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ABSTRACT Multi-timescale interaction of power electronics devices, including voltage source converter
(VSC), has made the stability and analysis of high penetrating renewable power systems very complicated.
In this paper, the impedance model is used to analyze the multi-timescale characteristics and interaction of the
VSC. Firstly, the multi-timescale impedance characteristics of VSC are investigated based on the Bode plots.
It is found that the slow-timescale (within the DC-link voltage control scale) and fast-timescale (within the
AC current control scale) models are separately consistent with the full-order model perfectly within their
low- and high-frequency ranges. In addition, there exists a high impedance peak within the intermediate
frequency range (roughly from 10 Hz to 100 Hz). Then, the impedance peak is theoretically estimated and
explained by the slow-fast-scale impedance parallel resonance through transfer-function diagram analysis.
Moreover, it is found that the impedance peak is more related to some outer controllers, such as the alternative
voltage control and active power control. Specifically, larger proportional coefficients can greatly suppress
the resonance peak. Finally, simulations and experiments are conducted to verify the generality of the
multi-timescale characteristics and interaction of the VSC. Hence these findings are not only significant
to provide a physical insight into the inner key structure of the impedance of VSC, but also expected to be
helpful for controller and parameter design of the VSC.

INDEX TERMS Small-signal stability, multiple time-scale analysis, interaction, parallel resonance,

parameter design.

I. INTRODUCTION

With large-scale integration of renewable energies and
widespread application of power electronic equipment,
the structure of our modern power systems has changed radi-
cally. Recently, the emergence of multi-frequency oscillation
covering wide frequency bands has seriously threatened
the system stability and strongly restricted accommodation
of renewable energies around the world [1], [2]. There-
into, voltage source converter (VSC), usually adopted as a
key power electronic device for grid interface of renewable
energies, has its intrinsic properties of nonlinear dynamics
and multi-timescale interactions of its inner and outer
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cascading control. The properties make the system analysis
harder, compared to the traditional power systems. There-
fore, it becomes urgent to study the interaction induced
multi-timescale stability problems and uncover the underly-
ing physical mechanism [3], [4].

Effective mathematical modeling is the foundation for
system stability studies. So far, the state-space model and the
impedance model are two major methods for the small-signal
stability analysis [5]-[8]. In the state-space model, usually
the modal analysis on state variables is performed, with all
detailed information included, such as controller and system
parameters. Modal analysis can be used to assess the stability
of the system and analyze the couplings through partici-
pation factors and sensitivity analysis [9]-[12]. However,
itlacks physical insight into the interactions between different
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controllers (or timescales) in the VSC. In addition,
the impacts of specific controllers on the final calculated
results of eigenvalues are not apparent. Hence the modal anal-
ysis might be difficult to be applied to study the interactions
between different timescales and controllers in the VSC.

On the contrary, by focusing on the terminal characteristics
of subsystems in the frequency domain, the impedance model
of single components (like VSC, MMC and etc.) can be
either theoretically obtained or experimentally measured [6],
[71, [13]. Especially, how to reveal the multiple frequency
coupling mechanisms in MMC through impedance modeling
is a difficulty. It becomes convenient to analyze the interac-
tion between different controllers based on the impedance
model. The impedance model has been widely studied in
different domains including the dg, sequence, a8, phasor,
etc, whose connections and equivalence have been uncovered
n [14]-[16]. Several papers have studied the impact of dif-
ferent parameters and controllers on the amplitude-frequency
response of impedance of VSC and analyzed the system sta-
bility [17]-[21]. Among them, the impact of the phase-locked
loop (PLL) based on the dg impedance was analyzed and it
was found that the negative resistance effect induced by the
PLL was the key factor for system instability [19]. The impact
of time delay was also investigated recently via the dg and
sequence impedance models. For instance, it was found that
a high time delay of the controller can induce an impedance
trough around 1kHz [20], [21].

Generally in all previous papers, only single controls or
parameters were concentrated and the mutual influence and
interaction between different controllers were overlooked.
There are several works on system dynamics analysis within
each single timescale. For instance, the slow-scale stabil-
ity problem of VSC was studied in the range of voltage
timescale [22]-[25]. It was reported that the oscillations
between dozens and hundreds of Hz can be put into the cat-
egory of current-timescale, by studying a fast-current-scale
model. A model reduction methodology based on a state
space model was proposed to assess slow-scale dynam-
ics by calculations of eigenvalues and the participating
factor [26]. The fast-scale stability of VSC was studied under
different parameters’ conditions in the range of alterna-
tive current timescale [27]. Slow-scale, fast-scale and coex-
isting bifurcations were studied in a multi-operating-mode
photovoltaic-battery system [28], [29]. Obviously, these
papers have studied the dynamics of the VSC within the sin-
gle timescale and missed the influence of interaction between
different timescales or controllers.

The interactions between different VSCs have been ana-
lyzed through the amplitude-phase modeling and can be
quantified by proposed self- and en-stabilizing coefficients in
voltage control timescale [30], [31]. What is more, the inter-
action between double fed induction generator-based wind
turbine and synchronous generator can be quantified through
self- and en-stabilizing property based on motion equation in
electromechanical timescale [32]. However, the quantitative
analysis based on the amplitude-phase model is too complex
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and the interactions between inner and outer controllers
(or different timescales) have not been revealed in the elec-
tromagnetic timescale. There was little research on the inter-
actions (or couplings) between different timescales based on
the impedance model, to the best of our knowledge.

To fill the above these gaps, we will take a closer look
at the details of the full-timescale VSC impedance by using
multi-timescale analysis. We uncover a novel parallel reso-
nance within the intermediate frequency region and evaluate
its influence factors. These findings are expected to be helpful
for further system analysis and controller parameters design
for the VSC. Extensive simulations and experiments are con-
ducted to verify the theoretical results.

The rest of the paper will be organized as follows. The
impedance models within the fast and slow timescales are
established and then compared with state-space models in
Section II. In Section III, the impedance characteristics of
fast- and slow-timescales are shown in the Bode plot and then
theoretically analyzed through the order analysis. Section IV
is devoted to the intermediate timescale, by focusing on the
phenomenon of interaction-induced impedance parallel reso-
nance and the influence factors of the impedance resonance
peak. In Section V, we generalize these findings and results to
some other outer controllers. Finally, simulation and experi-
mental results are presented in Section VI, and conclusions
and discussions are given in Section VII.

Il. IMPEDANCE MODELS OF FAST AND SLOW
TIMESCALES

The converters in the power electronics systems share some
common features. Fig. 1 schematically shows a two-level
three-phase VSC tied to the AC grid and its cascaded controls
with certain parameters, and the typical parameters are given
in Appendix A. The AC grid is represented by an infinite bus
with a line inductance (Lg). The impedance of a single VSC
in the full-order form has been well derived and studied in
literature. Below we like to start from the concrete form of
impedance, dissect it carefully, and obtain the corresponding

FIGURE 1. Schematic show for a two-level three-phase VSC tied to AC
grid and its cascaded controls. The inner alternative current

controller (ACC) and different outer controllers such as the direct voltage
control (DVC), alternative voltage control (AVC), and power control (PC)
are considered. The PLL for the phase output 6, is used for grid
synchronization and VSC control.
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impedance models within slow and fast timescales, by using
the multi-timescale analysis.

