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ABSTRACT Plateau and high plateau airports aggravate tower controllers’ vulnerability, facing high safety
risks, yet the risk evaluation paradigm to manage safety at multiple altitudes still lacks. The study aimed to
investigate the effects of altitudes on controllers’ mental workload and fatigue to assess the safety risk and
introduced voices, mental workload, and fatigue, into a conceptual risk assessment model. Controllers from
the Civil Aviation Administration of China (CAAC) conducted the experimental tasks, reporting mental
workload and perception fatigue across three altitudes: 0 m, 2243 m, and 3569.7 m. With experimental
data: this research (1) quantitatively compared the voice feature differences with feature engineering, and
an image quality measure, (2) explored the effects of altitude, sleep, and fatigue, (3) tested the effects of
altitude and task complexity on mental workload, and (4) evaluated the airport safety risks under ergonomic
factors. Notably, the study revealed that Log-Mel spectrograms outperformed Mel Frequency Cepstral
Coefficients (MFCC) in severe fatigue detection. Altitude and task complexity had significantmain effects on
the mental workload, but altitude had no significant moderator effects on the relationship between sleep and
fatigue. The simulation results show that under the low task complexity, the operation risk is low over three
airport elevations (with the human error rate< 10−3), whereas under the high task complexity, the operation
risk increased with altitudes (from 1.73×10−3 to 1.02×10−1). Together, these results suggest that ergonomic
factors influenced airport safety risk at multiple altitudes and promising real-time fatigue detectionwith voice
features at different altitudes.

INDEX TERMS Voice features, fatigue, mental workload, altitude, safety management.

I. INTRODUCTION
Safety management is a subject with mounting importance
in the civil aviation domain due to increased air traffic
demand [1], [2]. Statistically, human factors contribute to
about 75% of aircraft accidents and incidents [3]. Plateau
(airports between 1500 m and 2438 m) and high plateau
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airports (airports over 2438 m) with hypobaric and hypoxia
conditions aggravate operation risk for the immense human
vulnerability in these conditions. For instance, the decrease in
cognitive performance [4], [5], the impairment of mood [5],
and the impairment of working memory [6]. These human
vulnerabilities can affect task completion and, in turn, affect
operational safety. Applying ergonomics in the operating
system is effective and efficient [7] and even proactive to
reduce safety occurrences [8]. Thus, analyzing the effects of
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human factors in a risk evaluation system, especially at the
plateau and high plateau airports, is a necessity.

At plains, the tower controller is not the most criti-
cal safety-related research subject. Since statistically, pilots,
flight crew, maintenance personnel, and en route controllers
are the most critical safety personnel [2], [3], [9]–[11]. How-
ever, the safety data from plain airports occupy a large amount
of aviation safety data for the proportion advantage of plain
airports. That leads to the failure of safety data in safety
management guidance to select key safety personnel at the
plateau and high plateau airports. In addition, the hypo-
baric and hypoxia conditions cast a limited influence on
personnel like flight crew and pilots since oxygen supply
equipment has isolated these people from the unique natural
environment [12].

Moreover, tower controllers undertake more tasks at
the plateau and high plateau airports for confronting
more complex natural environments, such as unpredictable
wind changes and worse equipment conditions caused by
extremely low temperatures, than tower controllers at plains.
The excessive task load can increase the tower controllers’
human error rate [13], which, in turn, increases the opera-
tional risk of the plateau and high plateau airports. Therefore,
this project examines tower controllers’ workload and fatigue
in high elevations to manage safety risks.

In practice, applying sensors in controller behavior study in
a complex context is a trend for the advances in sensor tech-
nologies [14]. Like electrooculogram (EOG), electrocardio-
gram (ECG), electroencephalogram (EEG), and functional
near-infrared spectroscopy (fNIRS), sensors are reliable in
measuring human cognitive states [14]. Nevertheless, preced-
ing sensors can disturb the operator’s regular duty, for their
intrusive resulted in restrictions on the head or hand move-
ments, or uncomfortably sensor wearing experience [15].
Unobtrusively data-collecting technologies are more suitable
for exploring the tower controller’s behavior patterns than
invasive devices. Several studies [16]–[18] have applied voice
sensors to learn air traffic controllers successfully. That is
also why the authors use voice sensors in the tower controller
experiments. Besides, no study has compared physiologic
measures of the operators’ state collected by sensors in multi-
ple altitudes to our knowledge. So, it remains unclear whether
physiologic measures can be informative in human abnormal
state detection in diverse altitudes. To fill this gap, the authors
compare voice patterns denoted with different fatigue levels
at multiple altitudes.

Besides, the present literature focuses on fatigue detec-
tion and fails to investigate the effects of fatigue on
airport operations. Effects like fatigue can lower the con-
trollers’ reaction speed [19] directly associated with airport
safety. Despite that fatigue can impair operator performance,
tower controllers’ fatigue is not the paramount contributor
to aviation occurrences [20]. Most literature [20] viewed
fatigue as an operational risk element that neglects fatigue’s
effects on tower controllers’ health. Burnout has been a

severe problem for air traffic controllers, wherein fatigue
is a vital element for emotional exhaustion, a compo-
nent of burnout. Nevertheless, limited literature has dis-
cussed tower controllers’ burnout [21]. So, to fill this gap,
the authors established a proactive safety management tool
including occupational safety and employed fatigue as an
indicator.

This paper investigates the effects of altitudes on con-
trollers’ mental workload and fatigue to assess the safety
risk and discusses the possibility of voice feature fatigue
prediction in various altitudes. This study organized the rest
of this article as follows: Section II, the context learning and
literature part, also the basis for experiment design, illus-
trates the workflow of tower controllers, radiotelephony com-
munication characteristics between controllers and pilots,
the two essential safety risk factors of tower controllers, and
experimental hypotheses. Section III is the methodology part,
demonstrating data collection approaches, the experiment,
factor analysis methods, and a brief introduction to the novel
conceptual safety management model establishing process.
The detailed experiments, model simulations, and relevant
results are in Section IV. Section V is the discussion part, and
Section VI is the conclusion part.

II. CONTEXT LEARNING AND LITERATURE REVIEW
A. MENTAL WORKLOAD
Mental workload works as the core of all human factors in
controller operation safety for its direct impacts on othermen-
tal states [13]. Here the authors defined the mental workload
as the present amount of allocated attention. The attention
required in the air traffic, a complex situation, can exceed the
controller’s available attention causing the increasing work-
load [22]. The increasing mental workload can decrease reac-
tion speed [23]. The excessive mental workload can lengthen
the controller’s reaction time [24] to increase the operational
risk. Thus, it is necessary to analyze mental workload in
safety management.

