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ABSTRACT Particle filter has been widely applied in nonlinear target tracking due to the ability to carry
multiple hypothesis and relaxation of linearity/Gaussian assumption. In this paper, an adaptive double
space-resampling particle filter is proposed to increase the efficiency and robustness of filtering by adjusting
the sample size. The first resampling operation, adopted before the prediction of samples, generates a larger
number of equal-weighted samples and some auxiliary samples to enhance the robustness of filtering.
The second resampling, adopted between the prediction and updating step, decreases the sample size for
weight updating which is the most time consumption part of particle filter. The particle space sampling
technique is used in both space-resampling, which adjusts the sample size according to not only the weights
of samples but also their spatial distribution. The efficiency of filtering is improved and the robustness
of algorithm is enhanced, simultaneously. The degeneracy and sample impoverishment problems can be
counteracted. Simulation and experiment contrast results demonstrate that the proposed method is robust
and efficient.

INDEX TERMS Monte Carlo, particle filter, space sampling method, target tracking.

I. INTRODUCTION
Over the past decades, particle filters have been applied with
great success to a variety of state estimation problems [1]–[3],
especially in nonlinear and non-Gaussian systems for which
there is no analytical optimal solution [4], [5]. In simple
words, particle filter (PF) is based on Sequential Monte
Carlo approach [6]–[9], which utilizes a large number of
samples (particles) to represent the posterior probability dis-
tributions. The samples are propagated over time using a
combination of sequential importance sampling and resam-
pling steps [10], [11]. These methods are very flexible and
can be easily applied to nonlinear and non-Gaussian dynamic
models.

As key performance assessment criteria for algorithms,
computational complexity and the robustness of algorithm
are two challenging problems for the application of particle
filters. On the one hand, it is due to the sample-based approx-
imation that particle filters combine efficiency with the abil-
ity to represent probability densities. When particle filter is
running with a small sample set, the key problem is how
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to approximate the probability distribution function (PDF)
properly so that the effectiveness and diversity of samples can
be maintained to avoid the emergence of sample impoverish-
ment [12]. On the other hand, although Monte Carlo method
has a high inherent robustness, the convergence results of
the state-of-the-art is hard to control and PF faces many
critical problems, such as: degeneracy and sample impover-
ishment problem. Multiple studies have tried to address these
challenges.

Firstly, efforts have been made to make more effective use
of the available samples, thereby allocating the number of
particles efficiently is required, with the purpose of reducing
the computational burden on embedded processors by lim-
iting the number of cycles. One of the most elegant meth-
ods for adjusting the number of particles is KLD-sampling
approach originally developed by Fox, et al [13] and grace-
fully extended for the resampling method design [14], [15].
The key idea of KLD-sampling/resampling method is to
determine the number of samples based on statistical bounds
on the sample-based approximation quality [13]. Further-
more, Soto [16] presents a revised bound for KLD-sampling
based on the variance of importance sampling. Fitzger-
ald [17] proposed the independent partitions method as an
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advanced proposal scheme by reducing the number of par-
ticles needed for multiple target tracking while Pan [18]
used rate-distortion theory to determine the optimal particle
number.

Secondly, based on importance sampling and resampling,
PF suffers from two critical non-robust problems: weight
degeneracy and sample impoverishment [10]–[12]. Sample
degeneracy is an unavoidable phenomenon in particle filter.
Resampling can be adopted to solve this problem [10], [11],
but it will lead to the loss of effectiveness and diversity of
the samples, namely the sample impoverishment [12]. These
works aim to make more effective use (increase robustness
and accuracy) of the available samples (available computing
resource). However, to our knowledge, most approaches are
based only on the weights of samples regardless of samples’
spatial distribution. This can result in that most computational
resource is allocated to a small region of the most possible
estimate [10]–[12], causing weight degeneracy or sample
impoverishment. The only difference between degeneracy
and sample impoverishment is whether the computational
resource concentrating happens by samples (sample impov-
erishment) or by weights of samples (degeneracy) [11], [12].
To avoid this, we propose a novel methodology of particles’
allocation referred as space sampling method, which samples
and resamples not only based on the weights of samples but
also their space distribution. What is more, following the
idea of the KLD-resampling method [14], the sample size
can also be adapted according to their space distribution to
improve the real-time performance of PF. These two parts are
implemented in double space-resampling. The contributions
of the proposed method are summarized as follows.

