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ABSTRACT Communicable diseases remain a significant challenge for public health management.
In particular, for resource scarce settings, it is important to understand the linkages and dynamics of multiple
diseases that share common resources, space or time. We develop a framework, called Multiple Disease
Management Framework (MDMF) based on machine learning approach for managing multiple diseases
occurring in close space and time to identify locations that experience high disease burden rates. We use
8 water related disease incidence data in Punjab, Pakistan from year 2013 to 2019 to investigate interactions
among hotspots of different diseases. However, the model is scalable and can be applied to any number of
diseases. The hotspot analysis involves multi-level clustering and tagging of individual disease incidence
streams that generates a distance based graph over a geographical area and is then integrated into a single
stream in the framework to identify final sensitive locations called cluster alarms. The initial individual
disease clustering yielded number of clusters as high as 24 clusters for each disease with up to 16 neighboring
clusters of other diseases of similar sizes. The cluster tagging and multi-level clustering process was able to
identify as low as 19 locations of cluster alarms across the whole province of 38 districts. The identification
of high disease hotspots and their dynamics with the neighboring hotspots of multiple diseases allows
identification of locations with higher need of related public health resources. This identification is very
critical for national health agencies for optimal allocation of resources and devising an effective intervention
programs.

INDEX TERMS Cluster analysis machine learning, multiple diseases, public health informatics, public
health management, spatio temporal analysis.

I. INTRODUCTION
The increasing number of public health surveillance pro-
grams for both communicable and non communicable dis-
eases has increased our understanding of health status of
population. Traditional disease surveillance programs gather
data from multiple sources and each program has its own
data control variables and their particular formats. As a result,
disease specific research studies are more common as the
evidence base is expanding. In recent years, the availability
of high resolution spatial and temporal big health data has
opened avenues beyond traditional methods used in public
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health management. Considering, many of these diseases
may not be occurring in isolation, for example, due to ever
changing climatic and social conditions, the disease dynamics
investigated in silos cannot be entirely relied on. It can be
evidently concluded that in any given population, multiple
diseases influence the burden and predictive certainty for
policy and intervention in resource allocation.

In order to effectively mobilize the resources, it is impor-
tant to identify critical areas. The term hotspot has been
coined to mean any critical-situation location in context of
security, disaster management, disease management or any
other emergency situation. Data from multiple sources is
now available in fine resolutions to understand the disease
dynamics. While investigating disease patterns in silos helps
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to understand a single disease dynamics in public health
policy and resource allocation context, it is vital to understand
the interactions and dynamics of multiple diseases through
exploratory analysis. This understanding helps the evidence
based decision making for public health management.

This study expands on the single disease hotspot analysis
research concepts. It involves detecting and connecting dense
hotspots of different diseases that share some common under-
lying factor, such as resources, symptoms, causes etc. The
aim of the study is to integrate multiple disease surveillance
information and combine it with machine learning based
analysis approach to study multiple disease dynamics and
yield hotspots or cluster alarms. We investigate the rela-
tionships among multiple diseases based on spatial data and
are able to identify cluster alarms. We employ a clustering
based approach combined with graph theory to identify high
disease density area or hotspots and their dynamics with
the neighbouring hotspots of different diseases. The frame-
work also generates intermediate exploratory sub graphs that
can be analyzed in details for investigations into sub pop-
ulation’s health status for selected diseases. This approach
allows application of solutions from multiple domains to
study different dimensions of the resource allocation prob-
lem in spatio-temporal multiple disease regions. In addition,
the presented framework is able to incorporate any number
of diseases and allows easy injection of external factors such
as climatic data, socio economic factors, and environmental
factors etc. The presented analysis is helpful in multiple dis-
easemanagement in resource scarce settings for guiding deci-
sion making process. Many diseases share common resources
in case an outbreak occurs and for a resource scares set-
tings, we are able to identify cluster alarms where resources
can be optimally utilized. In addition, this work serves as
an exploratory mechanism for public health authorities to
manage multiple diseases over a geographical in a popula-
tion or sub population. The integrated approach towards using
multiple disease fills the overlapping clusters over an area
that are missed by single source or single disease analysis.
The work aims to contribute towards developing a data driven
multiple disease model that can be used for achieving public
health targets through identification of geographical locations
that are more resource sensitive given the distribution and
dynamics of multiple diseases.