Multi-task and increasing task demands are the sources
of mental workload [23]. Although the tower controlling
is a multi-task, radiotelephony communication with radio
channels is the dominant information exchange route between
controllers and pilots during tower controlling operations.
Also, radio communication is a vital underlying contributing
factor to airport occurrences. Statistically, radio communica-
tion errors and problems contributed to 50% of incidents in
the airport andwere related to 40% of runway incursions [17].
So, the researchers assumed the communication task as the
critical task for tower controllers and analyzing radiotele-
phony communication is the core for mental workload study.
That is also the reasonwhy the writers designed our controller
simulation tasks based on voices.

Besides, exploring tower controllers’ radiotelephony com-
munication data can be a valid method to learn the con-
text of airport control tasks. The communication structures
of tower controllers are relatively fixed. Based on the
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literature [16], [25], [26], this study concluded the commu-
nication structures into two types: first calls and other calls
and content into six categories: request, readback, courtesy,
advisory, report, and others. The first call initiated by a pilot is
in the format: control-unit code+ aircraft call sign+ content.
The structure of other calls of the pilot is content + aircraft
call sign. After learning the rules of communications between
pilots and controllers, this research designed the experimental
paradigm for participants to simulate tower controller tasks
where the participant would confront similar communication
situations and reply with identical rules like the above.

B. VOICE PATTERNS
Another contribution of voice data is the potential to detect
controller abnormal cognitive states. There is little litera-
ture using voice patterns to explore air traffic controllers’
fatigue for limited access to real-world air-ground com-
munication datasets. Voice patterns used to detect human
fatiguemainly include non-linear dynamics features like frac-
tal features and phonetic features like formant bandwidth.
Krajewski, et al. [27] selected 395 non-linear dynamics fea-
tures and 170 phonetic features. After the correlation filter
process, they trained data by AdaBoost and Bagging to obtain
the best models for sleepiness detection Shen, et al. [16]
viewed controllers’ fatigue as a binary tuple, fatigue or
not fatigue, and employed a support vector machine to
detect fatigue via the fractal dimension. Whitmore and
Fisher [28] conducted a 36-hour experiment to obtain speech
and fatigue data, and via statistical analysis, they proved
that fundamental frequency is a valid indicator for fatigue.
De Vasconcelos, et al. [15] took speech analysis as an acci-
dent investigation tool. After comparing voice patterns of
non-sleepy data and voice data one hour before the accident,
they found pauses during speaking and elocution articulation
rates are connected with fatigue. The above literature indi-
cates that voice patterns are practical and useful for fatigue
detection.

The Mel Frequency Cepstral Coefficient (MFCC) and
Log-Mel images are famous for their robustness in the pres-
ence of various noises, which is insensitive to the mild
change and the systematic computation technologies utilized
in speaker recognition systems [29]. Thus, this study com-
pared the feature diversity of these two caused by the ele-
vation environment. More to the point, this study processed
Log-Mel spectrograms comparison as an image discrimina-
tion problem. The authors selected an image quality assess-
ment index from the image reconstruction area, the pixel-wise
loss function [30], to evaluate the spectrogram differences.

C. HYPOTHESES
Standing on the predicted effects in four leading areas: voice
features, workload, fatigue, and safety management, this
research proposed the following hypothesis:

Because MFCCs and Log-Mel spectrograms show out-
standing robustness in speech recognition [31], thus:

H1. Altitude would not affect MFCCs and Log-Mel spec-
trograms in fatigue detection.

Further, in machine learning models, Log-Mel spectro-
grams performed better than MFCCs in speech recognition
accuracy [31]. So:

H2. Log-Mel images would be more promising than
MFCCs in fatigue detection at various elevations.

The literature suggests that altitude can accelerate fatigue
accumulation [32], and fatigue is closely related to sleep-
related factors, like sleep duration and circadian rhythm [33].
Interviews with controllers from airports at several altitudes
suggest that altitudewould influence the relationship between
sleep and fatigue. Therefore:

H3. Altitude would moderate the relationship between
sleep and perception fatigue.

Apart from impacting fatigue perception, the environ-
ment discrepancy caused by the altitude difference may also
affect workload perception. Besides, for the high correlation
between task load and mental workload [34], hypotheses
regarding mental workload are:

H4. The main effect of task complexity on mental work-
load is significant.

H5. The main effect of altitude on mental workload is
significant.

H6. There is a significant interaction effect between task
complexity and altitude.

III. EXPERIMENTS AND CALCULATIONS
This project was in a mixed-methods design involving both
qualitative and quantitative data. In our design, qualitative
data was the voice from airport tower controllers at several
altitudes.

A. EXPERIMENT PARADIGM
All the experiments were in the within-subject design. The
authors employed a cognitive test battery, paper-and-pencil
questionnaires, and subjective scales to investigate cognition
performance differences between airport tower controllers at
different altitudes.

1) A COGNITIVE TEST BATTERY
An approximate 20-min test battery of working mem-
ory (WM) and an approximate 30-min controller simulation
task comprised the cognitive test battery. A detailed descrip-
tion of these tasks is as follows:

a: DUAL-TARGET N-BACK TASK
The dual-target n-back task, with two stimuli (visual and
acoustic stimulus), is a modified version of the single-target
task of Townsend and Eidels [35] and the n-back tasks [4, 36].
The dual-target n-back task aimed to investigate the relation-
ships between the response time (RT) and perception load.
The character ’n’ denotes the exact number of trials from the
target trial to the current trial [4]. Participants were required
to distinguish the targets and non-targets to respond to the
occurrence of the visual target by pressing the letter A or
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the acoustic target by pressing L. The participants shall react
immediately after the perception of the stimuli. The effective
response time was from 100 ms, the minimum response time
of human-being to a stimulus [37], to 1800 ms. Late and
Premature responses were classified as missing. As shown
in Fig.1, the visual appeared randomly in a grid of the 9× 9
matrix. At the same time, the acoustic stimulus was presented
to the participant every 3 seconds (Fig.2). With the n-back
task, a classic trial to study working memory, the authors
could efficiently manipulate the variable, the perception load
(1-, 2-, 3-back) [38]. That is, the task contained three blocks in
total, and each block had 45 trials. Before these experimental
blocks, three practice blocks with 20 trials familiarized par-
ticipants with the task rules. Also, to eliminate the practice
effect during the experiment, this research used the ABBA
balance method to decide the sequences of the blocks (Fig.3).
Together with the task starting duration, in practice, the
WM battery lasted about 20 mins.

FIGURE 1. Visual stimulus in a 9× 9 matrix.

FIGURE 2. The acoustic stimulus of the dual-target n-back task.