1) The first resampling named Auxiliary Resampling is
executed before the prediction step of the PF to improve the
robustness of the filter. The samples size in the stage can be
increasedwithout increasing execution time heavily, since the
time consumption of the prediction step is only a very small
proportion in the PF.

2) The second space resampling named Merging Resam-
pling is executed between the prediction and the updating step
of the PF to decrease the weight updating computation and
improve the efficiency of filtering, which is the most time
consumption part of the PF.

3) A particle space sampling (PSS) technology, simple
and fast for practical implementation, is used in double
space-resampling.

The reminder of this paper is organized as follows.
We begin in Section II an investigation of the PF, in which we
excavate the inherent drawbacks of the PF. We give details of
our solutions, the double space-resampling methodology and
its theory study in Section III. This is the core contribution of
this paper. Simulation and experiment results are presented in
Section IV before we conclude in Section V.

II. BACKGROUND
The recursive Bayesian filter attempts to construct the pos-
terior probability density function of the state based on all

available information. In order to develop the details of the
algorithm, let xt denotes the state at time instant t . zt is the
perceptual data (observation) at time t , ut is the odometry data
(control measurement) between time t-1 and t , and p(x0) is
the initial state. There are two basic stages of prediction and
updating in typical Bayesian estimation framework. Assum-
ing the environment is Markov [19], that is, past and future
data are (conditionally) independent if one knows the current
state, the prediction model can be described by

p(xt |zt−1 , ut−1)=p(xt |xt−1, ut−1 )× p(xt−1 |zt−1, ut−2 ),

(1)

and the updating model is

p(xt |zt , ut−1) =
p(zt |xt )p(xt |zt−1 , ut−1)

p(zt |zt−1, ut−1 )
. (2)

The PF represents the posterior by a set of random par-
ticles with associated weights and computes estimate based
on these particles and weights. Let St = {x it ,w

i
t }i=1,2,...,Nt

denote a random measure that characterizes the posterior
PDF p(xt |z1:t ), where {x it}i=1,2,...,Nt is a set of particles with
associated weights {wit}i=1,2,...,Nt , and Nt is the total number
of particles. The weights are normalized such that

∑
i w

i
t = 1.

Then, the weighted posterior density at t can be written as

p(xt |z1:t ) ≈
Nt∑
i=1

witδ(xt − x
i
t ) (3)

where the δ is Dirac delta measure. It can be proved that
for N → ∞ the approximation tends to the true poste-
rior p(xt |z1:t ). The samples are drawn from a known impor-
tance density q(x it

∣∣x i0:t−1, z0:t ) and the weights wit are chosen
according to sequential importance sampling (SIS), which
relies on

wit ∝ wit−1
p(zt

∣∣x it )p(x it ∣∣x it−1 )
q(x it

∣∣x i0:t−1, z0:t ) (4)

However, after a few iterations, most particles have negli-
gible weight and the weight is concentrated on a few parti-
cles only. Resampling, eliminating particles that have small
weights and concentrating on particles with large weights, is a
very intuitive idea to counteract this problem [10]–[12]. But
some side effects may arise at the meantime, such as sample
impoverishment. That is very few different particles shave
significant weight while some edged and isolated particles
with small weight are discarded at the resampling process,
which has much the same effect as sample degeneracy, and is
even more severe in the case of small process noise. One of
our objects in this paper is just to overcome the side effect of
resampling. Intuitively, the sampling importance resampling
(SIR) algorithm is also referred to sequential importance
sampling and resampling (SISR), and can be depicted as
Fig. 1.
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FIGURE 1. SIR based particle filter. The number of particles is fixed in the
whole iteration. The arrows in the left of the figure indicate different
particle propagation.