II. RELATED WORK
Increasing prevalence of communicable and non-
communicable diseases all over the globe has made pub-
lic health policy management and resource allocation a
challenging task [1]. Particularly in resource-limited loca-
tions, as common in lower and middle income countries,
it becomes of high importance that appropriate policies and
intervention programs be designed to target areas fairly and
efficiently [2]. Traditional diseases surveillance programs
are an effective way to collect such information [3]–[5].
However, the one disease per program generates repeated
data that remains under utilized for a potential broad view

on public health status over a geographical area [6]. The
availability of electronic health care records is unlocking the
potential for new approaches towards disease modelling and
their interactions or dynamics with other diseases. An insight
into the interplay between different disease networks can be
conducted to explore individual and combined interactions
among multiple disease prevalence in a given population.
Diseases with common underlying sources, causes in envi-
ronment, symptoms or other features can be studied in rela-
tion to one another to represent the complex dynamics of their
combined networks.

Data analytics approaches in general and machine learn-
ing (ML) methods in particular have improved insights into
single disease investigations and its use in public health has
a promising future to revolutionize the evidence based policy
making and designing intervention programs [7]–[9].In addi-
tion several examples in literature exist for using machine
learning approaches in epidemiology context for public
health [10], [11]. Reference [12]. Studying disease clusters in
public health context has helped guide public health agencies
in devising an appropriate response to developing disease
situation [13], [14]. Many surveillance systems support early
warning techniques for public health authorities [15], [16].
Existing work is available using statistical and AI based
methods to detect spatio-temporal disease hotspots includ-
ing techniques eigenspot method [17], ScanStatistics [18],
M-statistic [5] and using machine learning algorithms [19].
The term, cluster alarms is also used to mean location with
accessive disease intensity. Hotspot or cluster alarm iden-
tification is crucial to early warning disease surveillance
systems.

This work presents a multiple disease management frame-
work that is intended to aid public health authorities in under-
standing the disease interactions in case of multiple outbreaks
by representing their relationship with one another using
machine learning approaches. The integrated approaches to
study multiple diseases in context of public health man-
agement and resource utilization using advents of modern
research in artificial intelligence and machine learning tech-
niques is an under studied potential research area. The aim
of this work is to create an exploratory analysis framework
that allows investigations into different aspects of single and
multiple diseases over space and time for public health infor-
matics using machine learning techniques. This information
is specially important when resources are scarce and there
are common resource utilizing diseases that are affecting the
population in a given space.

III. METHODS
A. MULTIPLE DISEASE MANAGEMENT
FRAMEWORK (MDMF)
We present a machine learning based multiple disease man-
agement framework (MDMF) for disease analysis in public
health management perspective and efficient resource alloca-
tion in a resource competitive settings. The MDMF acquires,
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FIGURE 1. Multiple Disease Management Framework (MDMF) with three
main layers 1) Layer1; where spatial disease hotspots are identified
individually 2) Layer2; neighbourhood hotspot detection among different
diseases 3) Layer 3; all disease hotspots are integrated to identify cluster
alarms as resource sensitive locations using fuzzy clustering.

integrates and distribute health data based on public health
requirements. Fig.1. outlines the stages and strategical place-
ment of multiple disease representation and analysis frame-
work within the over all scheme.The architectural aspects of
the framework are discussed in detail in [20]. The analysis
presented resides at the analytical layer that extracts data from
the data marts and run its 3-stage algorithm for identifying
locations that are resource sensitive.

1) HOTSPOT IDENTIFICATION
Formally, each disease incidence data is a geo-referenced
record defined as tuple e

ei = (xi, yi, ti) (1)

where x, y and t represent the longitude, latitude and times-
tamp of disease ith incidence event. Thus each disease event
is represented in terms of spatial features and each event is
considered independent of the other. For a set of diseases
d1, .., dD, where D is the total number of diseases. we select

the events corresponding to each disease di for the study time
period T .
A disease di data stream is clustered into n clusters Cj

where j = 1, ..n. We define cluster Cj by a tuple such that

Cj = (idj,Hj, eij,mj) (2)

where id is the cluster identification, Hj is the cen-
troid or hotspot in the cluster Cj, eij is all events i assigned
to cluster j and mj is the number of disease events in cluster
Cj. Each hotspot is represented by a latitude and longitude,
that is,

Hj = (xj, yj) (3)

In this study we employ k-means for the cluster formation
and centroid identification. However, other hotspot identi-
fication algorithms can also be applied to compliment one
another for an investigative analysis. The hotspots vary in
the density as well as population distribution. Therefore each
hotspot is assigned a weight based on population density.