FIGURE 3. Experimental procedures. The sequence of blocks was
generated with the ABBA method.

b: CONTROLLER SIMULATION BATTERY
This study designed task sceneries and rules for the controller
simulation battery based on the analysis of radiotelephony
communication structures in Section II, included three levels,

each containing eighteen PowerPoint slideswith six repetitive
disparate sceneries presented in Fig.4. Each group lasted
about 10 mins, so in total, this battery lasted about 30 mins.
The detailed introduction to the controller simulation battery
is as follows:

c: BASELINE GROUP
The participants in this experiment would deal with three
possible requests from the virtual pilot. Every request cor-
responded to two situations (as shown in Fig.4a). Combined
the situation with a request from the virtual pilot, the partic-
ipant shall give a proper reply. To elaborate, the participant
shall approve the taxi request unless there is another aircraft
(marked in yellow) on the taxiway. In the latter condition,
they shall stop the aircraft by giving instructions like hold
position. After that, the virtual pilot would read the instruction
back. Then the participant shall judge whether the readback
is correct. Addressing the departure and approach requests,
the participant shall react following a similar logit. That is
approving requests when no obstacle is detected and rejecting
requests otherwise.

d: GROUP 2
In the second level, this research increased the task com-
plexity by introducing an addition problem at the end of
the readback or in step 3 in Fig.4b. The participant shall
complete the additional calculation except for the judgment
of the readback.

e: GROUP 3
Unlike the second level, the study adjusted the addition
problem’s location to the initial request’s end (as illus-
trated in Fig.4c). The participant shall speak out the answer
before issuing the instruction to the virtual pilot. That meant
increased cognition demands and working memory demands
for the participant.

2) SUBJECTIVE SCALES AND QUESTIONNAIRES
This research administered paper-and-pencil questionnaires
and scales to collect basic information and assess subjec-
tive symptoms of fatigue and subjective workload at various
working stages and experimental conditions. Stanford Sleepi-
ness Scale (SSS), the oldest self-report measure to evaluate
the human state of sleepiness, was adopted to assess tower
controllers’ current state [39]. The SSS is a single-item state
scale consisting of seven ranked statements. Participants shall
select the number that best matches their current state. As for
subjective workload, this study adopted the NASA task load
index (NASA-TLX) scale, dividing the workload into six
dimensions: mental demands, physical demands, temporal
demands, performance, effort, and frustration. The authors
employed the adapted general task load index (GTLX) calcu-
lated from the NASA-TLX scale [24] to express the mental
workload:

GTLX= (MD+TD+(10−PE)+EF+FR+PD)/6, (1)
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FIGURE 4. Overview of the tower controller simulation tasks and the three experimental groups. The primary tower controller simulation task contained
three pairs of controller sceneries, six situations in total. To be noted, in six cases, the red aircraft is the target waiting for the participant’s reply. The
yellow is the obstacle. b The second level task included an addition problem in step 3. c The most challenging mode included an addition problem in
step 1.

FIGURE 5. Task sequence for each experimental session. (Timeline not to scale).

where MD, TD, PE, EF, FR, PD stand for mental demands,
temporal demands, physical demands, effort, frustration, and
performance.

3) EXPERIMENT PROTOCOL
Prior to the study, the authors obtained written, informed
consent from all participants. Participants were seated in front
of a screen (resolution: 1024 × 768 pixels). These tasks
were taking place indoor, so a 10-min light adaptation was
required. Fig.5 illustrates the complete task sequence. After
the light adaptation, participants conducted the dual-target
n-back tasks, following by the controller simulation tasks.
Before starting every task, participants read letters A, B,
E, F aloud, and professional devices recorded their voices

with an audio sampling rate of 16000 HZ. At the same
time, they needed to report their state based on SSS. At the
end of every task, participants would assess the workload
via NASA-TLX. Finally, they need to rate the work-
load of real work. Meanwhile, the authors accepted state
self-report from participants who were not in the ongoing
experiment.

B. RADIOTELEPHONY COMMUNICATION ANALYSIS
This research analyzed the radiotelephony communication
interval and voice patterns in dealing with voice data
captured in the experiments. The voice patterns analysis
mainly included two processes: feature extraction and feature
selection.
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1) RISK ANALYSIS BASED ON INTERVAL MANAGEMENT
The measure for communication interval analysis was the
reaction time of the participants in our paper. To decide
whether the captured response time was reasonable and
acceptable, the authors employed the human error rate to
evaluate. In our experiments, the direct form of human error
was that controllers forget or call the wrong aircraft call sign,
miss the wrong readback, or give the wrong answer to the
addition question. If the direct human error rate were too high,
the authors would classify the response time as invalid and
give up further analyzing response times in the experimental
scenery. To be noted, in this paper, the response time was the
human performance measure rather than the mistake or error
rate.

a: INTERVAL MODELING
This study employed the lognormal distribution to model
the response time, which is believed to fit the reaction
time data well [40]. Before modeling, the authors applied
the Anderson-Darling test [40] to verify whether the reac-
tion time logarithm was normally distributed. The data,
whose logarithms passed the Anderson-Darling test, fol-
lowed a lognormal distribution. The authors performed
the Anderson-Darling test and distributing fitting with
MATLAB. Recall that the probability density function of the
lognormal distribution is:

f (x) = [1/(
√
2πxξ )] · exp[−(ln x − λ)2/(2ξ2)], (2)

for 0 < x <∞ and where µ and σ are the sample mean and
the variance, respectively; λ and ξ2 are defined as:

λ = ln(µ/
√
1+ σ 2/µ2) (3)

ξ2 = ln(1+ σ 2/µ2), (4)

b: RISK ASSESSMENT BASED ON THE MENTAL MODEL
DISCONNECT
The prolonged reaction time, of course, can contribute to
flight delays. Meanwhile, it is also a shared cognitive dis-
connect between controllers and pilots, viewed as negative
operator performance in this article. The sharedmental model
disconnects between air traffic controllers and pilots may
cause accidents or incidents in critical flight stages [41].
In general, if the time left for a pilot to react is less than 20 s,
the pilot fails to prevent any accident [42]. According to
Yang and Hu [40], the average controllers’ reaction time
is 7 s. The delayed reaction tends to result in a second-time
pilot call, which increases the possibility of accidents or
incidents. So, the authors set the adequate reaction time of
the controller as 7 s. That is, if the controller’s response time
is over 7 s, the reaction is a human error. Correspondingly,
the human error rate, HER, can be calculated with the fol-
lowing equation:

HER = 1− ∫7000−∞ f (x)dx (5)

The influences of human errors on operating safety can be
evaluated via the table function (Table 1), according to the
research results of Grozdanovic and Bijelić [43].

TABLE 1. The table function between human errors and operational risk.

2) VOICE FEATURE ANALYSIS
a: FEATURE EXTRACTION
The authors extracted the voice features with the adapted
MFCC computation technique raised by Sahidullah and
Saha [29]. The aim is to obtain twelve MFCCs and twenty-
four corresponding dynamic MFCCs. The feature extraction
process is as follows: First, the authors manually segmented
all collected voices. Then, the authors pre-emphasized
the audio to balance the frequency spectrum. After that,
the researchers sliced the signal into frames with a 25-ms
slice and a 15-ms overlap. Next, the authors applied the
Hamming window to each frame. After that, the Fast Fourier
Transform (FFT) was performed, and the power spectrum
was calculated.