Firstly, let us present the already-existing results of
the full-timescale VSC impedance including the alternative
current controller (ACC), direct voltage control (DVC), alter-
native voltage control (AVC), and the PLL for synchro-
nization. According to the detailed derivations of the VSC
impedance in Appendix B, all of the transfer functions are in
a second-order form. Among them, Gz, denotes the open-loop
output impedance of the converter, G;. is the current con-
trol compensator, and G; p; and G, p; indicate the relations
between the inductor current (Aiy,) and the internal voltage
(Aegy) in the PLL frame and the terminal voltage (Auyqy) in
the synchronous frame, respectively. G;, and Gj; represent the
relations between the current reference (Aiggrer) in the PLL
frame, and the terminal voltage (Auyq,) and the inductor cur-
rent (Aig,) in the synchronous rotation frame, respectively.
For more details, see Appendix B [5], [6], [19].

The output impedance of the VSC can be described by

Zaq full = Z,, flul,Zb,fuzz (D
where

Za,full =1+ GicGi,pll - Ge,pll — GicGyy

2
Zp futl = GL + Gic — GicGij;

and / denotes a 2 x 2 unit matrix.

For a common cascaded control in the VSC, and the band-
width of the outer voltage controller is usually around five
times lower than that of the inner current controller relying
on the control design criterion. The power electronics exhibits
the intrinsic property of multiple electromagnetic time scales.
Essentially based on the knowledge of controller design and
understanding of physical equipment, the time scales can
be classified into switching (around several kHz), alterna-
tive current (around 100 Hz), and dc-link voltage (around
10 Hz) one. The time scale of a phase locking loop (PLL)
for synchronization should be considered as between the
fast current-control and slow voltage-control scales roughly
(10~100 Hz). As the response speed of switching is very fast,
it is usually neglected in the system-level stability analysis.

In this paper we will concentrate on the two
electromagnetic time scales mainly: the current-control and
voltage-control scales. Though the multi-timescale concepts
of the VSC have been proposed in some literature [3],
[33], [34], the multi-timescale characteristics and interactions
between different controllers (or timescales) have not been
compared in detail and investigated from the viewpoint of
the frequency domain based on the impedance model.

A. IMPEDANCE MODEL OF SLOW TIMESCALE

Under the DC-link voltage control condition, the dynamic
response of the ACC is relatively fast, compared to that of
the outer controllers. Thus, the current output of the VSC on
the transmission line can be considered equaling the current
reference value. In this case, the VSC can be thought as a
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constant current source and the transmission-line inductance
can be regarded as a constant reactance under the working
frequency. These assumptions are consistent with [22]-[25].
Therefore, we have

Aiqu = Aia’qref 3)

Furthermore, by considering (A.1), the slow-timescale
impedance including the DVC, AVC, and PLL can be written
as

-1
qu,slow = Zu’ S[UWZb,slow 4

where

{Za,slow = Gi,pll - Giu (5)

Zb,slow =1I- Gii

The small-signal stability of this impedance model
is consistent with that of the state space models and
amplitude-phase models established in [23], [34], [35]. Com-
pared with Z, s, and Zp f, in (2), the dynamic behaviors
of the current inner controllers and the line inductance are
neglected, and the line currents are equal to the current refer-
ences. Namely, G;. and Gz, are neglected.

B. IMPEDANCE MODEL OF FAST TIMESCALE

In contrast, under the current control fast-timescale condition,
the action of the outer voltage controllers can be regarded as
relatively slow and their outputs can be thought as constants.
These assumptions are consistent with [6], [27]. Therefore,

Aialqref =0 (6)
Combing it with (A.2), we get
Aeg, = —GicAlg, N

which yields the final impedance within the fast timescale
including ACC and PLL:

qu,fast = Z;}astzb,fast (®)

where

&)

Za,fast =1+ GicGi,pll - Ge,pll
Zb,fast = GL + Gic

The small-signal stability of this impedance model
is consistent with that of the state space models and
amplitude-phase models established in [5], [27], [33]. Com-
pared with Z, i and Zy, 57 in (2), now the dynamic behaviors
of the voltage outer controllers are neglected, and the line
current references are set as constants; both G;, and G;; equal
zero.

C. SMALL-SIGNAL STABILITY BASED ON IMPEDANCE
MODEL

The systems can be transformed into a simplified circuit
composed of the two impedance (or admittance) elements [6],
where the transfer function diagram of the impedance-based
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FIGURE 2. Transfer function diagram of the impedance-based
source-load system.

source-load system is shown in Fig. 2. The minor loop gain
of transfer function can be obtained:

Hapen = ZL_lqu (10)

where Z;, denotes the impedance of the load (here is the line
inductance in Fig. 1), and Z, denotes the impedance of the
source (here is the VSC in Fig. 1). Consequently, based on
this open-loop information, the so-called generalized Nyquist
criterion (GNC) can be used to justify system stability, relying
on the multi-variable frequency-domain analysis theory.
Accordingly the closed-loop transfer function is

Geiosed = _qu(l + ZL_lqu)_l (11)

Obviously, the system stability can also be judged by its
poles.

On the other hand, the system stability can also be deter-
mined by a time-domain state space model. The related state
space models for the slow-scale, fast-scale, and full-scale are
shown in Appendices C, D, and E, respectively. Theoretically,
the Smith-McMillan poles of the closed loop transfer function
should be equivalent to the eigenvalues calculated from the
state matrix due to modern control theory. The calculated
results are shown in Tab. 1, where, by comparing the values in
the left and right columns, we can see that they fit with each
other perfectly.

In addition, by comparing the values on different rows,
one can find that the full-scale model does contain the whole
information of system while the fast and slow models just
contain the information in their frequency range. The inner
and outer controllers indeed exhibit the intrinsic property
of fast and slow timescales separately. Though the mutual
influence of different controllers can be analyzed based on
the modal analysis, the multi-timescale characteristics and
interactions can be further revealed from the viewpoint of the
frequency domain based on the impedance model.

Ill. CHARACTERISTICS ANALYSIS OF SLOW AND
FAST-TIMESCALE IMPEDANCE MODELS

A. COMPARISON OF IMPEDANCES WITHIN FAST, SLOW,
AND FULL TIMESCALES

As the first step, we plot the above theoretical results of full,
slow, and fast timescale impedances in Figs. 3 and 4 for their
amplitude and phase responses, respectively. The frequency
varies from 1 Hz to 1000 Hz, which we are interested in.
The red solid, blue dashed, and green dot-dashed lines denote
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TABLE 1. Comparison of eigenvalues in state space models and poles of
closed-loop transfer functions in impedance models.