2) L2 TAGGING
In the second layer, as a measure of diseases dynamics in
presence of other diseases, we find the nearest hotspots for all
diseases in relation to one another. This concept of nearness
can be calculated based on multiple factors, for example,
geographical location, time, similarity of climatic conditions
and socio-economic factors etc. In this article, we find the
spatially neighbour hotspots of multiple diseases. For this
purpose, a distance matrix Mij is created between hotspots
HSij,HSi′j′ for every two diseases di and d ′i where i 6= i′, i′ > i
and n,m is the number of clusters of disease di and d ′i respec-
tively. Therefore, size(Mij) = n × m. The distance matrix
is created based on the Euclidean distance between longitude
and latitude of hotspots of each cluster of every disease. Since
for this particular analysis, we are only interested in hotspots
in terms of spatial locations of events, it makes sense to
define nearest hotspot in terms of geographical distance as
well. However, generally in the framework, the distance can
be defined to mean multiple features of disease distribution
dynamics.

The distance matrix Mii′ defines a weighted graph G con-
sisting of non empty set of hotspots represented as nodes.
The disease hotspot association graph consists of nodes rep-
resenting the hotspot and edges based on the nearest disease
neighbour hotspot as shown in Fig. 2.

The neighbours are tagged based on threshold applied over
Mij. The value of threshold can be user defined based on the
requirements. The threshold is a set of constraint conditions
that can be based on cluster size, distance, population density
of the centroid district or union or intersection combination
of these factors. For example, for smaller spatial units, a fix
value based on radii around the hotspots identified may be
specified or a weight or intensity based threshold be set for
the hotspot zones. Hotspot can vary from disease to disease.
For example, for dengue, a 50 cases maybe low but for
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FIGURE 2. Hotspots for disease d1, d2, d3 connected to each other based
on the spatial distance. A cluster Alarm A representing 3 disease hotspots
with multiple disease events e in each hotspot.

CoVID, it will represent a high value. In this research, we use
population density based average inter-district distance for
defining the threshold in order to create a better precision for
neighbourhood selection. This threshold gives an approxima-
tion of neighbourhood with the high density related disease
hotspots.

3) L3 CLUSTER ALARMS
As the final layer of MDMF for identifying the most resource
starved locations for multi disease management, we find the
cluster alarms based on second iteration of hotspot identifi-
cation and calculate clustering coefficient of our threshold
based pruned graph that gives the local density of multiple
diseases. At this level, the clustering algorithm is run to
determine geographical connectedness of the initial hotspots
of individual diseases as well as identifying locations and
their administrative districts within the province. The result-
ing cluster alarms identified can be further analyzed in epi-
demiology context by throwing in more parameters inside
the model. The individual disease hotspots fulfilling the
threshold are clustered collectively to select multiple disease
hotspots and generate centroids that represent the cluster
alarms A. The new clusters obtained are defined by (4).

C ′ = (id,A,H ′, s) (4)

where id is the cluster identification, A is the centroid or clus-
ter alarm of the cluster C ′, H ′ ⊂ C is the set of hotspots of
different diseases that form the new cluster and s is the total
number of H in C ′.
The new clusters are analysed based on number of dis-

ease hotspots in the cluster sh and total number of disease
incidences belonging to all clusters. Each A is assigned a
low, medium, high based on number of disease clusters and
number of disease incidences in a disease cluster. Therefore,
cluster alarm is defined as (5)

A = (id, sd , se) (5)

where

se =
u∑
i=1

e′h(i) (6)

and id is the cluster id, sd is the count of multiple disease
hotspots participating in the cluster alarm, and se is the sum

TABLE 1. Variables and their description used in the model.

of all disease incidences of every disease in corresponding
hotspots of the cluster alarm. Every A is categorized as low,
medium and high based on two inputs sd and se as shown
in Fig. 2. The first input, that is, number of diseases belonging
to a particular C ′ are assigned membership low, medium and
high. Similarly, second input, se, is assigned low, medium,
and high. For a two input tagging process, nine rules are
obtained elaborated by an expert that classifies each alarm
A as low, medium and high. For example, if numbers of
diseases is low in a cluster and total elements in the cluster
is low, A is low and the corresponding location is a less
sensitive area. However, a high sd and high se will also give
a high A that implies and highly sensitive resource allocation
location. These A locations are mapped geographically and
their corresponding districts are identified for public health
related decisions and interventions. Additionally a step back
in the process, allows exploratory graph analysis for different
disease interactions.

