and
simulated results was observed during the analysis, how-
ever, an improved 4% THD was claimed for a 0.2 second
window. In [33], an innovative open loop, low magnitude
harmonic injection technique is presented for PV MICs with
pseudo-dc-link. This technique, unlike the impedance estima-
tion technique, uses a cross correlation-based estimation for
grid operating conditions. The technique requires relatively
less computational burden and is presents as an effective
alternative over other active power techniques. It claimed to
have THD for PCC voltages and inverter current of 7.5%and
4.2%, respectively which complies with the standard IEC
61727 [34]. Ahmed Mohamad et al. in [35] presented a
nonlinear impedance estimation-based technique addressing
the instability concerns of a grid-tied inverter using two active
islanding methods. Experimental validation for the proposed
scheme was also presented.

Hybrid methods are also getting popular in order to
address the power quality concerns and canceling effect
issues for active methods. [36] discusses a hybrid scheme
based on the probability of islanding. This technique uses
neuro-fuzzy controls with wavelet decomposition along with
the active method. Not all quality factor conditions were
considered in this technique however, a very low THD
of 2.14% was claimed at the micro-grid end. In [37],
a time-tested d-axis current injection technique is proposed
which claims improved stability along with a fast response
of 130 milliseconds during power mismatch conditions. This
technique claims compatible operation for quality factor val-
ues ranging between 1.8 and 2.5. Another similar hybrid
technique that utilizes THD plotting includes [38]. It uses
the Gibbs phenomenon occurring at the interpolation of the
sinusoidal function. Positive feedback is presented in this
technique which monitors the real-time values of THD along
with an effective offline validation scheme. This paper claims
an accuracy of 69-89% on single and multi-inverter systems
respectively with a THD of 1.32%. Other recently developed
methods include [39] and [40] which uses comprehensive
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FIGURE 3. Auto-Encoder (AE) architecture.

characteristic analysis of voltage unbalances and THD for
islanding detection.

III. AUTO-ENCODERS FOR ANOMALY DETECTION
Anomaly detection methods (ADMs) are usually classified as
unsupervised or semi-supervised learning algorithms, which
are trained over some anticipated/normal data and are tested
to distinguish any data that deviates from the normal, which is
classified as an anomaly. Some of the classical ADM includes
gaussian mixture models (GMM) [41], bayesian models [42],
K-nearest neighbour (KNN) [43], SVM [44] and other clus-
tering algorithms.

Auto-Encoders (AE) belongs to the family of unsupervised
ADM which is a higher dimensional reconstruction of prin-
cipal component analysis (PCA) [45], [46]. Autoencoders
are very effective in dimensionality reduction for complex
non-linear functions using neural networks. Autoencoders
are simpler neural networks but highly efficient generative
models which consist of an encoder (a detection network)
and a decoder (a generative network) which compresses the
normal data and then recreates a series of data with the help
of a low-resolution hidden neural network layer(s) to match
the real data, as shown in Fig.3.

The encoder uses a cost function that tends to minimize
itself over the epochs to generate a closely matched output to
the input. The encoder function consists of three parameters:
the Root mean squared error (RMSE), the L2 regularization
index, and the sparsity regularization index, mathematically
expressed as (7).

Using an encoder’s cost function for any nonlinear signal
application, there is always a significant risk of over-fitting
the data. When a cost function is designed to fit exactly all
the higher-order featured variables, it can no longer distin-
guish between the desired signal and the noise around it.
In such a situation, the model is regarded as over-fit and it
strictly tries to fits the input data which can lead to false
detection/recognition. This over fitting problem in the cost
functions can be regularized by an additional compensation
term that either nullifies or attenuates the effects of unim-
portant higher-order featured variables by various means.
This process of compensating the higher-order features,
to avoid over-fitting or denoising of the data by dimensional
reduction, is called regularization. Regularization includes
an index as a fixed gain which is multiplied with a func-
tion which is explicitly dependent on the featured variable.
The nature of this function can vary with the model or

data application; however, the regularization index always
remains a hyper-tuned constant.