Smith-McMillan
poles of closed loop
transfer function

Eigenvalues of
state space model

—12.22
—6.31 & j24.41
—25.23 =+ j37.71

—243.22 + j374.13

—387.73 + j705.16

~12.25
—6.07 + j24.87
—24.46 % j36.04

—22.66 + j38.04
—214.44 + 356.77
—422.92 £ j684.21

—12.22
—6.31 & j24.41
—25.23 + j37.71

—243.22 + 5374.13

—387.73 £ 5705.16

—12.25
—6.07 £ j24.87
—24.46 + j36.04

—22.66 + 538.04
—214.44 £ j356.77
—422.92 £ j684.21
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FIGURE 3. Amplitude response of impedances of the VSC within different
timescales. The red solid, blue dashed, and green dot-dashed lines
denote full-, fast-, and slow-scale behaviors, respectively. In addition,

we use red products for the measuring results. Roughly the whole
frequency range can be divided by two vertical lines into low (1 ~ 10 Hz),
middle (10 ~ 100 Hz), and high (100 ~ 1000 Hz) ones, represented by
roman numerals: |, 11, and 111, respectively.

full-, fast-, and slow-scale behaviors, respectively. In addi-
tion, the values of impedance can also be measured through
injecting small-signal voltage (or current) disturbances in
MATLAB/Simulink. The measuring impedance values are
also superimposed in Fig. 3 and 4 with red markers ’x’,
showing a perfect match with the theoretical results.

Based on these comparisons, obviously the slow-timescale
impedance matches with the full-timescale impedance very
well within the lower frequency range (roughly lower than
10 Hz), whereas the fast-timescale impedance matches with
the full-timescale impedance very well within the higher
frequency range (roughly above 100 Hz), except that there is
a small visible mismatch in Z 4. This mismatch in high fre-
quency range can be narrowed by decreasing the proportional
coefficient of AVC (kp, avc) according to the Bode responses,
which is discussed in Appendix F.
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response c

In the middle region, they both cannot fit with the
full-timescale impedance. Therefore, based on these obser-
vations, the whole frequency range can be divided into three
ranges in each sub-figures of Fig. 3 and Fig. 4, which are
emphasized by roman numerals, I, II, and III. The two
crossover frequencies have been indicated by vertical dashed
lines. Within the middle frequency region II, both curves
of the slow and fast timescale impedances substantially
deviate from that of the full-timescale impedance. There is
not a smooth transition from the slow to fast timescales.
An impedance amplitude peak exists within the II region
(f ~ 20 Hz) in the amplitude response plots in Fig. 3,
accompanying with a discontinuous phase jumping in the
phase response plots in Fig. 4. Recalling the impedance
trough phenomenon induced by time delay around 1kHz,
which was reported recently in [20], [21], one may reasonably
infer that the impedance peak and impedance trough can be
thought as a unified phenomenon induced by the changing
of dominating scale dynamics when a timescale transition
happens. The relevant problems of the impedance peak within
the intermediate frequency range will be further studied in
detail in Section IV.

B. IMPEDANCE APPROXIMATION OF DOMINANT TERMS
WITHIN FAST AND SLOW SCALES

So far, we have seen that the VSC impedance characteristics
can be well revealed by the model analysis within the low and
high frequency ranges. Below we like to get approximative
impedances by studying the dominant terms of the full-order
model in the limits of low and high frequencies through order
analysis. As in the frequency domain s = jw, in the limit
of high frequency, the term with a higher order of s will
be dominant. On the contrary, in the limit of low frequency,
the term with a lower order of s will be dominant. As Zg, s
in (1) is controlled by Z, s, and Z, s, we can analyze their
orders in terms of s and simply keep the dominant terms as our
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TABLE 2. Dominated item analysis of Z, ¢, and Zj, 7,

Z, a 4 b
—2order (s7%)  GicGipn — GicGiu  —GicGis
—1 order (s~ 1) —Ge il ic
0 order (s%) I —
1 order (s1) — G,
10* st a——— 10*
Za Low-frequency item Zb
= = = High-frequency item|
= 10 — Full expression 10%
&
E 0
£ 10 PEd
& Yo
§ - -
102 102 -7
(a) 4 ()
104 104 )
10° 107 o 10° 107 *
Frequency(Hz) Frequency(Hz)
H 4 ’
FIGU,!E 5. An,1pI|tude responses of (a) Z_a’s,ow, 2, fast’ and Z; ¢y, and
(b) Zy, stow* Zb fast’ and Zj, f,y;- Only their dd components are presented.

Clearly the two impedances Z &q’ slow AN Z t’Iq, fase Match with Zyg 7,y
within both low and high frequency ranges roughly.

approximation. The analytical result is illustrated in Tab. 2,
where Z, s, and Zp, s, can be roughly classified into four
categories, based on the order s for each item. Directly we
have the simplified expressions for the impedances within the
lower and higher frequency ranges, respectively,

-1
Zéq,slow = (ZL;,XZ(JW) Zl;,slow (12)
where
ZL:I,SIOW = Gi,pll — Gy (13)
Zb,slow = —Gii
and
Zh o =2 . 77, (14)
dg.fast — \“a,fast b.fast
where
/ j—
{Zlf,fasl =1 (15)
Zb,fast = GL

The frequency response of VSC is similar to inductance
in high frequency range, which is consistent with our intu-
ition and engineering practice. Comparing these expressions
with those of Zyy siow in (4) and Zgy a5 in (8), one can see
that Z), gslow A0d Z ",quast have been simplified comparatively,
as only the dominant terms have been kept.

To prove this approximation, Fig. 5 shows the ampli-

tude responses of Z;yslow, Z;’ﬁm, and Z, 50 in (a), and
Zé’ slow> Zé’fw, and Zp sy in (b), respectively. Only their

dd components are presented. Apparently the low-frequency
and high-frequency terms are separately consistent with the
full-expression of Z, sy and Zp sy in the slow- and fast-
timescale ranges, indicative of the correctness of the above
approximation.
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FIGURE 6. Transfer function diagram of the VSC's admittance. The
fast-scale (slow-scale) components are given in the top green box
(bottom red box). In between, G;.G; , serves as their common parts,
representing the impact of the PLL. On the right of the diagram, all three
branches can be simplified to Gi_cl’ based on our dominant-order analysis
presented in Tab. 2.

IV. CHARACTERISTICS ANALYSIS OF
INTERMEDIATE-TIMESCALE IMPEDANCE

In this section, the phenomenon and its physical mechanism
of the impedance peak within the middle frequency range
will be concentrated. Furthermore, the influences of different
controllers and parameters will be investigated.

A. ESTIMATION OF THE IMPEDANCE PEAK’'s FREQUENCY
Observing that the impedance peak is located at around 20 Hz
in Fig. 3, and meanwhile the amplitude response of Z s, is
smooth in Fig. 5(b) and that of Z, f,; in Fig. 5(a) shows a
rapid drop within the middle frequency range, we can only
calculate the extreme point of the dd element of the Z, s
matrix in Fig. 5(a), which can be expressed in (16), as shown
at the bottom of the next page.

Let dZ, fuiiaa)(jw)/dw = 0, we have

) —4(ac — b*d?)

127 24bd — 28242)

i\/ 16(ac — b%d2)* + 4(4bd — 2a2d?)6c2d?
2(4bd — 2a2d?)

7

where a = kp,cckp,a’VCs b = (ki,cckp,dvc + kp,ccki,dvc), ¢ =
ki.ccki.ave, and d = I40/C. This yields the peak frequency
at 19.73 Hz, which is consistent with the aforementioned
numerical observation in Fig. 3. We can also see that this
peak frequency is determined by the control parameters of the
ACC and DVC, and the DC capacitor, meaning that the peak
is contributed by an interplay of both fast- and slow-scale
controllers. Further physical explanation and extensive plots
under different parameters will show that the impedance peak
is a generic phenomenon.