Further, the Discrete Cosine Transform (DCT) was used to
compress the filter banks to reduce the correlations among
filter bank coefficients. This study only kept the first two
to thirteen resulting cepstral coefficients since the discarded
ones performed poorly in speech recognition.

As liftering is proved to reduce the signal reverberation
of cepstral domain features [44], the following sinusoidal
liftering [45] was conducted:

wi = D/2 · sin (π i/D) , (6)

where, wi is lifter weight, that conducted on the D cepstral
coefficients.

Finally, the first- and second-time deviations of the
extracted MFCCs were calculated to obtain the Delta and
Delta Delta MFCCs, or in other words, the dynamic MFCCs.

b: FEATURE SELECTION
Due to the small amount of speech data, the machine learning
model for feature classification is unsuitable for this project.
Therefore, accordingly, the authors employed filter methods
to select features.

In this project, for the unique data type and the relation-
ship between different feature classes, the authors adopted
the below two procedures to simplify the feature selection
process. Initially, this research calculated the mean, standard
deviation, maximum, minimum, median, 25th percentile, and
75th percentile of each feature to neglect the heterogeneity of
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FIGURE 6. The flowchart of filtering features.

speech data. After that, the authors used combined filters to
reduce features.

As shown in Fig.6, the authors calculated three correla-
tion coefficients: the Pearson coefficient, Spearman correla-
tion coefficient, and the Kendall correlation coefficient. This
study would filter this feature if the correlation relationship
between the target and the feature were not significant in any
three correlation tests. Then, we calculated the average of
three correlation coefficients of the left features, and for each
voice feature, the authors only picked the statistical feature
with the maximum absolute value of the average coefficient.
Moreover, from the MFCCs and fatigue correlation analysis
result of related documentation [27], the correlation value of
those used to predict fatigue tends to be over 0.25. Thus,
here the authors only keep features whose average correlation
value is above 0.25.

Empirically, the number of selected features is no more
than ten. In other words, the number of possible feature
combinations is fewer than 1023 (210-1). Thus, this research
conducted a complete search with recursion to find all the
feature combinations. Next, the study established multiple
linear regression models with all feature combinations and
the SSS reference values set. It is important to note that the
research focuses mainly on prediction accuracy rather than
the relationship between audio features and the SSS reference
values. Therefore, the authors ignored the multicollinearity
caused by the high intercorrelations among independent vari-
ables or, to be precise, the audio features. At last, standing
to metrics including R-Squared, RMSE (Root Mean Squared
Error), and AIC (Akaike Information Criterion), the optimal
feature combination was determined. The above three metrics
can be calculated with the following formulas:

R2 = 1−
n∑
i

(
yi − ŷi

)2
/
∑
i

(
yi − Ȳ

)2
, (7)

RMSE =

√√√√1/n ·
n∑
i=1

(yi − y′′)i, (8)

where, yi is the observed value, ŷi is the forecast value, n is
the sample size.

AIC = 2k − 2 ln(L), (9)

where, the log-likelihood estimate is denoted as L; n is the
sample size; k is the number of parameters.

Gap analysis based on image processing. Log-Mel spec-
trograms can be a valuable tool in speech emotion recogni-
tion [46] and disease severity judgment [31]. According to
Suhas, et al. [31], Log-Mel spectrograms outperformMFCCs
in voice recognition. Thus, the authors compared the Log-Mel
spectrograms of voice at different airports on different fatigue
levels (Fig.7).

The pixel-wise loss function is a commonly used qual-
ity assessment method in image reconstruction [30]. In this
paper, based on the Log-Mel spectrograms, the authors used
a pixel-wise discrimination model to compare image appear-
ance differences on differing conditions. The pixel-wise loss
consisted of the structural similarity index (SSIM) [30], [47]
and the L1 loss function, also known as the least standard
deviation [48]. SSIM is defined as:

SSIM (x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ , (10)
l(x, y) = (2µxµy + C1)/(µ2

s + µ
2
y + C1), (11)

c(x, y) = (2σxσy + C2)/(σ 2
y + σ

2
y + C2), (12)

s(x, y) = (σn + C3)/(σnσy + C3), (13)

where, l(x, y), c(x, y), and s(x, y) are used for luminance
comparison, contrast comparison, and structure comparison,
respectively. x and y are two partial blocks. µx is the mean
value of x and µy is the mean value of y. σx is the standard
deviation of x. σy is the standard deviation of y. Referring to
Wang, et al. [47], authors set α = β = γ = 1 andC3 = C2/2
in this project.
L1 is less sensitive than SSIM to outliers and can be

expressed as follows:

L1(x, y) = (
N∑
i=1

|xi − yi|)/N , (14)

where xi and yi are discrete signals.
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FIGURE 7. Diagram of the pixel-wise discrimination measurement system.

The pixel-wise discrimination function in this article is
defined as:

Cpw(x, y) = (1− λ) · L1(x, y)

+λ · (1/N ) · {
N∑
i=1

[1− SSIM (xi, yi)]/2}, (15)

where Cpw is the result of pixel-wise discrimination between
two images; λ is the hyperparameter working as a weight to
balance the L1 loss and SSIM. Referring to Li [49], this study
set λ as 0.85; N is the total number of pixels.
This study compared Log-Mel spectrograms in two situ-

ations, as presented in Table 2. In the first situation, on the
scale of the same SSS reference values, this research explored
whether the image features of Log-Mel spectrograms from
participants at the same altitude are stable. Under the second
situation, the authors studied whether altitudes affect voice
features’ stability. The researchers established two indicators
to evaluate the above differences, denoted as SS, SN, respec-
tively. The exact formulas are as follows:

SS(H , S) =
∑
i,j

Cpw(x
H ,S
i , xH ,Sj )/N , (16)

SN (Ha,Hb, S) =
∑
i,j

Cpw(xSHa,i, x
S
Hb,j)/N , (17)

where,H and S are symbols of the altitude and the SSS value;
xH ,Si and xH ,Sj refer to images i and j with attributes: H and
S; xSHa,i and x

S
Hb,j are images i and j with attributes: Ha, Hb,

and S; N is the comparison combination amount.

C. EFFECTS ANALYSIS OF CONTRIBUTING FACTORS AT
DIFFERENT ALTITUDES
The primary purpose of effects analysis is to provide a the-
oretical ground for the controller schedule arrangement by
analyzing perception fatigue and mental workload under the
influence of various altitudes and task complexities.

TABLE 2. Gap analysis conditions.