In autoencoders, we have used two different regulariza-
tions, i.e. sparsity and L2 regularization. Auto-encoder’s
input matrix usually consists of sparse matrices which are
higher dimensional input representations of the extracted
features, this may introduce a computational limitation on
the analysis along with the previously discussed over-fitting
issue. L2 regularization penalizes by virtue of a squared func-
tion of the weights of the neural network, i.e.wij2, where i and
j represent the order of neurons in the input and hidden layer
respectively. The derivative of the squared weight regulariza-
tion function is a linear function 2w which can be interpreted
as a percentage representation of the preceding values of the
weights and for this reason, it can never be equal to zero.
Sparsity regularization here, refers to Kullback-Leibler diver-
gence. The purpose of this regularization is to minimize the
difference between the desired activation value of a neuron
and the average activation value of a neuron, to minimize the
cost function. The main advantage of autoencoders is their
capability to recognize nonlinear anomalies with a minimal
computational cost by using dimensional reduction.

E =
1
N

N∑
n=1

K∑
k=1

(xkn − x̂kn)2 + λ �w + β �s (7)

where,

�w =
1
2

L∑
l

n∑
j

k∑
i

(wij(l))2 (8)

�s =

D(1)∑
i=1

ρ log(
ρ

ρ̂1
)+ (1− ρ) log(

1− ρ
1− ρ̂1

) (9)

=

D(1)∑
i=1

KL(ρ || ρ̂1) (10)

L = numberofhiddenlayers
n = numberofobservations
k = numberoftrainingdata
ρ = desiredactivationvalueforneuroni
ρ̂1 = averageactivationvalueforneuroni

IV. METHODOLOGY
This paper proposes a hierarchical layered strategy for island-
ing detection. Since the behavior of electrical power systems
with distributed generation can be challenging to predict,
a dialecticmode of validation is also proposed, which consists
of online and offline validation schemes. The methodology
is divided into three fundamental layers: a classical layer,
an intelligent detection layer, and an online validation layer.
The classical layer is based on active frequency drift which

is deployed in the inverter controls of the local DER. This
layer, under islanding conditions, is used to create a frequency
drift in the PCC voltage by injecting a very small perturbation
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FIGURE 4. Process flow diagram for the methodology.

in the inverter current. This causes the frequency-dependent
parameters to rise earlier than usual under islanding condi-
tions and thus it can be detected effectively by the intelligent
layer.

The intelligent detection layer is responsible for train-
ing and offline validation for the autoencoder on the rate
of change of frequency parameter, discussed in section IV.
The trip threshold for detection is selected based on offline
validation statistics. This layer also regulates autoencoder’s
performance by ensuring its F1-score to be above 0.80.

The online validation layer works in parallel with the
intelligent detection layer to validate the methodology in
real-time. In this layer, another autoencoder is trained on
the secondary parameters (phase angle pulse widths of PCC
voltage and inverter current) and is used to detect islanding
for various offline validation cases like the previous layer.
Finally, a trip signal to DER control is then initialized using a
logic design that ensures true-positive detection. The process
flow diagram for the methodology is shown in Fig. 4.

A. THE CLASSICAL LAYER: ACTIVE FREQUENCY
DRIFT (AFD)
In the classical layer, the frequency drift operation for
the inverter current is achieved by initializing a chopping

FIGURE 5. Frequency drift operation for AFD [47].

factor (cf ). This chopping factor is proportional to the dead
time (tz) of the inverter current which is used as an active
perturbation and is defined as (11). This dead time is usually
so small that the corresponding value of differential frequency
component (dF) has an insignificant impact on the power
quality of the system. After the initialization of the design
parameters for AFD, the inverter current function is redefined
as (12) and is graphically expressed as Fig. 5.

cf =
2tz
Tv

(11)

ipcc(t) =


Imax sin(2π f ′t) if 0 ≤ ω′t ≤ π − tz
0 if π − tz ≤ ω′t ≤ π

Imax sin(2π f ′t) if π ≤ ω′t ≤ 2π − tz
0 if 2π − tz ≤ ω′t ≤ 2π

(12)

where, f ′ = fpcc−df = fpcc/(1− cf ), is the perturbed system
frequency.