III. DOUBLE SPACE-RESAMPLING
Based on the investigation of the PF in the previous section,
we try to improve the performance of the PF though
twice space sampling operation with regard to the parti-
cles’ spatial distribution. That is, on one hand, to find a
compromise of the contradiction between the computing
complexity and the robustness need: we use different num-
ber of particles at the prediction and updating step respec-
tively. On the other hand, to develop a novel resampling
method that allocates the computing resource without loosing
the diversity of particles. This method should be easy to
implement, and take into account the spatial similarity of
particles.

In the following, we firstly decompose the state space into
grid cells to study the spatial similarity and the diversity of
particles. Then, the scheme of double space-resampling based
on the discrete partition of the state space is described. Fur-
ther, a theoretical analysis is given to illustrate the rationality
of our approach.

A. DISCRETE STATE SPACE DIVISION
To facilitate the description, wemake the following definition
Definition 1: The number of particles distributed in a grid

is defined as particle density. If there is no particle in a grid,
this grid is called an empty grid; otherwise it’s a non-empty
grid.

In this paper, we propose a double space-resampling based
particle filter. To construct the required variable-precision
grids, a ‘‘self-fission’’ method [20] is adopted, i.e., Algo-
rithm 1 Particles division. In Algorithm 1, xpt = (x, y, θ)
denotes the state of robot described as three-dimensional
state space, where (x, y) represents the location in coordi-
nate system and θ denotes the direction angle of the robot.
Particle Division

{
gi,j,h,L/2

}
means that the particle density

is superior to a threshold α, the grid will be divided again
to half size. One chooses a starting grid size Lstar to begin
the particles division, and then the particle density of each

nonempty grid is detected: if its particle density is superior to
a threshold α, the grid will be divided again to half size. The
detection and division are repeated until the particle density
of all grids is under the threshold α or the grid size is lower
to the lower bound Lmin, which is used to avoid that grids
are divided too small. In fact, Lmin denotes a scalar, which
represents the size of grids. In the following algorithms, Lmin
and α are global constant variables. The (i, j, h)th grid cell
gi,j,h with Ni,j,h particles in it is described as

gi,j,h = {(xki,j,h,w
k
i,j,h

∣∣k = 1, 2, . . . ,Ni,j,h )}. (5)

B. FIRST RESAMPLING: AUXILIARY RESAMPLING
The immediate reason for loss of diversity in the traditional
only-weight-based resampling procedures (refer to Fig. 1) is
that some low-weight but important in spatial distribution
particles may be discarded. To avoid this situation, we rein-
troduce the estimates of the nonempty grids from which no
particle is sampled, by keeping alternatively the sample with
the greatest weight as

gi,j,h ⇒ (x̂nt , ŵ
n
t ) :

{
ŵnt = max{wki,j,h}

Ni,j,h
k=1

(x̂nt , ŵ
n
t ) ∈ gi,j,h

(6)

or their mean as

gi,j,h ⇒ (x̂nt , ŵ
n
t ) :


x̂nt =

Ni,j,h∑
k=1

xki,j,hw
k
i,j,h/ŵ

n
t

ŵnt =
Ni,j,h∑
k=1

wki,j,h

(7)

where the new particle (x̂nt , ŵ
n
t ) is called auxiliary particle,

Symbol ‘‘⇒ ’’means generated by sampling. In our approach,
we prefer using (7), which is named as particle space sam-
pling (PSS) since it sums up all the particles with their
weights according to the particles’ spatial distribution.
Appended with the auxiliary operation using equations (6)

or (7) to guarantee that there is at least one particle survive
for each nonempty grid, the improved resampling scheme,
named auxiliary resampling in this paper, is detailed in Algo-
rithm 2. In Algorithm 2, Gt = Gt − gi,j,h ← xnt ∈ gi,j,h
denotes that the i-th particle with lower weight is removed
in multinomial resampling. It should be pointed out that the
multinomial resampling [10] is just what we used in the aux-
iliary resampling scheme, but not a necessity to be restricted
to. In fact, one may use any other resampling method as given
in [10], [11].
Actually, particle filters have the problem of ‘‘dimension