B. STUDY AREA AND DATASET
We applied our method for studying eight water related dis-
eases in Punjab, Pakistan. Punjab is the largest province of
Pakistan with estimated population of 110,012,442 accord-
ing to 2017 census results. In addition, as compared to
other provinces of Pakistan, Punjab is most urbanized with
40% urban population as well as industrialized province of
Pakistan. It consists of 38 districts and has major share of
its budget spending in health sector (84.8%). According to
2017-2018 report in Pakistan, the doctor to population ratio,
is 1:95, the dentist to population ratio is 1:9730 and bed to
population ratio is 1:1580 where as this ratio is as high as
13.05 and 8.05, per 1000 people for Japan in Asia, Russia
in Europe respectively. Therefore, in a province with highest
population, industrialization and health expenditure in the
country, it is imperative to identify most affected and needy
areas to optimally utilize the scarce available resources for
effective public health interventions.

The data set was obtained from the passive disease surveil-
lance system operated by Punjab Information Technology
Board (PITB) [21], where data is reported through all lev-
els of health authorities in Punjab, online portal, mobile
application and WHO reports. The data from year 2013 to
2019 was analysed for eight individual diseases namely,
Typhoid, Influenza, Dengue, cholera, Acute Viral Hepatitis
(AVH), Scabies, Gastroenteritis, and Malaria. Table.2. shows
the disease incidences for each disease across the province
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FIGURE 3. Spatial distribution of eight selected diseases across Punjab, Pakistan.

during the study period. For each disease and its reported
incidence, the location of incidence in terms of latitude and
longitude, and time of incidence in terms of day of the month
of year is extracted. The latitude and longitude of all inci-
dences are geo coded to be analysed on a polygon layer of
administrative map of Punjab.

IV. RESULTS
The three layered model algorithm is applied to the eight dis-
ease point incidence data set. Fig. 3 shows the spatial distri-
bution of selected diseases across the study area. The number
of cases for each disease during study time period is shown
in Table.2. For this study, we are interested in the spatial
features of the selected diseases. For layer one, the hotspots
are identified for each disease individually, independent of
other diseases. Table2 shows the number of clusters identified
during layer 1 clustering for each disease. Fig.4 shows the

TABLE 2. Number of disease cases during study period in Punjab,
Pakistan and number of hotspots identified in the region based on
individual disease streams.

spatial clustering results when k-means is applied on each
disease incidence data individually. For the first layer of
clustering, 6 clusters were found for dengue, 12 for AVH,
15 for typhoid and cholera, 19 for scabies and influenza,
22 for malaria and 24 for Gastroenteritis disease. Each cluster
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FIGURE 4. K-means clustering results when applied on incidence data for: (a) Typhoid (b) Influenza (c) Dengue (d) Cholera (e) AVH (f) Scabies
(g) Gastroenteritis (h) Malaria. Clusters are distinguishable based on colour with cluster heads in red.

FIGURE 5. Dynamics of single and multiple hotspots of one or more diseases in an interactive graph. The graphs can be zoomed to multiple levels with
interaction of multiple diseases and their selected hotspots.

head or centroid represents the respective disease hotspot.The
figure shows that there is no indiscernible pattern that can be
seen among the diseases over the region when hotspots are
identified individually. It does however, identifies individual
disease spatial hotspots for further analysis. Fig.6a shows the
distribution of each disease hotspots across Punjab province
after first layer of clustering.

Initial analysis shows almost all disease hotspots near to
each other, however detailed study in the areas show, that
the hotspot locations are far apart and in some cases lie in a
different district altogether. The distance graph at this stage is

a mesh of interconnected hotspots with nomeaningful pattern
at a first glance. We create an interactive graph, that can be
used to study interesting sub graphs at different zoom levels.
For example, Fig. 5a shows one hotspot of malaria disease
and its interaction with other all other diseases’ hotspots
whereas Fig. 5b shows another hotspot of malaria disease and
its interaction with all other disease hotspots. Fig. 5c shows
interaction of one cluster ofmalaria and scabies each and their
interaction with each other and Fig.5d shows three clusters
of scabies disease and its interaction with other diseases.
Similarly all hotspots for every disease and its dynamics with
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FIGURE 6. Multiple disease hotspots in relation to one another.

FIGURE 7. Multiple disease hotspots inter linkages graph pruned based on two different threshold values.

other disease hotspots can be viewed on the graph at different
zoom levels.