During islanding conditions, the frequency of the DER
tends to drift earlier than usual. This frequency drift in
inverter current induces a phase error between the inverter
current and PCC voltage. This causes the voltage to drift
further and further to catch the rising phase error thereby
drifting frequency at PCC to a threshold where it can be
detected as islanding.

The steady-state reactive power supplied under islanding is
equal to the reactive power supplied by the DER and for this
reason, the inverter angle under islanding conditions is equal
to the load angle. This relationship between inverter and load
angle is called phase criteria and is essential to determine the
non-detection zone of the technique. A typical relationship
of phase criteria in (Cres vs L) and (Qf vs fo) space are
respectively given as:

arg (
1
R
+

1
j w L

+ j w C)−1 = 0.5 π cf (13)

fo2 +
tan θinv(f )

Qf
fo − f 2 = 0 (14)

where, fo is the resonant frequency of the load.
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TABLE 1. Analyzed learning features.

B. THE INTELLIGENT DETECTION LAYER:
UNSUPERVISED LEARNING
After the implementation of AFD under normal operating
conditions, numerous features are listed in Table. 1, were
critically analyzed for unsupervised detection using autoen-
coders. Finally, two of the best features were selected for
detection and online validation criteria.

The rate of change of frequency was selected as a learning
parameter for the detection layer due to its superior accuracy
and F1-score. Initially, the data was retrieved from the EPS
using a measuring block and then this data with unwanted
starting transients was processed and split into training and
offline validation cases in the data processing block. The data
was then ready for encoding/decoding operation, followed
by its training at the autoencoder. An autoencoder uses a
feed-forward neural network with a backward propagation
over the epochs to regenerate a signal which closely matches
the normal/training data. This process is regulated by the
encoder cost function until the training error is greatly mini-
mized to a threshold root mean square error (RMSE) selected
based on the validation cases.

Once the autoencoder is trained, the encoder is subjected
to the offline validation cases. Under normal conditions,
the real-time data matches the predicted data and as a result,
the RMSE has a low value. But as soon as the islanding con-
ditions are met, the actual data mismatch the predicted data
and hence, the RMSE rises drastically until it reaches the set
threshold, thereby detecting the islanding event. The offline
validation cases consist of commonly occurring extreme
events such as fault ride through, load addition and rejection,
multi-inverter, and unbalanced system scenarios. In order to
regulate the methodology, these cases are compelled to meet
an F1-score of at least 0.80, as shown in Fig. 4.

C. THE ONLINE VALIDATION LAYER
This layer provides a real-time validation for the previous
layer by performing a similar detection on the secondary
parameters, i.e. phase-angle pulse width of the PCC voltage
and the DER current. These features are also trained and
validated using the autoencoders over the same validation
cases and like the previous layer an F1-score of at least 0.80 is
maintained for effective online validation. Since phase angle
pulse width of PCC voltage, has a high false-positive ratio
for multi-inverter models, a logic control was implemented
which includes phase angle pulse width of DER current as a

FIGURE 6. Performance curve for df /dt training.

FIGURE 7. Simulated AFD waveform for df = 1 Hz.

supplementary parameter that ensures true positive detection
under multi-inverter cases.