1) MODERATOR EFFECTS OF ALTITUDE ON PERCEPTION
FATIGUE
This article took the task itself as a contributing factor
to cognitive performance instead of a direct contributing
factor to fatigue to simplify the performance risk assess-
ment model. According to Kelly and Efthymiou [50] and
Raslear, et al. [51], the authors included sleep duration, cir-
cadian rhythms, and sleep inertia as fatigue-inducing fac-
tors. This study furthered to investigate whether altitude
would affect perception fatigue. To quantitively express sleep
duration, circadian rhythms, and sleep inertia reasonably,
the authors modeled them based on the bio-mathematical
fatigue model [52].

Rt =


Rt−1 − Kt, during wake

2400 (as + 1)

(
1− exp (−t/τd )+
Rt−1 exp (−t/τd ) , during sleep,

(18)

Ct = cos(2π(T−18)/24)+0.5 · cos (4π (T−21) /24) ,

(19)

It = −0.05 · e−0.04t/(−asCt+f (Rc−Rt )), (20)

St = 1−(100 (Rt/Rc)+(a1+a2 (Rc−Rt) /Rc)Ct+It ), (21)

where, Rt is the homeostatic sleep reservoir, Ct is the circa-
dian rhythm, and It is sleep inertia. K is the depletion rate,
and this study set it as 30 units/hour. t is the awakening or
sleep time. aS and f are weighting factors, set as 0.235 unit
and 0.0026564 min, respectively. τd is the recovery time with
a value of 4.2 h. T is the time of the day. Rc represents the
reservoir capacity, set as 2880 units. Specifically, sleep inertia
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FIGURE 8. The mechanism of the conceptual safety management model.

It works only within the two hours after waking. St is the
combined effect of the factors mentioned above.

This research tested whether altitude moderates the
relationship between sleep-related contributing factors and
perception fatigue with the linear regression hierarchical
analysis [53]. The authors hypothesized a moderate effect
of altitude on the relationship between sleep factors and the
SSS reference values. If the p-value of the interaction term of
the combined effect St and the altitude dummy variable were
more than 0.05, this research would reject the null hypothesis.
Otherwise, this study would accept the null hypothesis. The
authors also utilized zero-centered independent variables to
avoid the possible multicollinearity brought by interaction
terms of independent and moderator variables.

2) MAIN EFFECTS AND INTERACTION EFFECTS ANALYSIS ON
THE MENTAL WORKLOAD
To test hypotheses H4-6, the authors introduced a MANOVA
test. Also, the authors utilized the ordinal regression model
to explore the main effects of these two factors. Initially, this
study reordered these six tasks according to the mean values
of their mental workload. Afterward, the authors validated
whether the ordinal logit models’ slope coefficients are the
same across response categories via the test of parallel lines.
In other words, if the statistics pass the test of parallel lines,
the statistics have proportional odds.

Meanwhile, the authors utilized the variance inflation fac-
tor (VIF) to test the severity of collinearity among factors.
If VIF is more than ten, there is multicollinearity among
variables. At last, the authors established the ordinal logit
model for one to analyze altitude and task complexity’s main
effects onmental workload, for the other one to predictmental
workload.

D. A CONCEPTUAL RISK ASSESSMENT MODEL
The conceptual risk assessment model contained four pri-
mary dimensions: operation risk assessment, controller occu-
pational safety assessment, risk elimination, and safety

reassessment (Fig.8). This study adopted a two-dimension
risk assessment model with an embedded risk cube to manage
safety dynamically. The rule to operate the risk cube is that
the authors mapped the two types of risks to the airport safety
risk axis, and the combined risk depended on the below rule:

risk = max{operational risk, occupational risk} (22)

1) MENTAL WORKLOAD BASED RISK ASSESSMENT
Although much relevant literature [25], [40] has calculated
aircraft conflict possibility via modeling controller communi-
cation interval, they all built a relative macro risk assessment
model.Most scholars neglected that the opportunity of human
error is not equal under different levels of mental workload,
although they have established other interval fitting models
under different working conditions (traffic volume). Thus,
besides altitude and task complexity, this study took men-
tal workload into account in our operation risk assessment
model. The elaborate process to establish the mental work-
load prediction model based on altitude and task complexity
is in Section III-C. The revised human error rate is:

RHERij = MWij/MW0m,j · HER, (23)

where, RHERij is the revised human error rate of whose
mental workload is MWij. i is the symbol of altitude, and j
represents task complexity.

∑
jMWj is the sum of all possible

mental workload. HER is the human error rate without the
effect of mental workload.

2) OCCUPATIONAL SAFETY ASSESSMENT
Participants could not select the ensured value on the SSS
scale during the experiment but would like to give an interval.
Thus, the authors modified the SSS scale and divided the
human state into three categories: awake, mild fatigue, and
severe fatigue. They corresponded to three risk levels: low,
medium, and high risk, as shown in Table 3. After that,
the authors trained an ordinal regression classifier based on
the Modified SSS scale. The thorough process is as follows.
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FIGURE 9. The diagram of identifying controllers’ state with the ordinal regression model.

TABLE 3. The table function between human state and occupational
safety risk.

Initially, this research regrouped the SSS reference values
into three levels based on their responses and used the dummy
variable state as a replacement:

state =


0(awake), if SSS = 1 or 2
1(mild fatigue), if SSS = 3 or 4
2(severe fatigue), otherwise,

(24)

Then, this research checked whether the classify is rea-
sonable with the aid of the combined sleep-related effect St :
Firstly, this research employed the Kendall and the Spearman
coefficient to explore the relationship between the combined
sleep-related effect St and the SSS values; Secondly, if they
were statistically significantly correlated with each other, this
study would conduct the Anova test to investigate whether the
variance was quite different among state groups. The authors
believed that if the variance of St was significantly different
among state groups, the state classification was reasonable.

Fig.9 demonstrates the mechanism to build an ordinal
regression classifier. For the target variable, there were three
state classes with an order. In order not to lose the informa-
tion about the ordered relationship, before implementing the
model, this research carried out the following steps:

1. The authors extended the state labels with three dummy
variables. Firstly, this research set the state, awake, as 0,
the remaining states as 1. Next, this study assigned 0 to state,
awake, and state, mild fatigue, and 1 to the rest. Then, this
study set the state, severe fatigue, to be 1, and others as 0.
2. For each dummy target variable, this research estab-

lished a logit model. These models can predict input data as
class 0 or 1. The relevant formula is shown in Fig.10.

3. At last, aggregating three predicted probabilities, and the
authors can obtain the predicted state.

Furthermore, for the small data sample, the authors used
K-Fold cross-validation to evaluate the established model.

FIGURE 10. The pie chart of selected features at different airport
altitudes.

The authors split the data into five groups. Every subset would
work as a test set, while the left four would work as the
training sets to get five models. The accuracy was the mean
of the correct rates of the five models.

IV. MODELING AND RESULTS
A. NUMERICAL EXAMPLES
1) PARTICIPANTS
The authors conducted the experiments mentioned in
Section III(A) at 0m, 2243m, and 3569.7m. Eight controllers
from CAAC between the ages of 22 to 34 volunteered for
this study. The authors did not find noticeable individual
differences in basic information processing abilities in all the
experiments. Data collection lasted from 2018 to 2021.