disaster’’, that is, the number of particles required by par-
ticle filter increases exponentially with the increase of state
dimension, which makes the calculation of filtering increase
rapidly. Therefore, it is difficult for particle filter to deal with
the high dimension systems. In fact, aN -dimension space can
be described as S = A1×A2×· · ·×AN . If the i-th dimension
of S is divided into mi intervals of equal length. The whole
space S can be divided into m1 × m2 × · · · × mN disjoint
spaces grids.
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Algorithm 1 Particle Division
Input:

St = {(x it ,w
i
t )}

Nt
i=1, particle set

L, grid size
Output:

Gt = {gi,j,h |i, j, h ∈ N}, particles’ division in
grids

Procedure:
Gt = {}
∀i, j, h: set gi,j,h = {}, di,j,h = 0
∀xpt = (x, y, θ ): for p = 1: Nt do

(x, y, θ)
L
−→ (i, j, h)//xpt fall into the grid gi,j,h

di,j,h = di,j,h + 1
gi,j,h = gi,j,h ∪ (x

p
t , w

p
t )

end for
∀ i, j, h: if di,j,h ≥ α and L ≥ Lmin do

Gt = Gt∪ Particle Division {gi,j,h, L/2}
else

Gt = Gt ∪ gi,j,h
end if

C. SECOND RESAMPLING: MERGING RESAMPLING
It should be kept in mind that it’s unwise to pursue only a little
more accuracy at the price of unbearable computational cost,
and therefore it is not simply ‘the more particles, the better’.
To some degrees, we can assume adjacent particles repre-
sent the same state if the distance between them is much
less than the sensor reading error and the filtering accuracy
requirement. They can use the same likelihood p(zt |xt ), which
will reduce the computation of weight updating greatly. Thus,
the second resampling with the aim to reduce the number
of particles is implemented in a grid with its size below a
threshold b by merging particles via (7). The interpretation
of the threshold b is that there is enough reliability for the
assumption hold. The second resampling is named merging
resampling, which can be illustrated as Algorithm 3.

D. DOUBLE SPACE-RESAMPLING PARTICLE FILTER
Double space-resampling operations have been described in
the last few sections, leaving an important issue to decide
when should these two resampling be excused. According to
the previous knowledge of the computational complexity and
robustness of the PF, it’s easy to understand why we execute
the auxiliary resampling at the beginning of the iteration and
themerging resampling between the prediction and the updat-
ing step (refer to Fig. 2). As another distinguishing feature of
the auxiliary resampling, we set a large sample size (N in
the Algorithm 2) for better robustness of the prediction step
without increasing the total time-cost of the PF as the second
resampling can reduce the sample size adaptively.

Essentially, the double space-resampling approach is an
improvement of SIR algorithm and is correspondingly named
SIRR (sampling importance double space-resampling) in
this paper, like the structure of [21]. The difference is,

Algorithm 2 Auxiliary Resampling
Input:

St = {(x it ,w
i
t )}

Nt
i=1, raw particle set

N , Basic sample size
L, grid size

Output:
Ŝt = {(x̂kt , ŵ

k
t )}

N̂t
k=1, resampling particle set

Procedure:
Ŝt = {}

1) State space division
Gt = {gi,j,h |i, j, h ∈ N} = Particle Division {St ,

L}
2) Basic multinomial resampling

for m = 1: N do
u = rand //uniform random number ∈ (0,1)
q = 0
for n = 1: Nt do
q = q+ wnt
if q >= u do
x̂mt = xnt
Ŝt = Ŝt ∪ (x̂mt ,

1
N )

Gt = Gt - gi,j,h← xnt ∈ gi,j,h
break

end if
end for

end for
3) Sampling auxiliary particles

p = 0
∀gi,j,h ∈ Gt : while Gt 6= {} do
p = p+ 1
gi,j,h ⇒ (x̂pt , ŵ

p
t ) via (6) or (7)

Ŝt = Ŝt ∪ (x̂
p
t , ŵ

p
t )

Gt = Gt - gi,j,h
end while

4) Normalize the weights
N̂t = N + p
for k = 1: N̂t
ŵkt = ŵkt [

∑
ŵkt ]
−1

end for

the ‘‘importance’’ in SIRR is not limited to weights but
also particles’ spatial distribution. SIRR has distinguished
feathers over SIR at: edged and isolated particles are retained
as auxiliary particles at the auxiliary resampling process, and
particles are merged according to their spatial distribution at
the merging resampling process.