V. MODELLING AND SIMULATION FOR
ISLANDING DETECTION
Three test case models were designed to test islanding
detection on Simulink MATLAB. These includes the IEEE
1547 standard model having a 120 kV bus on the grid side,
a 575 V bus on the 2 MW Type 4 Wind farm side, and a
25 kV bus (at PCC) on the local load and circuit breaker
side as shown in Fig. 1. The other two models includes IEEE
13 bus system with unbalanced load and IEEE 1547 model
with Multiple DERs on the same bus. In the classical layer,
AFDwas implemented in the inverter control loop of theDER
with a perturbation of df = 1 Hz by mean of a hit-cross
and discrete integrator function block. The islanding instant
in the simulation was predefined to be 2 seconds as shown
in the Fig. 7. All the necessary data of electrical parameters
including df /dt , ωvph and ωiph was extracted to formulate a
comprehensive data set for training the autoencoder.

A. TRAINING AUTOENCODER
The training in the intelligent detection layer was performed
on 29,414 data points of time series data, for 500 maximum
epoch, 30 hidden nodes, with L2 and sparsity regularization
set for 1×106. The RMSE threshold for islanding detection
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FIGURE 8. Validation for fault cases.

was tested between 80 and 180, which was later fine-tuned
at 110 for optimum F1-score, after analyzing the offline
validations for the layer. The best training performance
of the autoencoder for df /dt was achieved at RMSE =
1.9398×10−6 at the 53rd epoch, as shown in the performance
curve Fig. 6.

B. OFFLINE VALIDATION
In order to test the validity and robustness of our proposed
methodology, the anomaly detection experiment was vali-
dated offline for 14 different cases, such that each case was
tested on 81 power mismatch scenarios, which makes a total
of 1134 cases. Based on the nature of the events, these
14 cases were divided into the following four categories:

1) Typical cases: Normal operating conditions, early
islanding conditions, and delayed islanding conditions.

2) Fault Ride through cases: Single line to ground (SLG)
fault, double line to ground (DLG) fault, three-phase
bolted (LLLG) fault.

3) Load addition and rejection cases: Resistive, capacitive
and inductive.

4) Multi-inverter case (4 DER feeding the same bus) and
Unbalanced system case

Among all of these 14 cases, only three cases represented
actual islanding conditions, i.e. early islanding, delayed
islanding under an unbalanced system whereas, all the rest

FIGURE 9. Validation for load addition cases.

of the cases were non-islanding events. Based on offline
validation, an optimal threshold of 110 was chosen with an
ideal F1-score of 0.991 on the test systems.

The RMSE function is proportional to the difference
between the autoencoder’s prediction of the parameter and
actual measurement. An offline validation case for 10 per-
cent active and 2.5 percent reactive power mismatch case
are shown in Fig. 8, Fig. 9, Fig. 10, Fig. 11, and Fig. 12
for fault ride through cases, load addition and rejection
cases, multi-inverter and unbalanced system cases, and typ-
ical cases, respectively. Islanding was successfully detected
for the three true-positives, i.e. early (Fig. 11b) and delayed
islanding (Fig. 11c), whereas all of the rest of the cases
prevented false-positive detection.

C. ONLINE VALIDATION
For the online validation of the methodology it was observed
that, during islanding conditions, the phase angle of PCCvolt-
age has a very high disturbance which alters the pulse width
instantly during islanding operation. This parameter has very
high selectivity to false-positive cases, except for the case of
the multi-inverter model. This is due to the fact that there
may be power flows among the adjacent DER to the local
loads, although the signature is smaller than local islanding
but significant enough to initiate false-positive tripping.

In order to resolve this issue, another secondary parame-
ter (phase angle pulse width of DER’s current) was chosen
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FIGURE 10. Validation for load rejection cases.

TABLE 2. Truth table for the collective scheme.

in combination with the previous (phase angle pulse width
of PCC voltage) for online validation. A logic control was
finally designed in order to ensure a highly reliable and
dependable scheme, as demonstrated in Table. 2. The online
validation parameters, ωvph and ωIph in the logic were AND
together and this output was then againANDwith the primary
pickup parameter i.e. dV/dt . This online validation like the
previous layer was also validated offline on the same, Fig. 20,
Fig. 21 and Fig. 19 (see appendix).
For the load variation cases, a load variation of 10 percent

of the active power mismatch and 2.5 percent of reactive
power mismatch were simulated. All of those cases including
the resistive, inductive, and capacitive load variations, could
not produce RMSE above 60 and were able to distinguish
between the load variation and islanding correctly. Even for

FIGURE 11. Validation for typical cases.