B. PHYSICAL MECHANISM OF THE IMPEDANCE PEAK

Further efforts should be made for uncovering the mecha-
nism of the impedance peak. For this purpose, we examine
the detailed transfer function diagram in the full-timescale
admittance of the VSC, Y4 1, in Fig. 6. This is consistent
with the form of Zy, s, in (1). Basically its left and right parts
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FIGURE 7. Comparison of amplitude response of full-scale impedance
(solid line) with that of parallel connection of the fast-scale and
slow-scale impedances (dashed line).

represent the contributions of Z, s, and th flu ;1> respectively.
In view of the top and bottom parts, the top green box and
bottom red box separately represent the contributions within
the slow and fast scales. In between, G;-G; py serves as their
common part, representing the impact of the PLL. In addition,
the whole right part in Fig. 6 for Z, flull can be simplified
to Gi_cl, as the s—1-order item of Zp guil> Gic, is dominant
within the intermediate frequency range in Tab. II. There-
fore, we have the admittance expressions under different
timescales,

Yag fuil = G;1(1 + GicGipit — Gepit — GicGiu)
Yagsiow = Gip (GicGipi — GicGiu) (18)
Yaqfast = Gio (I + GicGipit — Ge pit)

for Yaq full» Ydq,siow,» and Y4 fase representing admittances
within the full, slow, and fast timescales, respectively. Fur-
thermore, based on that G;.G;py (serving as a s~ 2-order
item in Tab. II) is relatively small within the intermediate
frequency range, we immediately have:

Yag.fuil = Yag,siow + Yag fast (19)

which indicates that within the middle frequency region,
the full-scale admittance can be viewed as a sum of the
slow-scale and the fast-scale admittance, and hence from the
perspective of impedance, the full-scale impedance can be
viewed as parallel connection of the slow-scale and fast-scale
impedance. Last we supplement that as parallel impedance
is considered, it is more convenient to study it in the form of
admittance summation, as we have done in the analysis of the
transfer function control diagram in Fig. 6.

To check this point, Figs. 7 and 8 show the comparison
of amplitude-phase response of the original full-timescale
impedance Zy, s, (red solid line) with that of the paral-
lel impedance of the fast-scale and slow-scale impedances,
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FIGURE 8. Same as Fig. 7 with phase response considered, instead.

Zaq fast and Zgg siow (red dashed line). It can be seen that their
difference of amplitude within the middle frequency region is
small and their phases are almost the same.

Next we can find that the different characteristics of slow-
and fast-scale impedance lead to this impedance peak, which
can be named after parallel resonance peak. Recall the phe-
nomenon of phase jumping in the phase response in Fig. 4,
either from positive to negative in Fig. 4(a) (Zyq) or from
negative to positive in Figs. 4(b)-4(d). This means that around
the impedance peak, the electrical characteristics of Zyy, Zy,
Z4d, and Zy, of the fast- and slow-scale impedances are
always opposite, i.e., one is inductive (or capacitive) and
the other is capacitive (or inductive). Combining this with
the parallel impedance rule, we understand that a parallel
resonance occurs under the parallel connection of fast and
slow-scale impedances. This is similar to the well-known
RLC parallel resonance in electrical circuits. Finally, to make
this mechanism clearer, we plot the amplitude response
of the current-scale ACC impedance (solid curve) and the
voltage-scale impedance under the DVC & AVC (dashed
curve) in Fig. 9, where the intersection of these two curves
is just located at f &~ 20 Hz (guided by an arrow), indicative
of the occurrence of the parallel resonance. The appearance
of this parallel resonance within the middle frequency region
may play an active role in stability of VSC systems.

C. IMPACT OF CONTROLLERS ON THE PARALLEL
RESONANCE PEAK AND THE SYSTEM'’s STABILITY

The impacts of the parameters of the AVC, DVC, ACC, PLL
and current decouple terms on the resonance peak are inves-
tigated below. It should be noted that as the figures of all Z;,
Zdg> Zga, and Z,, are similar, only the amplitude responses of
Zqq will be presented. In addition, the dominated eigenvalues

ACC — — DV(]
------DVC&AVC -.---PC
5
z 107
T
=l
2
& 10!
=
10 =, -
10° 10' 10° 10° 10° 10" 102 10°
Frequency(Hz) Frequency(Hz)

FIGURE 9. Amplitude response of impedance (Zy4 and Z,) for different
outer controllers to examine the parallel resonance mechanism. Green
solid line is for the ACC fast-scale impedance. Red dotted, dashed, and
dot-dashed lines are for the DVC & AVC, DVC, and PC outer-control
slow-scale impedances.

Magnitude(p.u.)

1

10° 10 107 10° 10 10! 10? 10°
Frequency(Hz) Frequency(Hz)

FIGURE 10. Amplitude responses of impedance, Z;4, under different PI
parameters of the AVC: (a) kp,avc = 0.1,0.2,2 (b) k,-’a,,c =13, 23, 33,
which are represented by dashed, solid, and dot-dashed lines,
respectively.

(determined by the sensitivities and participation factors) will
be studied and compared under different proportional and
integral (PI) parameters, which should be useful for further
parameter design.

1) IMPACT OF AVC's PARAMETERS

The amplitude responses of the impedance Z;; under differ-
ent PI coefficients of the AVC are shown in Fig. 10. It can
be seen that the resonance peak decreases dramatically with
the increase of kj 4y in Fig. 10(a), while it almost remains
unchanged with the increase of k; 4, in Fig. 10(b). Hence the
resonance peak can be suppressed by increasing kp_qyc.

The AVC mainly influences the real eigenvalue, i.e.
—12.22 in Tab. 1, according to the participation factors.
The dominated eigenvalues under different parameters are
calculated and illustrated in Tab. 3. It can be found that the
eigenvalue keeps away from the imaginary axis with the
increase of k; 4,c and the decrease of kp gv¢, S0 a higher &; 4y¢
and a smaller k;, 4y are beneficial for the system small-signal
stability.

2) IMPACT OF DVC's PARAMETERS
Correspondingly, the amplitude responses of impedance
Z4q under different PI coefficients of the DVC are shown

Lqo0 [kp,cclﬂn,dvcs2 + (ki,cckp,dvc +kp,ccki,dvc)s+ki,ccki,dvc]

Za full(dd)(s) = 1+

90132

Cs (16)
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TABLE 3. The dominated eigenvalues with different Pl parameters of AVC.

N 0.1 0.2 2

13 -7.66 <7125 -3.65
23 -12.82 -1222  -6.42
33 -17.38  -16.65 -9.11

Magnitude(p.u.)

CC

10° 10! 107 100 10° 10! 107 10°
Frequency(Hz) Frequency(Hz)

FIGURE 11. Amplitude responses of impedance (Z44) under different Pl
parameters of the DVC: (a) k, gyc = 1,2, 5. (b) k; g, = 100, 80, 60, which
are represented by dashed, solid, and dot-dashed lines, respectively.

TABLE 4. The dominated eigenvalues with different Pl parameters of DVC.

P
\ 1 2 5

100 —3.084524.47 —6.27+728.86 —17.80 % ;25.77
80  —2.98+£24.90 —6.314;24.41 —20.43 £ 520.60
60  —2.99+521.89 —6.64+;21.28 —21.43 % 714.06

in Fig. 11. It can be seen that the resonance peak decreases
with the increase of kj 4, in Fig. 11(a), while it changes a
little with the decrease of k; 4, in Fig. 11(b). Therefore, it can
be gotten that the impact of the DVC on the resonance peak
is relatively smaller than that of the AVC.