2) SIMULATION PARAMETERS SETTING
The research only retained the first two-level controller sim-
ulation task data due to the extreme human error rate in
the third-level controller simulation task. The parameters set
for task-related risk analysis are in Table 4. Based on the
interviews with local airport controllers at three altitudes,
the authors set the simulation situations and parameters for
the human state analysis (Table 4) conforming to the actual
working arrangement. In every case, this study appointed
several agents based on the actual tower controller work
schedule and repeated every situation seven times to obtain
multiple results in the regular duty.
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FIGURE 11. The pixel-wise discrimination among images with the same SSS reference values at
the same altitudes.

TABLE 4. Simulation situations and associated parameters for the
operation risk analysis.

B. VOICE FEATURE COMPARISONS AT THREE AIRPORT
ALTITUDE
1) FEATURE SELECTION RESULTS
Tables 6-8 provide information about the selected features
at three airport altitudes. There were ten filtered features
at 0 m, which consisted of 1023 effective combinations.
Among these combinations, the combination with the max-
imum R-Squared value and the minimum RMSE value
(denoted as combination 01)was not the combinationwith the
minimum AIC (denoted as combination 02). For the differ-
ences of the R-Squared and RMSE values between the above
two combines were narrow (combination 01: R-Squared =
0.85, RMSE = 1.51; combination 02: R-Squared = 0.82,
RMSE = 1.51), the authors thought that combination 02 was
the optimal combination to avoid overfitting brought by
redundant features. Combination 02 contained the Standard
deviation of delta MFCC 12 and theMaximum of delta-delta
MFCC 8. On the condition of 2243 m, nine selected features
comprised 511 possible combinations. Following the same
optimal selection rules, the optimal feature combination at
2243 m included the median of MFCC 5, minimum of MFCC
11, 25th percentile of MFCC 10, and the 25th percentile of
MFCC 4 (R-Squared = 0.96, RMSE = 0.79, and AIC =
85.85). Moreover, at Lhasa airport (3569.7 m), based on the
31 combinations of five features, the authors selected the opti-
mal combination with the median of MFCC 2, minimum of

delta MFCC 5, minimum of MFCC 5, and mean of MFCC13
(R-Squared = 0.86, RMSE = 1.22, and AIC = 214.96).

2) HYPOTHESES 1 & 2: EFFECTS OF ALTITUDES ON MFCCs
AND LOG-MEL SPECTROGRAMS
The results of this paper partially rejected H1 but
supported H2. The pie chart (Fig.10) compares the selected
feature amount and the feature nature difference (dynamic
or static) of MFCCs at three airport elevations. The research
shows that the features of MFCCs left at 2243 m and 0 m
were more than those at 3569.7 m. Besides, at sea level,
dynamic features constituted over 50% of the total fea-
tures. By contrast, at the other two altitudes, static features
exceeded dynamic features. The graph indicates that dynamic
features tended to conduct a favorable at lower levels in
fatigue prediction, while at higher levels, they lost strength in
fatigue prediction. This result suggests that altitude did affect
MFCCs in fatigue detection. Fig.11 compares the SS values of
seven states at three altitudes. In general, the SS value was no
more than 3.5. Besides, the SS value was lower than 0.1 under
the condition with the SSS value of 5, 6, or 7. It indicates that
Log-Mel images had considerable minor differences at high
SSS values at the same elevation. Together, altitudes would
affect MFCCs in fatigue detection but slightly affect Log-Mel
spectrograms when the SSS values were tremendous.

Fig.12 shows the mean values of the pixel-wise discrimi-
nations among images with the same SSS reference values at
different altitudes. It is important to note that the higher the
pixel-wise discrimination value was, the more significant the
gap between two Log-Mel spectrograms. The graph shows
that the pixel-wise discrimination values of compared groups
with SSS values 1, 6, and 7 were much lower than groups
with other SSS references. To be more precise, the SN values
of compared groups with SSS values 1, 6, and 7 were lower
than 0.15. That suggests that the Log-Mel image can be an
excellent choice to predict fatigue without being disturbed by
altitudes. Together, Log-Mel images would be more promis-
ing than MFCCs in fatigue detection at multiple elevations.
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FIGURE 12. The pixel-wise discrimination among images with the same SSS reference values at different altitudes. The label naming rule is altitude +
SSS reference value. The number in black is the pixel-wise discrimination value.

C. EFFECTS ANALYSIS RESULTS
1) HYPOTHESIS 3: ALTITUDE EFFECTS ON PERCEPTION
FATIGUE
H3 was not supported in this article. The linear regression
hierarchical analysis result indicated no statistically signif-
icant moderator effects of altitude on perception fatigue
(the p-value of the interaction term of centered St and altitude
is more than 0.05). Although the moderator effects were not
statistically significant, Fig.13 illustrates the possible influ-
ence of altitude on perception fatigue. People at 2243 m had
higher perception fatigue at the same St level. Also, the slope
of data collected at 3569.7 m was more extensive than that
at 0 m. That indicates that human fatigue was more sensitive
to sleep factors at 3569.7 m than at 0 m.

2) HYPOTHESES 4-6: EFFECTS ANALYSIS RESULTS OF TASK
COMPLEXITY AND ALTITUDE ON MENTAL WORKLOAD
Table 9, the MANOVA test results for mental workload,
shows:

1. H4 was supported: the main effect of task complexity on
mental workload was significant (p < 0.001).
2. H5 was supported: the main effect of altitude on mental

workload was significant (p < 0.001).
3. H6 was not supported: there was no significant interac-

tion effect of task complexity and altitude (p > 0.5).
The parallel lines test (Table 10) shows that the null

hypothesis could be accepted (χ2
= 282.017, p = 0.834).

That is, the regression equations were parallel to each other,
and the authors could use ordinal logit regression to analyze
statistics. Since the VIFs of variables were all less than 10,

there was no multicollinearity among variables. Table 11
illustrates that the ordinal logit regression model fitted well
with the data, as p-values of the Person test and Deviation
test were over 0.05.

The authors drew the graphs about the main effects of the
two factors, altitude, and task complexity, based on the estab-
lished ordinal logit model, as shown in Fig.14 and Fig.15.
These two graphs show that:

1. When the task complexity was fixed, the higher the
altitude, the higher the mental workload.

2. When the altitude was fixed, in general, as the task com-
plexity increasing, the mental workload went higher. How-
ever, when the complexity values were close to each other,
the mental workload sometimes would not strictly follow the
rule.