FIGURE 12. Validation for misc. cases.

the first batch of cases when the RMSE threshold was set to
be 80, the highest value for RMSE was 11.1 for the case of
capacitive load variation. The SLG and DLG fault, however,
in all scenarios had RMSE less than the least threshold case,
i.e. 60, and all fault ride through cases were distinguished
from islanding at an RMSE threshold set for 110.
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FIGURE 13. Comparison of RMSE for validation cases.

Moreover, the comparison of RMSE threshold for all
the validation cases for primary pickup are demonstrated
in Fig. 13 which shows how the pickup values for RMSE
were selected and selectivity of the protection was further
reinforced by online validation characteristics. The RMSE
threshold for both load variation cases an fault cases was
selectively chosen such that no outliers lie within the selected
threshold for accurate islanding detection..

D. PERFORMANCE INDICATORS
The performance of the proposed technique is advocated by
means of three evaluation analysis, i.e. the analysis of the
non-detection zone for all possible power mismatch condi-
tions along with their respective detection times, the analysis
of the statistical significance of the technique in terms of
F1-score, and Harmonic analysis of the technique in terms
of THD.

The non-detection zone analysis is done by simulating our
proposed islanding detection scenario for every combination
of active and reactive power mismatch by varying the loading
conditions. The active power mismatch cases were simulated
for values between±40%with a step size of 10% (i.e. ranging
from 1.2 MW to 2.8 MW) and the reactive power mismatch
cases were simulated between±10%with a step size of 2.5%
(i.e. ranging from −400 MVAR to 400 MVAR) for all active
mismatch cases. The detection time characteristics for power
mismatch at 1.5 quality factor are shown in Fig.14a, which is
compared to the performance of a traditional passive relaying
with the proposed technique. Fig.14b demonstrates the varia-
tion in detection time concerning changing power mismatch

FIGURE 14. Proposed technique under power mismatch.

conditions, with a mean of 20.4 milliseconds and a standard
deviation of 0.00029. The comparison of detection accuracy
with the other techniques in literature is presented in the
discussion section.

The statistical analysis for the technique was done on
the bases of its offline validations cases. The results of the
analysis are summarized in the form of its confusion matrix
for the 1134 cases in Fig. 15. It is evident from the matrix
that the true positive rate and the true negative rate for the
technique are quite high (100% and 99.5% respectively).
The only miss-hit cases were the 4 three-phase bolted fault
cases when the RMSE threshold was set below 110. This
problem was resolved when RMSE was set to 110, aug-
mented with the online validation feature that ensures the
fault ride-through cases are not classified as islanding. With
this inference, the islanding detection time was increased
from 5.7 milliseconds to 20milliseconds, but its robustness to
distinguish between islanding and non-islanding events was
greatly maximized.

The precision and f1-score response to all the 1134 offline
validation cases is graphically expressed in 16a and 16b.
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FIGURE 15. Confusion matrix - Statistical significance.

FIGURE 16. F1-score and precision response.

FIGURE 17. Effect of changing window size (cycles) on Total harmonic
distortion in compliance with IEC 61000-3-2.