Similarly, the DVC mainly influences the slow-scale eigen-
values, i.e. —6.31 &£ j24.41 in Tab. 1, according to the par-
ticipation factors. The dominated eigenvalues are calculated
and concluded in Tab. 4 under different parameters. It can
be seen that the real part of eigenvalues keeps away from
the imaginary axis with the increase of &, 4, and decrease
of ki gve, 80 a higher kp g4y and a smaller k; 4, are beneficial
for the system small-signal stability.

3) IMPACT OF ACC's PARAMETERS

The amplitude response of impedance Z;; under different PI
coefficients of ACC are shown in Fig. 12. It can be seen that
the resonance peak decreases dramatically with the increase
of ky ¢ in Fig. 12(a), while it almost keeps unchanged with
the increase of k; . in Fig. 12(b). Hence the resonance peak
can be suppressed by increasing k.., corresponding to a
larger bandwidth of the ACC.

Now for the ACC, it mainly influences two fats-scale
eigenvalues, i.e. —387.73+£;705.16 and —243.224;374.13 in
Tab. 1, according to the participation factors. The dominated
eigenvalues under different parameters are shown in Tab. 5.
It can be seen that one pair of eigenvalues approaches the
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Magnitude(p.u.)
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FIGURE 12. Amplitude responses of impedance (Z;4) under different PI
parameters of the ACC: (a) kp,cc = 0.3, 1.3, 5. (b) ki ¢c = 500, 670, 1000,
which are represented by dashed, solid, and dot-dashed line, respectively.

TABLE 5. The two dominated eigenvalues under different Pl parameters
of ACC.

P
\ 03 13 5

—81.65 &+ j672.38  —417.85 & j627.73 —2408 £ j946.5

300 3845+ 5394.83 —214.80 + j283.82  —101.9+ j16.9

o0 7700E ;74233 —387.73 £ j705.16 23712 & 9185
_43.22 1 j480.85  —243.22 & j374.13  —138.9 + j22.27

1000 —7LOTE 85352 35157 % ;832.06 —2296.9 % j954.1

—49.26 + j626.48 —281.33 £ j525.11 —213.3 + 535.2

Bandwidth of PLL = 9Hz
Bandwidth of PLL = 13Hz,
Bandwidth of PLL = 30Hz

10 — With PLL 10
— — Without PLLJ

Magnitude(p.u.)

\

s

@ 7)o (b)

10° 10! 107 10°
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1072 N
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Frequency(Hz)

FIGURE 13. Amplitude responses of impedance Zy4 by considering the
different effects of the PLL: with (solid line) and without the PLL (dashed
line) (a), and different bandwidths of the PLL under 9, 13, and 30 Hz,
represented by the dashed, solid, and dot-dashed lines, respectively (b).

imaginary axis and the other one keeps away from the imag-
inary axis with the increasing of k; .. For the kj ¢, one pair
of eigenvalues continuously keeps away from the imaginary
axis with the increasing of k;, .., and the other one keeps away
from the imaginary axis firstly and then approaches it with the
increase of k;, ... Though the changing trends of k; . and k¢
are not the same, generally higher k; .. and k;, .. are beneficial
for the small-signal stability of system, which is consistent
with [27].

4) IMPACT OF PLL

The amplitude responses of impedance Z;; with and without
PLL are compared and shown in Fig. 13(a). The correspond-
ing results under different bandwidths of the PLL are shown
in Fig. 13(b). It can be seen that the influence of PLL is only
limited on relatively lower frequency range, i.e., smaller than
15 Hz. Meanwhile, the amplitude response of impedance Z;,4
almost remains unchanged with the change of the bandwidth
of PLL [e.g., 9 Hz, 13 Hz and 30 Hz in Fig. 13(b)]. As aresult,
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FIGURE 14. Amplitude responses of the impedance without (red solid
line) and with (green dashed line) current decouple terms.

it can be concluded that the influence of PLL on the resonance
peak is negligible.

5) IMPACT OF THE CURRENT DECOUPLE TERMS

The amplitude responses of the impedance without and
with the current decouple terms are compared and shown
in Fig. 14. It can be seen that there is only a small mismatch
in the high frequency range. Therefore, the current decou-
ple terms have little influence on the characteristics of the
impedance. Meanwhile, it can be found that the amplitude
responses without and with the current decouple terms are
very similar in the intermediate frequency range. Conse-
quently, the impacts of the current decouple terms on the
resonance peak can be neglected.

In conclusion, the influence of the current decouple items
and the PLL on the resonance peak can be neglected. On the
contrary, all the controllers’ proportional coefficients have
a great impact on the resonance peak. For instance, for the
ACC, a larger kj, .. corresponding to a larger bandwidth of
the ACC can relieve the resonance peak. Compared with
the DVC, the impact of the AVC on the resonance peak is
relatively larger. A larger kj 4 corresponding to a larger
bandwidth of the AVC can suppress the resonance peak sub-
stantially; this point may not be consistent with some design
principles and intuition.

V. RESULTS FOR OTHER OUTER CONTROLLERS

In this section, we will present some results for other forms of
outer controllers, to further show that the peak phenomenon
is generic. Similarly, the impacts of different parameters on
the resonance peak will be investigated.

A. PARALLEL IMPEDANCE RESONANCE FOR OTHER
OUTER CONTROLLERS

As the first case, we neglect the AVC and consider the DVC
only. Under this situation, the g-axis current reference should

90134

be set to constant, i.e.,
Aigres =0 (20)

Hence the impedance expression is the same as in (2), and
it can be obtained by using the new G, in Appendix G.

For the second case, we consider the active and reactive
power control (PC), and it can be gotten that:

idref = Hp(Pref )
iqref = Hq(Qref - Q)

where H, = ky, , + ki p/s and Hy = kp 4 + ki 4/s. Similarly,
the impedance can be derived by linearizing (21) and updat-
ing the forms of G;;, and Gj; in Appendix H.

For these two different cases, we find that all aforemen-
tioned findings persist, including three frequency regions for
slow, intermediate, and fast timescales with an impedance
peak in the intermediate timescale, except that the spe-
cific values may change. For example, different from the
1 ~ 10 Hz, 10 ~ 100 Hz, and 100 ~ 1000 Hz in the
AVC & DVC for the frequency ranges of the slow, inter-
mediate, and fast timescales, respectively, here they become
1 ~ 6 Hz, 6 ~ 100 Hz, and 100 ~ 1000 Hz in the first
case, and 1 ~ 3 Hz, 3 ~ 60 Hz, and 60 ~ 1000 Hz in
the second case. In addition, the resonance frequency also
shows a system dependence. Different from f ~ 20 Hz in
the AVC & DVC, here it becomes f & 18 Hz in the first case
and f ~ 9 Hz in the second case. For illustration, the results
for these two cases are superimposed in Fig. 9, where the
parallel resonance corresponding to the intersection of two
curves of slow-scale and fast-scale impedances is unchanged.
This demonstrates that the mutual interaction between inner
and outer controllers with the form of parallel resonance
is generic and robust, irrespective of the concrete forms of
controllers.