It can be seen in Fig.6b, some of the disease hotspots
are very close to each other, however, to give a quantitative
measure to this concept,the algorithm is proceeded to apply
neighbourhood tagging. During tagging, distance between
hotspots of every disease is calculated with hotspots of every
other disease. 28 distance matrices are generated for all 8 dis-
eases. C1_1 represents cluster 1 for d1 and H1_1 represents
hotspot 1 for cluster 1 of d1. Similarly, M1_2 represents dis-
tance matrix for hotspots of d1 and d2. The hotspots within
each cluster is then tagged to create a distance based graph
that is pruned based on threshold value. The tagging is done
based on distances between each disease hotspot relative to
other disease hotspots. The pairwise distance generates a heat

map where threshold is applied to selected top m values. For
this work, we have selected the threshold to be average inter
district distance in the Punjab province. All disease edges
with their corresponding nodes(hotspots) with the distance
less than the inter district distance are excluded. This gives
an interconnected graph of multiple diseases with hotspots
of each disease connected to the closest hotspot of every
other disease. If a disease hotspot does not have any other
disease’s hotspot in its neighbourhood, that is, not within
threshold distance, it is removed from the graph.Fig.6b shows
the pruned graph of hotspots based on threshold distance.
Fig.7 shows the linkages among different disease hotspots
when threshold is applied based on inter district distance.

The algorithm then steps into final layer of clustering
where the clusters with H fulfilling the threshold constraints
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FIGURE 8. Layer 3 models for selecting resource starved locations by clustering selected individual disease hotspots and identifying resulting cluster
alarms geographical locations.

are selected for every disease and clustered as a single file to
generate a layer of cluster alarms. The cluster alarms are cen-
troid of cluster of different diseases as its members. k means
is applied at this layer and cluster alarms are classified as low
medium and high and corresponding locations are identified
for medium and high resource sensitive areas for critical
public health intervention. Fig.8 shows the results of final
layer of the model that includes the medium A values based
on values of ordered pair (sd , se) for (medium, high), (high,
medium), (high,high), (low,high) through expert elaboration.

V. DISCUSSION
With disease data available from EHR, surveillance and other
sources in fine resolution of space and time, it is imperative to
study public health policy outcomes and their impact on pop-
ulation based on evidence. Identifying disease intensive areas
has long been investigated using computer science techniques
in general and machine learning in particular. While single
disease streams dynamics with population exposure variables
has proved beneficial for clinical settings, we are able to
illustrate the significance of integrating the multiple diseases
incidences individual streams through our novel approach in
our framework.

The advantage of initiating the multi disease analysis with
single disease is that it allows to retain original arrangement
of events in the network. This means that we are able to
represent the spread of disease locally, in terms of number
of disease incidences, irrespective of other diseases. This
information is especially useful when considering commu-
nicable diseases. In addition, as can be seen in Fig.3, events
are widely variable among diseases and merging all spatial

events for hotspot identification a single large cluster with
high burden disease dominating and pulling the lower burden
disease into them.

We identify the areas most affected by the communicable
diseases from 38 districts. Table 3 details the 19 final cluster
alarms and their corresponding districts. The size of cluster
alarms is represented by the number of hotspots within each
cluster alarm as well as number and type of disease distribu-
tion for each cluster alarm.

The adjacency matrix ensures the spatial integrity of the
analysis. The algorithm takes into account, size and shape
of cluster of identified cluster alarms based on number of
diseases per cluster and total number of incidence on a geo-
graphical area as represented in Table 3. In health context, this
information is valuable for determining causes in the envi-
ronment, for example, presence of water bodies, construction
work, and industrialization near the identified cluster alarms.
In addition the intensity of cluster alarm is defined as low,
medium or high in terms of the number of disease incidence
individually as well as integrally.

The identification of location with multiple disease
hotspots in proximity of each other is very critical for public
health authorities for optimal allocation of resources as well
as for identification of factors that are causing a particular
disease spread or features common to most diseases based
on correlation analysis.The model also reveals intermediate
stages of disease dynamics with other diseases through inter-
active graphs. This analysis can significantly help in identify-
ing most affected areas from multiple diseases so that further
investigations into the causes present in environment, epi-
demiology and population characteristics can be conducted.
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TABLE 3. Layer 3 Cluster alarms specification for the eight selected diseases including their container districts, population density of the district, number
of hotspots in each cluster alarm with number of individual disease hotspots.

In addition, in resource starved locations, it is significantly
able to identify the areas that are hit by multiple problems.

VI. CONCLUSION
Using disease management models with ML based analysis
for high density population and resource starved locations can
reduce health expenditures. In order to evolve intervention
programs based on research and technology advancement for
cost effective disease management, it is important to allocate
resources and device policies based on significant evidence.
The presented model is flexible and can be scaled to include
more parameters to represent other factors in disease out-
break in a given population. In future, more factors can be
added to create other AI and ML based predictive models for
multiple diseases to investigate their relationships in context
of external factors. However, this work effectively provides
a base model for managing multiple diseases to design bet-
ter targeted intervention program in public health context.
In addition to public health, the cluster alarm identification
and analysis technique presented can be applied to other
areas such as security, plant disease detection, environmental
studies, social and sensor networks, and other domains with
proper modifications.
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