For the proposed technique, the recall, precision and f1-score
were computed as 1.000, 0.982, and 0.991 respectively. The

FIGURE 18. FFT Plot for THD at different initialization.

dependability index (DI) and security index (SI) for the
methodology was computed to be 99.8 and 99.5 percent
respectively, which is a statistical proof for the effectiveness
of the technique,

Active methods, in particular, encounters power quality
issues due to harmonic injection in the inverter signals.
IEC 61000-3-2 and IEC 61000-4-7 discusses the crite-
ria for acceptable power quality standards for inverter-
based anti-islanding techniques. According to the standard,
the power quality measurements could be measured after
1.5s of filtering by means of a first-order filter, in a 200ms
(10/12 cycle) window, with an overall allowable THD of
±5%, with repeatability. The standard also discusses the
benchmark for individual odd harmonics levels, such as for
class A and B, the third harmonic should not exceed 2.3% and
3.45% respectively and the fifth harmonic should not exceed
1.14% and 1.71% respectively, and so on. [48] and [49] dis-
cuss anti-islanding techniques which demonstrate a detailed
power quality analysis in terms of THD, voltage flickering,
and grid penetration under weak grid conditions.
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TABLE 3. Technical comparison of recently developed islanding detection techniques.

Power quality analysis for THDwas carried out for the pro-
posed strategy, in which the differential frequency between
0.5 to 1.5 was analyzed for cycles ranging from 5 to 25,
as shown in 17. ThemaximumTHD of a system for a window
size of 12 cycle (200 milliseconds) was measured at different
initialization, to confirm its validity (according to standard
IEC 61000-3-2). Fig. 18a, 18b, and 18c demonstrates three
different window selections for THD measurement at df set
to 1.5. The average THD for the technique was measured to
be 4.56%, which complies with the standard.

VI. DISCUSSION
In the light of performance indicators discussed in the pre-
vious section, the proposed strategy complies with all the

standards with prominent results. The proposed methodol-
ogy demonstrates a very high (dependability index) DI and
(security index) SI with online and offline validation fea-
tures in comparison to the techniques presented in the recent
literature.

A technical comparison of the recently developed tech-
niques for islanding detection is presented in Table. 3.
Most of the techniques discussed here either have an intel-
ligent design theme or have addressed power quality and
gird penetration issues under weak grid conditions very
effectively. In the table, passive methods based on wavelet
entropy functions, parameter indices and pattern recognition
[50]–[53], performs better on conventional systems however,
most of the voltage and frequency based passive islanding
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TABLE 4. Parameter limits by IEEE Standards.

FIGURE 19. Sec. validation: misc. cases.

detection techniques are ineffective and less reliable for
future power systems with high penetration of inverter-based
DERs having high droop gains, i.e. grid supporting DERs as
explained in [8]. However, deep learning-based passive tech-
niques [9] in literature were found to have a very narrow range
of validation scenarios of power mismatch conditions and
false-positive conditions, along with a less dependable accu-
racy for the test case scenarios [54]. More than that, the recall
for the techniques shows a greater room for improvements,
as for various validation conditions, such as three-phase
bolted faults, the neural network had to be trained using
supervised learning which does not guarantee accuracy over
the false-positive cases in anomaly detection application.

Active injection-based techniques especially impedance
estimation and cross-correlation based on sub/inter har-
monic injections [31]–[33], [55] are very effective in the

FIGURE 20. Sec. validation: Load variation.

case of parallel operation of inverters by managing syn-
chronous harmonic injection through various techniques,
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FIGURE 21. Sec. validation: Typical and fault cases.

as discussed earlier. But due to their total reliance on esti-
mation techniques for grid conditions, it usually requires
complex, and computationally burdened controls for practical
implementation. Also, it could be challenging to operate

effectively under complex distributed generation systems due
to their network dynamics which are evolving each day.
On the other hand, the harmonic injection can frequently
interact with control and protection schemes leading to a
nuisance or unidentified trips, for example, in case of stator
earth faults, they have a very strict pickup setting to third
harmonics of the current, which can lead to repeated trips
without any true stator earth faults. However, few recent
techniques [33] have demonstrated very promising results
for voltage flickering and grid penetration issues as shown
in Table.3 and it could be made more reliable and depend-
able if these techniques could use an intelligent data-centric
approach in the future.