2n

B. IMPACT OF POWER CONTROLLERS’ PARAMETERS ON
RESONANCE PEAK

1) THE IMPACT OF ACTIVE POWER CONTROLLER

The amplitude responses of the impedance of the VSC under
different proportional and integral coefficients of the active
power control are also studied. The results of Z;; are shown
in Fig. 15(a) and (b), where (k,, = 0.01,0.02,0.3) and
(kip = 3,5,10), respectively. It can be seen that the par-
allel resonance peak changes dramatically with the increase
of kp p, whereas the resonance frequency only moves right
slightly with the increase of k; ;. Clearly the resonance peak
can be greatly suppressed by increasing &, .

2) THE IMPACT OF REACTIVE POWER CONTROLLER

The amplitude responses of impedance for different PI
coefficients of the reactive power control are also studied.
Fig. 16(a) and (b) show the results for (k, , = 0.02,0.3, 1)
and (k;, = 3,5, 10), respectively. It can be seen that the
resonance peak changes slightly with the change of &, 4.
Similarly, k; 4 also has a little influence. Comparatively the
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FIGURE 15. Amplitude responses of impedance Z;4; under different
proportional and integral coefficients of the active power controller:
(@) kp,p = 0.01,0.02, 0.3, and (b) k,-,p =3, 5, 10, respectively.

— —k,, =0.02 — —k,=3
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FIGURE 16. Amplitude response of impedance Z;4 under different Pl
parameters of the reactive power controller: (a) kp,g = 0.02, 0.3, 1, and
(b) k; g =3, 5, 10, respectively.

impact of the reactive power controller is smaller than that of
the active power controller.

To sum up, based on these observations and comparisons,
we know that a larger k, , can relieve the resonance peak
substantially while k;, ; has a little influence on it. In addi-
tion, both the integral coefficients of the power controllers
(ki p and k; ;) have a limited influence.

VI. SIMULATION AND EXPERIMENTAL VERIFICATION

A. SIMULATION RESULTS

In our study, a series of simulations have been conducted to
verify the impact of interaction of different timescales on the
system small-signal stability. Four examples are illustrated
in Fig. 17, which show the system unstable situations under
different parameters with different oscillation frequencies.
Meanwhile, the GNC has also been applied to examine the
system stability for comparison. Correspondingly, Tab. 3
summarizes the dominating eigenvalues and critical parame-
ters that are calculated from the reduced-order and full-order
models by changing the PI parameters. We use a blank cell
to represent that the corresponding critical mode does not
exist with the change of the corresponding parameter. Cases 1
and 2 illustrate the fast- and slow-scale modes, respectively,
while cases 3 and 4 illustrate the intermediate-scale modes
which are both influenced by fast and slow timescales.

Case 1 Low-Frequency Mode: We tune the proportional
coefficient in the slow-scale DVC. By decreasing kp q4yc to
0.18, the system becomes unstable and begins oscillating
at 4 Hz; the time series and frequency spectrum are shown
in Figs. 17(a) and 17(b). Based on Tab. 3, one can see that
the critical parameters and the dominated modal frequency
in the reduced-order and full-order models are very close.
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TABLE 6. Dominated Eigenvalues and Critical Parameters Tuned in
Reduced-order and Full-order Models.

Full-scale model Slow-scale model  Fast-scale model

Case 1 kp,dve = 0.18 kp,dve = 0.29 o
4Hz (0 £ 725.21) (0 £ 725.40)
kp,cc =0.11 k'p,cc =0.06
lclaggzz ki ce = 1250 — ki ce = 1250
(0.6 4+ 5726.8) (0.1 £5720.7)
- kpce = 0.11 Epce = 0.11
Case3 K cc = 850 — K cc = 168
90Hz c¢ ee
(0 £ 7565.0) (0 £ 5165.9)
Case4 ki, ave = 834
99Hz kp,ave = 0.08 — —
(0.13 4+ j625.53)
1
(a) 100 (b)
0.95 = 80
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FIGURE 17. Time series (left column) and frequency spectrum (right
column) analyses for unstable states under different parameters for the
cases 1-4, from top to bottom.

Therefore, for low-frequency oscillations, the slow-scale
reduced-order model can indeed catch the dominant system
behavior.

Case 2: High-frequency mode. Now we change the pro-
portional coefficient of the ACC. By decreasing kj, .. with a
fixed k; . = 1250, the system becomes unstable and begins
oscillating at 116 Hz. In Fig. 17(c) and (d), the parameters
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FIGURE 18. Tracking performance for (a) iy versus ig,ef, and (b) iq
Versus igref .

FIGURE 19. Experimental platform based on the SpaceR.

(kp,cc = 0.16 and k; .. = 1250) for a critically stability
are chosen. Again it can be seen that the critical parameters
and the dominated modal frequency in the reduced-order and
full-order models are close, meaning that for high-frequency
oscillations, the full-scale model can be replaced by the
fast-scale one.

Case 3: Intermediate frequency mode one. This mode is
motivated by changing the integral coefficient of the ACC.
Decreasing k; .. to 850 with a fixed k, .. = 0.11, the system
becomes unstable and starts oscillating at 89 Hz. The results
are shown in Tab. 3 and Fig. 17(e) and (f). It can be seen that
now this unstable mode cannot be accurately predicted by the
fast-scale model. Meanwhile, it cannot be observed by tuning
the corresponding parameters in the slow-scale model.

Case 4: Intermediate frequency mode two. As the fourth
case, we change the integral coefficient of the AVC.
By increasing k; 4, to 835, the system begins becoming
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(c)

FIGURE 20. (a)-(d) Time series of iy under different parameters which are
same as the simulations in cases 1-4.

unstable and oscillating at 99 Hz. The corresponding results
are shown in Tab. 3 and Fig. 17(g) and (h). Now this unstable
mode cannot be found in the two reduced-order models by
tuning k; 4. solely any more. Based on these observations and
comparisons, one understands that the reduced-order models
cannot fully reflect the system dynamics, if intermediate
frequency oscillations are considered.

Moreover, the tracking performance of iy versus igy.r, and
I Versus igps is tested. As one example, a small-signal dis-
turbance for the DC-link voltage u,4. increasing from 1.0 p.u.
to 1.1 p.u. at 2 s, and the corresponding time series of iy and
iy are shown in Fig. 18. It can be seen that the errors between
reference values and measured values are small. Therefore,
the tracking performance of the controllers can be thought as
good.

B. EXPERIMENTAL RESULTS

The Hardware-in-loop experiments based on the SpaceR are
applied for further verification. The SpaceR is a real-time
simulation platform, including one part that simulates the
AC grid with an equivalent line impedance, and the other
one that simulates the VSC, which is shown in Fig. 19.
The experimental parameters are the same as those of
simulations for cases 1-4. The corresponding time series
of iy measured by oscilloscope are shown in Fig. 20.
Among them, Fig. 20(a) and (b) show the fast- and slow-scale
modes, respectively, whereas Fig. 20(c) and (d) illustrate the
intermediate-scale modes. From the time series measured by
oscilloscope, it can be seen that the oscillation frequencies
of case 1 and 4 are 4Hz and 99Hz, respectively, which is
consistent with the above simulations. Correspondingly for
cases 2 and 3 [i.e. Fig. 20(b) and (c)], the systems are unsta-
ble, and the systems diverge too quickly to determine their
oscillation frequencies. To sum up, these experimental results
are consistent with the above simulations.