To summarize the SIRR algorithm: we choose a large
sample size for the prediction step and supplement auxiliary
particles to improve the robustness and the accuracy of the
estimation in the first auxiliary resampling operation. Then
the number of particles is reduced in the second merging
resampling operation which is adopted between the pre-
diction and the updating steps. On the one hand, the dou-
ble space-resampling method tries to allocate the limitedly
computational resources to appropriate requirements. On the
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FIGURE 2. SIRR based particle filter.

other hand, the particle space sampling technique used in it is
simple and fast to implement with a computational complex-
ity O(N ), where N is the number of particles and there is no
complicated computing and analysis.

Algorithm 3 Merging Resampling
Input:

St = {(x it ,w
i
t )}

Nt
i=1, raw particles

L, grid size
Output:

S̃t = {(x̃ it , w̃
i
t )}

Ñt
i=1, resampling particles

Procedure:
S̃t = {}
Gt = {gi,j,h |i, j, h ∈ N} = Particle Division
{St , L}
∀gi,j,h ∈ Gt : while Gt 6= {} do
gi,j,h ⇒ (x̃kt , w̃

k
t ) via (10)

S̃t = S̃t ∪ (x̃kt , w̃
k
t )

Gt = Gt - gi,j,h
end for

E. BIAS ANALYSIS
Proposition 1: PSS using merging formula (7) does not
change the mean of the particles’ distribution but reduce the
variance.
Proof: Supposing all the particles are divided into K

nonempty grid cells using (6), the mean of the particles’
distribution can be easily obtained by

e = E(gi,j) =
K∑
i,j

Ni,j∑
k=1

xki,jw
k
i,j (8)

and the variance is

δ =

K∑
i,j

Ni,j∑
k=1

(xki,j − e)
2wki,j (9)

If particles are merged by (7), the mean of particles will be
not changed as

e′ =
K∑
k=1

xkt w
k
t =

K∑
i,j

Ni,j∑
k=1

xki,jw
k
i,j = e (10)

but the variance is reduced

δ′ =

K∑
k=1

(xkt − e
′)2wkt

=

K∑
i,j

(
Ni,j∑
k=1

xki,jw
k
i,j/ŵ

n
t − e)

2ŵnt

=

K∑
i,j

[(
Ni,j∑
k=1

xki,jw
k
i,j/ŵ

n
t )

2
− 2e(

Ni,j∑
k=1

xki,jw
k
i,j/ŵ

n
t )+ e

2]ŵnt

≤

K∑
i,j

Ni,j∑
k=1

(xki,j − e)
2wki,j = δ (11)

The inequality in (11) comes from Cauchy-Schwarz
inequality. The equality of the inequality is satisfied only
when grids are divided so small that there is no more than
one particle in each grid. From (10) and (11), one can see
that the sample mean value of original particle distribution
and merging particle distribution is the same, but the sample
variance of the resampled particle is smaller. Therefore, the
merging particles are unbiased consistent estimation with the
original particle distribution.