Hybrid techniques, on the other hand, appear more promis-
ing as they can use two-level detection with minimum power
quality compromise, lesser computationally burdened con-
trols, unlike active methods. Traditional hybrid methods,
including [37] are slower and less robust, however, the recent
wavelet entropy of system parameters, which have intelli-
gent algorithms, usually rely on single feature-based wavelet
indices [9], [36], [56]. These techniques promise a high accu-
racy, along with a lacking of a definite validation scheme,
which deteriorates its performance over false-positive island-
ing conditions. Unfortunately, even a very high accuracy in
such cases does not guarantee reliability of the outcome,
as it does not take account of multi-inverter system and
unbalanced system especially in the case of three-phase
bolted faults, which can be quite challenging to identify as
non-islanding. More than that, Wavelet decomposition of
a single variable to multiple indexes can be computation-
ally rigorous and dimensionally less featured, as it does not
account for other parameters that can contribute to islanding
detection.

Unlike the recently published hybrid methods, our pro-
posed methodology consists of a hierarchical layered
approach. With its active frequency drifting feature, along
with the intelligent generative model, it makes the technique
computationally less burdened, due to its autoencoder-based,
dimensional reduction scheme, with the least compromise
on the system’s power quality. Since the detection is done
by the intelligent anomaly detection, which has a adaptive
pickup (RMSE) unlike the traditional relays, the detection can
be done with a very minimal harmonic injection, as low as
a THD range of 1.77% - 4.56%. The proposed methodology
due to its computational superiority is easily deployable using
low processing programmable devices whichwould be totally
self-reliant due to their data-centric approach.

The technique is primarily focused for grid following
(current-source) inverters which are either operating as single
inverter based DERs or as a small-scale parallel operating
inverters on the adjacent buses such that they have a negligible
harmonic canceling effect on the EPS. Since the proposed
technique is based on intelligent islanding detection, it can
work generically for the grid forming inverters (voltage-
source) as well ideally, with a limitation of a complete inverter
controls strategy for anti-islanding.
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More than that, one of the prominent features of the pro-
posed technique is its dialectical mode of validation. The
offline validation ensures the selectivity of detection over
extreme cases whereas, online validation uses three funda-
mental parameters for the detection, which ensures the prob-
ability of real-time true detection by means of control logic.
These three parameters act as an online validation for each
other, such that the performance of the technique cannot
be bottle-necked by any one parameter, unlike in the past
literature. Due to frequency drift operation in the classical
layer, the selected three parameters are more prone to early
islanding detection as compare to normal conditions with the
least false positive ratio, which results in a quicker islanding
detection (i.e. 20 milliseconds).

VII. CONCLUSION
This paper proposed a detailed methodology to design
an intelligent islanding detection technique based on
unsupervised learning, augmented by AFD. In the pro-
posed technique, AFD was implemented in the inverter
control of the DER, which exaggerated the voltage
and frequency characteristics during islanding conditions.
An autoencoder-based anomaly detection algorithm was
deployed over the selected features, which were not only
found effective for islanding detection using the intelli-
gent regenerative strategy but also demonstrated an inno-
vative approach to redefine programmable trip settings to
training-based RMSE threshold settings. The technique also
demonstrated an efficient strategy for online and offline
validation. Different cases were simulated and tested for
islanding in this validation technique, which includes fault
ride-through cases, load variations cases, typical cases,
multi-inverter/parallel operation, and unbalanced system
cases. Furthermore, the effectiveness of the methodology
was analyzed in terms of three performance indicators which
include, NDZ for all possible power mismatch conditions,
statistical significance, and power quality. The F1-score
of 0.991, the dependability index of 0.998, the security index
of 0.995, detection time of 20 milliseconds (IEEE 1547), and
an allowable THD of 4.56% (IEC 61000-3-2) was measured
with a zero non-detection zone. This advocates the technique
to be a more reliable, dependable, and robust scheme for
islanding detection for inverter-based distributed generation.

APPENDIX
See Table 4 and Figures 19–21.
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