VIi. CONCLUSION AND DISCUSSIONS

In conclusion, we have investigated the impedance char-
acteristics and interaction of the VSC based on the
multi-timescale decomposition analysis. It has been found
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that the slow-timescale and fast-timescale impedance models
are separately consistent with the full-order impedance model
within their low- and high-frequency ranges. Meanwhile,
there exists a novel intermediate frequency range (roughly
from 10 Hz to 100 Hz) with an impedance peak. We dis-
cover that the impedance peak is caused by a parallel reso-
nance between the inner and outer controllers. Furthermore,
the influence parameters of the impedance peak are explored
fully and it is found that the peak can be suppressed by
increasing the proportional coefficients of the AVC (kp, ave),
the active PC (kp p) and the ACC (kp ). Simulation and
experimental results under different controllers and system
parameters verify these theoretical analyses. All these find-
ings are expected to be not only helpful for a physical insight
into the multi-timescale interaction in the VSC, but also
useful for controller design and system analysis of power-
electronic-dominated power systems.

For discussion, although the impedance model of a single
VSC has been well developed before, it remains a great chal-
lenge to generalize it to study multi-converter stability and
solve wide-frequency-band oscillation problems. Therefore,
it is very necessary and important to deep into the inner
back-bone structure of impedance, as what we have done
in the present work. The findings of multi-scale decompo-
sition and parallel impedance resonance in the paper are
significant to better understand full-order impedance in a
physical perspective. Furthermore, they might be helpful for
system-level analysis of multi-converter systems. In particu-
lar, as sub-synchronous and super-synchronous oscillations
around the working frequency have been a serious prob-
lem in power electrical engineering recently, the parallel
impedance resonance within the middle frequency range
(from 10Hz to 100Hz) might be highly relevant. In addition,
the multi-timescale analyses have been conducted solely on
the impedance models within the small signal category in this
paper. Some nonlinear multi-timescale characteristics and
interactions should be studied further [36], [37]. Moreover,
there are some other interesting problems, such as the influ-
ences of uncertainties in system parameters on the interaction,
and possible application of the impedance model in some
advanced controllers including model predicted controller,
robust controller, non-linear controller, etc. It is notable that
the impedance analysis method can be used for small-signal
stability analysis, not for large-signal stability analysis.

APPENDIX.

A. SYSTEM PARAMETERS

System parameters: S, =2 MW, U, = 690 V (phase to
phase rms value), fi = 50 Hz (1.0p.u.), w1 = 2xf1 (1.0p.u.),
Ly =01pu., C=01uF,U; =10pu., U = 1.0p.u.,
Use = 1.0 p.u. and Ly = 0.5 p.u.. Controller parameters:
(1) ACC: kpec = 1.3, kice = 670. (2) PLL: kp oy = 50,
ki p = 2000. (3) AVC: ky gve = 0.2, ki qve = 23. (4) DVC:
kp.ave = 2, ki gve = 80. (5) Active PC: k, , = 0.02, k; , = 5.
(6) Reactive PC: k, , = 0.02, k; ; = 5. Steady-state values:
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eq0 = 1.02 pu., eqo = 0.09 pu., o1 = 047 rad, igo =
0.90 p.u. and igzo = —0.21 p.u..

The impacts of the PI parameters on the small-signal sta-
bility of the system are discussed in Section I'V, which can be
used for further parameter design.

B. DQ-IMPEDANCE MODEL WITH ACC, PLL, AVC & DVC
The dynamic equation of VSC in the AC side is given by

GLAD, = Ay, — Auly, (A1)

| sLy —owiLy
where G;, = |:w1 L sk ] denotes the open-loop output
impedance of VSC.

The variable s is used as a Laplacian operator, while the
superscript ’s” stands for the xy synchronous rotation frame.
The internal voltage references obtained from the ACC is

AeS, = GieNidgrer — Gie Ay, (A.2)

H.
where G;, = Ow F? :| The ACC compensator transfer
ic
function is Hic = kpcc + kicc/s, where kp o and k; .. are

the proportional and integral gains of the ACC.

The superscript ’¢’ represents variable in the PLL coor-
dinate. The internal voltage and output current in the xy
synchronous rotation frame are connected with those in the
PLL coordinate:

Aeilq = Ge,p”Auqu + Aefiq (A3)
Aiz,q = Gi,pllAuqu + Aiilq
0 —¢' 0 I

Gepn = [0 @izgo] G Gipn = [0 _?30} Gpn (A4)

where G; i and G, py indicate the relationships between the
inductor current (Aigy) and internal voltage (Aeg,) in the PLL
frame and the terminal voltage (Auq,) in the synchronous
frame, respectively. Gy = Hpy /(s + Ut‘jinu) and Hy; =
kp pii + ki pu/s denotes the compensator of the PLL control,
where k;, p;; and k; p;; are the proportional and integral gains
of the PLL.

The d-axis and g-axis current references can be separately
obtained from the DVC and AVC, yielding

Aidgrep = Giultfy, + Gii ALy, (A5)

o Gucld() GuclqO T GucUtsd 0

where Gue = —(skp.ave + ki.dve)/(s*CUac0), and Hpve =
kp,ave + ki ave /s denotes the AVC compensator. (kp, ave, ki ave)
and (kp avc, ki avc) are the proportional and integral gains of
the DVC and AVC, respectively.

Due to the direction of current reference value,
the impedance of the VSC can be obtained by

Au tdq

Zag = — (A7)

Aigq
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By combing (A.1), (A.2), (A.3), and (A.5), it yields the

The state matrix is:

gnefll r[e6s]ul[t;]in[ 1(é]) and (2) in the text. For more details, see B 0 (])c ki dve 00 7
efs. , . —Loki ave
> 0 ghi,avc 0 0 25
As for the load, N _ 1+ Lokp ave
u —1q0 U1d0
Z = Tqu (A8) 4 — % 832 833 0 g35
d c
o . Leki,pi Lgkp.avekipi
and the load in Fig. 1 is a single inductance, which can be u—d() 0 M—do 0 g45
. (!
written as Lg . pll Lgkp,dvcki,pll
sL, —wiL 0 1 gss
7 = |:a) lé: oL g:l (A.9) L Urdo Urdo (A_ll)
1Lg g .
Combing the impedance of the source (Zz,;) and the load where
(Z1), the small-signal stability of the system can be deter- .
. . R - Ug s ‘POki,avc
mined, as shown in section II-C. g5 =—"——1—
1+ Lgkp ave
C. STATE SPACE MODEL OF SLOW-SCALE MODEL g = taoky
Referring to [22], [23], [35], the slow-scale (voltage- (1 (;r Lg_/?,iach)C)cho
timescale) state space model can be established by consid- g3 =— 1d0 T "q0%g p.dve
ering the dynamics of the DVC, AVC, capacitor, and PLL. iaoUq sin %C UdcO (A.12)
The state variables can be chosen as follows: . T+ Lekpae T 140 Ug cos go
35 =
Cuye
Ax =[Ax; Axy Auge Axz Ag] (A.10)  —Ujcos okiy
where Ax; is the state variables of the DVC, Ax, denotes 845 Uzd0
the dynamics of the AVC, Auy. denotes the dynamics of the gs5 = —Uyg o8 gokp,pu
capacitor, and Ax3 and Ag are the state variables of the PLL. Urd0
i 0 1 0 0 0 0 ]
L fa1 J kO Joa fs S
U, sin ¢q
p,cc~g . p,cc
_W - p,cclqO _Lg +Lf 0 _ki,cc _kp,cc
kp,cc%]g COS o . kp,cc
A = —W kp,ccld 0 - L + L p,cc _ki,CC (A14)
8 8
sin 1
20 iy 0 0 1
Le + Ly L + Ly
U, cos ¢o . 1
- —ig 0 -1 0
L Ly + Ly Ly + Ly _
B 0 0 - p,dvcidO - p,dvcqu ki 4 0 0 —Kp,dvc€d0 _kp,dvcer ]
i,dvc
Lk ok Cuqco Cuaco Cuqco Cugco
%ZM 0 ha3 ha4 has hae ha7 hag hag
g T L
—kp, dvekp,cciqo —kp,cc sin [%0]
ki 0 h TP AVETP D b ke o —k G e Y h h
i,cc 33 Cuch p,ccii,dve p,cclq0 (Lg i Lf) Ug 38 39
hay ki cc ha3 haa has hae ha; hag hag
i — —e
A= 0 0 . 1do 40 0 0 0 €40 40
Cuaco Cugeo Cugeo Cugeo
ki,cckp,plng
he1 = he3 he4 hes hee he7 hes heo
(Lg + Ly ) Uno
0 0 0 0 1 0 0 0
1 sin @g
0 0 0 0 g0 T 0 o
Lg + Ly | (Lg + Lf) Ugo
cos
0 0 0 0 —igo 70 —wp 0
L Ly + Ly Ly + Ly i
(A.17)
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ki,achg(Lg + Lf)cuch

p ach [kp ccCltgeo + (L + Lf )kp cckp dvcldO]

kp.dvekp.avekp. ceLgiqo

hy3 = g = —
(Lg + Lp)*Cugco . (Lg + Lf) Cuaco
ki,dvckp,avckp,chg UgOLgkp,ccqu + Lf S @o
hys = —————= hyg=— kp,avc
Ly + Ly (Lg + Ly)
ki,achf sin g kp,avckp,chg sin g kp,aVCLg (ki,cccudco + kp,dvckp,ccedO)

hy = — - 28 = —
(Ls +Lr) U (Ly+Ls) Uy

(Lg + Lr)Cuqco

. kp. ccLgiqoUgo 4 Lr sin 6y
hae = kp,ccldO - kp,cckp,avc o M e d

(Lg +Lr) Ugo

h29 _ _kp,achg (kp,cca)OCMdCO + kp,dvckp,cceqo) h33 _ _ kp,cc _ kp,cckp,dvcido
(Lg + Lr)Cuqco Le + Lf Cugeo
kp,dvckp,ccedo kp dvckp cc€q0
h3g = —kjce — ———— h3o=— pecc®W0 — —
Cugeo C ud]g() )
k, . + k p.cc kp,('('kp,dvcldO
kp,avckp,ccki,chg Lave P.ave \ T Ly+Ly Cugeo
hyg = —————— haz = kp ccLy
Lg + Lf Lg + Lf
h kp.cc k[’sd"fkl’»avckp ccLgliqo ki,dvckp,avck[%’CCLg
44 = = - 45 = ————————
L+ Ly (Lg + Lr) Cuaco Ly + Ly

hag = k —
48 = Fpoect (Lg + Ly)Cutge

L kp,cc cos by ki aveLy sin 6 kp avekp, CCL sin 6y
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kp,avckp,cc

kl cc T
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= 5 = 3
(Lg + Lf) " Uso (Lg + Ly) Uno
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(Ls + Lr) Uso
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L,cc Cudc()

how = kp.pike (Lo +L)°U,
g -f t0

_ki,chg + Lf + kp,avckp,chg (_kp,cch -

kp,dvckp,cceq()
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(A.18)

D. STATE SPACE MODEL OF FAST-SCALE MODEL

Referring to [6], [27], [33], the fast-scale (current-timescale)
state space model can be established by considering the
dynamics of the ACC, line inductance, and PLL. The state
variables can be chosen as follows:

Ax =[Ag Aw Aeq Aey Aig Aig]  (A.13)

where Ag and Aw are the state variables of the PLL, Aey
and Ae, are the state variables of the ACC, and Aiy and Ai,
denote the dynamics of the line inductance.

VOLUME 9, 2021

The state matrix is (A.14), as shown at the bottom of the
previous page, with the detailed information in (A.15):

f2] kp pllkp LLL ki ,pll f ]Ug €08 @0
(L L)Y Loty
kp cckp pllL Ldo kp,pllLf Ug COS ¢o
f2 = + I L+ 1Ly
f24 ki plli p pllkp chg (A.15)
Lo+ L (L + Ly)>
f25 _ kp cckp plng
Lo+ Ly
f _ kp pllL kl cc
S Py
90139
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FIGURE 21. Plots of the Z, 's amplitude responses of the full-scale (red
lines) and fast-scale impedance (blue solid line) for different kp qvc’s.

E. STATE SPACE MODEL OF FULL-SCALE MODEL

Referring to [8], [16], [38], the full-scale state space model
can be established by considering the dynamics of the ACC,
line inductance, AVC, DVC, and PLL. The state variables can
be chosen as follows:

Ax = [ Algrer Aigrer Aeg Aeg Auge Aw

Ap Aig Aig]l  (A.16)
where Aiyr and Auge denote the dynamics of the DVC and
the capacitor, respectively, Aigys is the state variable of the
AVC, Aey and Ae, denote the dynamics of the ACC, Ag and
Auw are the state variables of the PLL, and Ai; and Ai, denote
the dynamics of the line inductance.

The state matrix is (A.17), as shown at the bottom of the
13th page, with the detailed information in (A.18), as shown
at the top of the previous page. Therefore, the eigenvalues
of these models in Tab. 1 can be obtained by the modal
analysis.

F. EXPLANATION FOR THE MISMATCH IN Zggq

The small mismatch of Zy; in Fig. 3 is discussed here.
According to the Bode responses, this mismatch can hardly
be narrowed by changing all of the parameters except for
the proportional coefficient of the AVC (kp 4vc). The ampli-
tude responses of Z,4 with the changing of k, 4, are shown
in Fig. 21. It can be seen that the mismatch between the
fast-scale and full-scale impedance (Z,4) in high frequency
range decreases with the decrease of kp ayc.

G. DQ-IMPEDANCE MODEL WITH ONLY DVC OUTER
CONTROL

The d-axis current reference is obtained from the DVC and
the g-axis current reference is set to constant (Hayc = 0). Gj;
is same as (A.6), but G;, becomes

Guclgo Gyl
Giu:|: uctd0 ucq0:|

0 o (A.19)
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H. DQ-IMPEDANCE MODEL WITH PC OUTER CONTROL
Linearizing (21) and substituting it into (A.5), we have

G — _ Iy0H, 1,0H, Gi = —U* H, 0
“ = | 1poH, —laoH, T |0 H,

(A.20)

where H, and H, separately denote active and reactive PC
compensator transfer functions.
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