IV. SIMULATIONS AND EXPERIMENTS
A. COMPARISON OF PARTICLE FILTERS
For the sake of evaluating and comparing the effectiveness of
particle filters, we study the following nonlinear time-varying
framework with a prediction function on a standard PC with
a Core (TM) 2 CPU, a 2.93 GHz processor and a 2.0 G RAM.

xt =
xt−1
2
+

25xt−1
1+ x2t−1

+ 8 cos(1.2t)+ et (12)

and an updating function

ot =
x2t
20
+ vt (13)

where et and vt are zero mean Gaussian random variables
with variance 10 and 1, respectively. The system is highly
nonlinear, and its likelihood function is bimodal, which
requires high performance of the filtering method. Therefore,
the nonlinear system is widely used to verify the effective-
ness of particle filter method. We use root mean square
error (RMSE) to evaluate the estimate accuracy as usual,
which is calculated by

RMSE =

√√√√√ T∑
t=1

(xt − x̂t )2

T
. (14)
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FIGURE 3. Simulation results of particle filters. All particle filters work in the models.

FIGURE 4. Number of particles in filtering. The number of particles is fixed on the desired level
in SIS, adaptive resampling and SIR particle filtering, and changes to the need level calculated
by KLD in the KLD-sampling approach, which happens twice at each iteration in our approach.

where T is the sum of iterations, in time steps, and we choose
T = 1000 in our instance.
In our instance, four other particle filters are compared

with our SIRR-based PF. Sorted by the times of resampling at
each iteration, they are basic SIS PF (none, no resampling),
adaptive-resampling PF (resample or not), SIR PF (once) and
SIRR PF (twice). In the following, we will firstly give a brief
introduction of the adaptive resampling and KLD-sampling
approaches with their parameter settings.

Adaptive-resampling particle filter means to resample only
when the variance of the non-normalised weights is superior
to a pre-specified threshold, which is often assessed by the
variability of theweights using the so-called Effective Sample
Size (ESS) criterion [22], which is given by

ESS = (
Nt∑
i=1

(wit )
2)−1. (15)

The ESS takes values between 1 and Nt and the resampling
is implemented only when it is below a threshold NT , typi-
cally NT = Nt /2 in our instance.
For KLD-sampling/resampling particle filter, the number

of particles needed is calculated briefly by

Nt =
k − 1
2ε

(1−
2

9(k − 1)
+

√
2

9(k − 1)
z1−δ)3 (16)

where k is the number of bins with support (for details
see [13], [14]). z1−δ is the upper quantile of the standard
normal distribution. In our approach, (1-δ) is fixed to 95%,
ε = 0.05, and the bin size is 1.

The true state xt is one-dimension, so our double
space-resampling will be implemented in one-dimension
grids with variable-precision sizes. We choose the starting
grids size Lstar = 1, the smallest threshold Lmin = 0.02, and
the upper value of particle density of grids α = 8.

Fig. 3 and Table 1 present the simulation results and Fig. 4
shows the volatility of sample size in filtering. From Fig. 4,
it can be seen that the number of particles is 100 and is fixed
in basic SIS, adaptive-resampling and SIR particle filter, but
adaptively changes in our approach and the KLD-sampling
PF. Furthermore, the sample size in our approach is con-
sistent with the size of grid cells and it can reduce the
number of particles more efficiently than the KLD-sampling
approach. From Fig. 3, one can observe that, the RMSE of
SIS-PF, Adaptive resampling PF, SIR-PF, KLD-sampling PF,
and our method are 5.8613, 4.9769, 5.2739, 5.0265, and 4.43,
respectively, which means that the estimate accuracy of our
approach is improved compared to the other PF methods.
In fact, the advantage of the proposed method is that it can
adjust the sample size according to not only the weights
of samples but also their spatial distribution dynamically.
Therefore, the filtering accuracy can be improved. Moreover,
the estimation accuracy is related to meshing parameters
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TABLE 1. Particle filters performance reference table.

FIGURE 5. The influence of starting grid size Lstar on (a) the number of particles, (b) root mean
square error and (c) time consumption for 100 iterations with fixed Lmin = 0.05 and a = 8.

FIGURE 6. The influence of lower bound of grid size Lmin on (a) the
number of particles, (b) root mean square error and (c) time consumption
for 100 iterations with fixed Lstar = 1 and a = 8.