D. MODEL IMPLEMENTATION RESULTS
1) VALIDATION FOR MODIFIED STATE CLASSIFICATION
Constructed on the statistically significant correlation
between the combined sleep-related effect St and the SSS
values (the Kendall coefficient is 0.323 with a p-value
less than 0.01, and the Spearman coefficient is 0.424 with
a p-value less than 0.01), the authors believed that if the
variance of St was significantly different among state groups,
the state classification was reasonable. Table 12 displays
Levene’s test results on SSS groups, and the Levene statis-
tic based on the mean was 2.139 with the correspond-
ing p-value of 0.121. Because the p-value was over 0.05,
the study failed to reject the null hypothesis. In other words,
the research could not prove that the variance of the combined
sleep-related effect St between the different SSS value groups
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FIGURE 13. The graph of moderator effects of altitude.

FIGURE 14. Main effects of altitude. Zero stands for sea level. One stands
for 2243 m, and two stands for 3569.7 m.

was statistically significantly different. That means this study
validated the assumption that each SSS value group had
an equal variance via Levene’s test, and the statistics met
the requirement to conduct ANOVA (one-way analysis of
variance) analysis. Table 13 indicates a statistically signif-
icant difference between the previously-mentioned groups
regarding the combined sleep-related effect St for the sig-
nificance value was 0.000, which was below 0.01. Therefore,
it can be concluded that the modified state classification was
reasonable and acceptable.

2) OPERATION RISK WITHOUT THE INTERFERENCE OF
MENTAL WORKLOAD
Because when the task complexity set as one, the reac-
tion times at three altitudes were not significantly different;
therefore, the authors used one lognormal distribution to fit

FIGURE 15. Main effects of task complexity.

these data. The study utilized three more lognormal dis-
tributions to fit the reaction times for task complexity of
three at three altitudes, respectively. The logarithms of the
four groups of data all passed the AD test. In other words,
these four groups of data followed the lognormal distribution.
The four lognormal equations are shown in (25), (26), (27),
and (28).

fcomplexity=1(x)

=


1/(0.451x ·

√
2π )

· exp
{
−(ln x − 6.374)2/0.4068

}
, x > 0

0, otherwise

(25)

fcomplexity=3,altitude=0(x)

=


1/(0.480x ·

√
2π )

· exp
{
−(ln x − 7.643)2/0.4608

}
, x > 0

0, otherwise

(26)
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fcomplexity=3,altitude=2243(x)

=


1/(0.491x ·

√
2π )

· exp
{
−(ln x − 7.875)2/0.4822

}
, x > 0

0, otherwise

(27)

fcomplexity=3,altitude=3569.7(x)

=


1/(0.555x ·

√
2π )

· exp
{
−(ln x − 8.103)2/0.6161

}
, x > 0

0, otherwise

(28)

Fig.16 shows the four fitting curves, from which the
authors can see that the higher the complexity was, the longer
the reaction timewould be. Besides, under the same task com-
plexity, the reaction time tended to be longer with altitude.
The calculated HER and corresponding risks are in Table 14.

FIGURE 16. The lognormal fitting curves of four groups of data. TC stands
for task complexity. AL stands for altitude.

3) NUMERICAL RESULTS OF RISK CUBE
With (23), the authors obtained the adjusted human error
rates, and the detailed results are in Table 14. The cross-
validation results of the ordinal logit model to predict the
human state is in Table 15. The accuracy of the model was
calculated as follows:

ACC = (54.545+ 66.667+ 76.190+ 71.428+ 80.952)/5

= 69.96.

The predicted states based on differing simulation situ-
ations and corresponding risk levels are in 17. Based on
Tables 15 and 16, the study computed the combined risks
or, in other words, the severity exceedance in the risk cube,
as in Table 18.

V. DISCUSSION
A. APPLYING VOICE FEATURES IN FATIGUE DETECTION
Tables 6-8 are the results of features of MFCCs that were
selected for their relatively high correlation with the human
states, the SSS values. The filtered features were slightly dif-
ferent among the three altitudes. Previous studies found that
MFCCs have strength in speaker recognition for their most
sensitivity to fatigue [29], [45]. Compared to the analysis

results of the correlation between MFCCs and KSS reference
values in Krajewski et al.’s work, in the environment without
the effects of hypobaric hypoxia, MFCC 8 performed well
in fatigue prediction [27], which is consistent with our cor-
relation analysis results of MFCCs. Fig.10 shows the most
apparent difference among selected MFCCs features of the
three elevations. That is, dynamic features had a higher corre-
lation to fatigue in lower altitudes. While in higher altitudes,
static MFCCs performed better than dynamic features. The
results indicate that when choosing MFCCs to predict human
fatigue, the prediction model shall vary with the airport
elevations.

As for the Log-Mel spectrograms, Fig.11 and Fig.12 depict
the pixel-wise discrimination comparison results among
images with the same SSS reference values at the same
and different altitudes. The results suggest that altitudes
did not affect Log-Mel spectrograms in predicting severe
fatigue, differing from MFCCs. Similar results are noted in
Suhas et al.’s work [31], which indicates that Log-Mel images
outperformed MFCCs in speaker recognition. Therefore,
in conclusion, audio features can detect human fatigue, but
the feature, Log-Mel spectrogram containing more informa-
tion, is better than MFCCs when carrying out fatigue predic-
tion in various elevations.

B. THE INTERACTIONS AMONG ALTITUDE, SLEEP, AND
FATIGUE
The linear regression hierarchical analysis result of altitude,
sleep, and fatigue shows airport altitude did not significantly
affect the relationship between sleep and human fatigue in
this article. Fig.13 demonstrates that at 2234 m, tower con-
trollers precepted higher fatigue on the analogous sleeping
condition than tower controllers at plain airports. Next, sleep
seems to conduct an enormous impact on tower controllers’
fatigue at 3569.7 compared with sea level.

Some literature has found that altitude affects cognitive
fatigue. For instance, Duan, et al. [32] reported that alti-
tude could significantly shorten the driver’s fatigue duration
Bouak, et al. [4] recovered that altitude increased general
fatigue. Comparing experiments with experiments in the pre-
ceding literature, the authors found that the average experi-
ment site elevation exceeded 4000 m. That may explain the
insignificant moderator effect of altitude on sleep and fatigue
since this paper’s highest research elevation is 3569.7 m.
Documentation by some scholars can support this assump-
tion. These scholars recovered that fatigue increased when
the environment passed a specific elevation, and a relatively
low elevation would not affect fatigue accumulation [5], [54].

In addition, another possible cause of the insignificant
moderator effect is that altitude can affect sleep from oper-
ator sleep duration and quality [55] but would not moderate
the relationship between sleep and fatigue. Simultaneously,
our current experiment could not validate this assumption
because, in our experiment design, sleep factors were all
independent variables. That led to that our experiment data
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TABLE 5. Simulation situations and associated parameters for the human state investigation.

TABLE 6. Correlation analysis results between features and fatigue reference values at 0 m.

cannot reflect the effects of altitude on sleep. Therefore,
further studies can further discuss this question.