Lstar ,Lmin, and the upper value of particles density α. How-
ever, the running time of our approach is 7.089s, whichmeans
the computing efficiency of our approach is the worst. This
result is not surprising, since the updating step is less time
consumption than the prediction step. Thus, our approach,
trying to improve the computing efficiency by reducing the
times of updating computation, only works when the resam-
pling time is much less than the weight updating computation
of particles, and such is usually the case of PF. As we have
analysed in Section II. B, the filtering updating step is much
more time consumption than the simple movement prediction
step and then our methodwill ‘‘work’’. This will be illustrated
in our following experiments in Section IV. C.

B. PARAMETER SETTINGS
For a further view of the feature of our double space-
resampling approach, the influences of different parame-
ter settings, i.e., Lstar , Lmin, and α, on the performance
of our double space-resampling approach are discussed
in this section. We keep two parameters fixed and one
variable to test the change of average number of parti-
cles at the prediction step and the updating step respec-
tively, the estimation RMSE and the time consumption
for 100 iterations. The results are given in Fig. 5 for
the starting grid size Lstar , Fig.6 for the lower bound of
grid size Lmin and Fig. 7 for the upper value of particles
density α.
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FIGURE 7. The influence of upper value of particle density a on (a) the
number of particles, (b) root mean square error and (c) time consumption
for 100 iterations with fixed Lstar = 1 and Lmin = 0.05.

FIGURE 8. The target tracking comparison result.

1) From Fig.5, one can see that the number of particles both
at the prediction step and the updating step and the estimation
RMSE decrease, but the time consumption increases with the
growth of the starting grid size Lstar , significantly when Lstar
is smaller than 1. The number of particles and the estimation
RMSE change negligibly when Lstar is greater than 20 or
about while the time consumption continuously increases
under a level of 0.7 second for 100 iterations.

2) The number of particles increases at the prediction
step but decreases at the updating step insignificantly with
the growth of the lower bound of grid size Lmin, as shown
in Fig. 6. The estimation RMSE increases very significantly
when Lmin is smaller than 0.1 (there are some values between
0.01 and 0.1) and then reduces with the growth of Lmin
until it’s over 40. By contrast, the time consumption reduces
greatly when Lmin is smaller than 3 and to a certain level with
the growth of Lmin.

3) From Fig. 7, one can observe that the number of parti-
cles, the estimation RMSE and the average time consumption
reduce with the growth of the particle density threshold α,
especially significantly when α is smaller than 7 or about.
And they tend to be stable when α is greater than 10 or about.
In particular, the average time consumption for 100 iterations
is unbearable large when α is 1 and 2, which indicates the
particle division will cost a lot of time when the division is
too fine.

Thus far, we can see there are some contradictions between
the RMSE and the time consumption when the parameters

TABLE 2. Particle filters performance reference table.

are varied. It’s difficult to find the best balance (if there
is) of parameter settings. Fortunately, the parameters can be
chosen considering the sensor noise and the filter accuracy
requirement via (7). Note that Lstar is greater than Lmin and α
should be larger than 3 at least in practice.

C. TARGET TRACKING EXAMPLE
In this section, the proposed double space-resampling PF is
evaluated using a robot target tracking example. The target
moves an elliptical motion in the plane. The initial position
of the target and the position of the observation point are
(0, 37.7) and (0, -70), respectively. We choose the starting
grids size Lstar = 1.5, the smallest threshold Lmin = 0.03,
and the upper value of particle density of grids α = 7. The
simulation result is shown as Fig. 8. From the result, one can
see that the proposed method can track the real trajectory
of the target. The proposed double space-resampling PF is
effectiveness.

V. CONCLUSION
In this paper, the problems for sample impoverishment and
computational efficiency of PF methods are solved. A double
space-resampling method based particle filters is presented
with respect to the practical features of robot localization. The
particle space sampling technique is used in double space-
resampling, which adjusts the sample size according to not
only the weights of samples but also spatial distribution. The
first space resampling is introduced to improve the robustness
of particle filters and the second resampling is introduced
to reduce its time consumption. Simulation results are given
to demonstrate that the estimation accuracy and robustness
of the proposed approach, which is improved compared to
traditional PF methods.
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