C. RISK ASSESSMENT RESULTS
The MANOVA test results in Table 9 show significant main
effects of altitude and task complexity on mental workload.
Regarding task complexity, d’Engelbronner, et al. [56] recov-
ered similar results that task complexity positively corre-
lates with the mental workload. More importantly, this paper
explored the effects of altitude on mental workload. The
results show that airport tower controllers had more mental
workload as height increased when the task complexity was
the same. Task complexity had a similar positive effect on
mental workload as well.

As for the safety risk, when eliminating mental workload
disturbance, operation risk increased as the elevation rising
with the task complexity was three. While when the task
complexity was low, the altitude had no significant effects on

the human error rate, and the operation risk kept at a low level.
When considering the mental workload diversity at multiple
altitudes, the risk level distinction among different altitudes
was more prominent, and the operation risk still expanded
with altitude when the task complexity was high. Compared
with the workload, occupational risk brought by fatigue pre-
sented a slighter difference among the three altitudes, almost
staying at the same risk level. Looking at the operational
safety risk: the operation risk can stay acceptable, except
when the task complexity was high at 2243 m and 3569.7 m.
Focusing on the occupational safety risk: the occupational
risks remained below the high-risk level in the three situations
assumed according to the actual working sceneries. It indi-
cates that the current work schedules for tower controllers
are acceptable from the occupational safety management
scale. Together, the authors shall adjust the aircraft safety
operation interval at the airport to 3569.7 m to lower the
safety risk and keep a close eye on the airport operations
at 2243 m.
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TABLE 7. Correlation analysis results between features and fatigue reference values at 2243 m.

TABLE 8. Correlation analysis results between features and fatigue reference values at 3569.7 m.

TABLE 9. The MANOVA test results.

TABLE 10. Test of parallel lines.

D. IMPLICATIONS
The implications of the above findings are multi-faceted.
First, present researchers on the influence of hypobaric and

hypoxia environment concentrate on military pilots or acute
mild hypoxic hypoxia [4], [6]. Whereas the authors stated
in the INTRODUCTION section, the hypobaric and hypoxia
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TABLE 11. Goodness-of-fit.

TABLE 12. Levene’s test results of variance homogeneity.

TABLE 13. ANOVA analysis results.

TABLE 14. Operation risk without the interference of mental workload.

TABLE 15. Operation risk with the interference of mental workload.

TABLE 16. K-Fold cross-validation results.

TABLE 17. State simulation results.

environment can impair tower controllers’ performance, but
no study currently researches this topic. The findings of
this study can provide a theoretical basis for future research
in the impact of consistent hypobaric and hypoxia envi-
ronments on operator performance. In practice, these find-
ings can provide a guide for managers at the plateau and
high-plateau airports to manage operational and occupational
safety.

Second, the findings of the excellent performance of static
MFCCs and Log-Mel images in fatigue detection in the

plateau and high-plateau environment hint at the extended
application range of voice features in fatigue detection. Also,
the feature selection results can offer reference to those who
want to employ voice features to predict the human state
under hypobaric and hypoxia environments.

Another point is that the authors modified the SSS scale,
and the results showed that this modification was statisti-
cally reasonable. The statistical reasonability implies that this
study extended the SSS scale application from the plain to the
plateau and high-plateau airport environment.
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TABLE 18. The combined risks.

Finally, we raised a conceptual safety management model
involving both operational risk and occupational risk. This
combined model incorporates ergonomics in safety manage-
ment and makes risk management more comprehensive from
risk assessment.

VI. CONCLUSION AND FUTURE WORK
In the study, the writers investigated how the two main
contributing factors, namely fatigue and mental workload,
influence tower controllers’ performance in the context of the
plateau and high-plateau airports. The authors conducted cog-
nition experiments at three airport elevations: 0 m, 2243 m,
3569.7 m for data collection and safety risk modeling to
facilitate operator performance comparisons. The effect test
results showed a significant effect on the mental workload
related to task complexity, whereas a non-significant effect
on the relationship between sleep and fatigue. An increasing
airport altitude increased the mental workload under the same
task complexity. These findings shed light on the manage-
ment of the human factor at the plateau and high-plateau
airports. Airport managers at higher altitudes shall pay more
attention to tower controllers’ mental workload to ensure
operational and occupational safety.

Besides, the authors employed MFCCs, and an image
quality measure based on Log-Mel spectrograms to discuss
fatigue detection applications in different environments. Both
voice features showed robustness in fatigue detection at
different airport elevations. Whereas dynamic MFCCs are
more suitable for fatigue detection at low altitudes, while at
high elevations, static MFCCs have more apparent strength.
In addition, in comparison, Log-Mel spectrograms were rela-
tively stable at high SSS values at the same height. These find-
ings hint at practical application values of fatigue detection in
real work. Together, airports at high elevations shall employ
Log-Mel spectrograms or static MFCCs to detect operator
fatigue.

Furthermore, with a conceptual safety management model,
this study found that operation risk and the combined risk
gained as the elevation increasing with the high task com-
plexity, and under low task complexity, altitudes had limited
influence on risk. These findings strongly suggested more
attention to the plateau and high-plateau airport safety man-
agement, especially when the airport operations are busy.

In addition, the new modified SSS scale was statistically
reasonable, extending the SSS scale application from the
plain to the plateau and high-plateau airport environment.

Suggestions for future improvement are multifold. Firstly,
the authors used a small sample in our experiments to keep
the participants the same at different experimental airports
to lower the individual cognition ability differences. That
resulted that the authors could not generalize our results
to a larger population. However, all participants conducted
all the tests at both the plain airports and plateau airports,
lowering the disturbance of individual differences. Also, for
the bad natural environment and working conditions at the
plateau and high-plateau airports, the turnover rate of control
staff is high. So, the age range of controllers is relatively
low in real life, consistent with the participant age range in
the study. Besides, before selecting participants, the authors
used sphygmomanometers, blood oxygen instruments, and
other equipment to collect basic parameters to ensure no
noticeable difference in their healthy level to rule out the
impacts from healthy problems. Researchers can employ a
hypoxic cabin to simulate the plateau and high-plateau airport
environment in future work to hire more participants in the
experiment.

The second limitation, or the direction for future work,
is about altitude effects on fatigue. For one, the experiment
site selection, by far, the airports where the authors con-
ducted our experiments were all below 4000 m. Continuing
our experiments in higher altitude airports is informative
in recovering more underlying effects of altitude on human
fatigue. For the other, the authors did not study the effects
of altitude on sleep itself, which may significantly affect
the human state in the daytime, and further affects human
performance.

Another such area is the interactions betweenmental work-
load and fatigue. The authors kept participants at a similar
positive cognition state for the limited experiment duration
in airport towers to reduce experimental groups. Since that,
the current study cannot further explore the effects at mul-
tiple altitudes, despite that mental workload impacts human
fatigue [13].

APPENDIX
See Table 5–18.
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