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ABSTRACT In this paper, a novel deep learning-based robust automatic modulation classification (AMC)
method is proposed for cognitive radio networks. Generally, as network input of AMC convolutional neural
networks (CNNs) images or complex signals are utilized in time domain or frequency domain. In terms of
the image that contains RGB(Red, Green, Blue) levels the input size may be larger than the complex signal,
which represents the increase of computational complexity. In terms of the complex signal it is normally used
as 2 × N size for the input, which is divided into in-phase and quadrature-phase (IQ) components. In this
paper, the input size is extended as 4×N size by copying IQ components and concatenating in reverse order
to improve the classification accuracy. Since the increase in the amount of computation complexity due to
the extended input size, the proposed CNN archiecture is designed to reduce the size from 4× N to 2× N
by an average pooling layer, which can enhence the classification accuracy as well. The simulation results
show that the classification accuracy of the proposed model is higher than the conventional models in the
almost signal-to-noise ratio (SNR) range.

INDEX TERMS Automatic modulation classification, deep learning model, convolution neural network,
frame extension, cognitive radio.

I. INTRODUCTION
Cognitive radio (CR) technology can make wireless devices
connect one of unused spectrum subbands and exploit it [1],
[2]. Thus, CR plays a important role to utilize the scarce spec-
trum resources, and satisfy the required spectrum demands
due to advancements in internet-connected devices and wire-
less communication technology (e.g. Internet of Things
(IoT)) [3], [4]. CR technology can be applied to the con-
ventional wireless sensor networks, where there are many
issues for research (e.g. channel handoff [5], [6], energy
consumption [7], AMC [8], etc.). Especially, AMC is the core
technique in CR networks to identify modulation types of
unknown signals without prior knowledge. Normally, AMC
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technique is mainly divided into two approaches, which are
likelihood-based (LB) and feature-based (FB) approaches.
Though the optimal classification performance is gained,
LB approach has the significant drawbacks, which are the
high computational complexity and the implement problem
for the real-time systems [9]. On the contrary, FB approach
can make the implement simple and gain suboptimal per-
formance with low computational complexity [10]. The
conventional FB approach is divided into a feature extraction
part and a classification part, where in the feature extrac-
tion part instantaneous feature, High-Order Cumulant (HOC)
feature [11], cyclostationary feature [12] and wavelet fea-
tures [13] are mainly exploited [14], and in the classification
part Support Vector Machine (SVM), Decision Tree (DT),
k-Nearest Neighbor (kNN), etc. are generally adopted [15],
[16]. On the contrary, the methods have limited classification
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capability depending on the handcrafted feature as well as the
HOC and cyclostationary methods may cause high computa-
tional complexity.

Recently, the deep learning-based techniques such as a
CNN and a recurrent neural network (RNN) contain both
the feature extraction part and the classification part, which
has stronger representative capability than the classical FB
approach [16], [17]. The deep learning techniques have been
widely applied to diverse applications including AMC. Many
AMC works based on the CNN focus on classification accu-
racy performance for analog and digital modulations (e.g.
Amplitude Modulation (AM), M-ary Phase Shift Keying
(PSK), M-ary Quadrature Amplitude Modulation (QAM)
etc.), and show the competive performance [18]–[20]. How-
ever, one of the research works only considers a small
number of modulation types, which is easier to achieve
high classification performance. In another case, a simple
channel condition for the wireless communication such as
an additive white Gaussian noise (AWGN) channel is just
considered, which can obtain relatively the clear feature com-
pared with the Rayleigh fading channel. Yang et al. [21]
represent the classification performance compared with the
AWGN channel and the Rayliegh fading channel conditions.
The result clearly shows that the performance is better in
the AWGN channel. In terms of computational complex-
ity, a image-based classification in the CNN such as a
constellation diagram may cause high computational com-
plexity due to three dimensions of the image [19]. Thus,
many research works Lin et al. [22], Zhang et al. [23], [24],
Hermavan et al. [25], represent the AMC performance by
using the complex signal. In [22] HybridNet is proposed to
show the enhanced performance, which exploits both CNN
and a bidirectional gated recurrent unit to capture temporal
depecdencies. In [23] a CNN-based AMC method is pro-
posed, where the architecture is designed to improve the
generalized capability under varying noise conditions. In [24]
a multi-stream CNN is proposed, which shows the network
architecture is extended horizontally to extract diverse key
features and to mitigate the over-fitting problem. In [25]
IC-AMCNet is proposed for beyond 5G communication
(B5C), which is designed to consider both the predicted
accuracy and the processing time of B5C requirement below
0.01 ms. However, all the related works keep the conven-
tional input, which is 2 × N IQ components. Thus, it may
be limited to extract deep features from the conventional
input.

In this paper, we propose a robust CNN architecture via
a novel method. For the simulation the DeepSig: RadioML
2018.01A dataset including 24 modulation samples is uti-
lized, which can be categorized into the difficult class and
the normal class. The proposed method shows the enhanced
classification performance compared with the conventional
CNN models. The contributions of this paper are sumarized
as follows:

FIGURE 1. Proposed system model.

• A novel method extending the frame size from 2×1024
to 4×1024 by copying the own frame helps the networks
extact deep features from the extended frame.

• A new model is proposed, which considers both the
predicted accuracy and the computational complexity by
reducing the extended input size with a key averagepool-
ing layer.

• The accuracy performance of the proposed model
outperforms the conventional models, which achieves
2.83% improvement at SNR 10 dB compared with the
latest CNN model [26].

The rest of this paper is organized as follows: Section 2
describes the system model, Section 3 represents our pro-
posed CNN architecture, Section 4 presents the simulation
results and performance analysis, and Section 5 concludes the
paper.

II. SYSTEM MODEL
A. SYSTEM MODEL
The systemmodel for theAMCprocess between the transmit-
ter and the receiver is represented by Fig. 1, where assuming
that the transmission signal is generated by a multi-input
multi-output (MIMO) system, and the signal is impaired by
the clockoffset from the local oscillator and by the Rayleigh
fading channel. The received signal at the k-th observation
can be expressed as

Yk = HXk + N. (1)

where Yk is [y1, y2, . . . , ymr ], H is the Rayleigh channel
matrix mr × nt where mr is the receiver antenna number and
nt is the transmitter antenna number, Xk is the modulated
symbol vector [x1, x2, . . . , xnt ]

T and N is the AWGN. One
of ymr can be expressed by

ymr = βe
j(2π f1t+φ1)xk + n. (2)

where β is the multi-path amplitude, f1 is the carrier fre-
quency and φ1 is the phase offset, respectively. The clock-
offset by local oscillators and Doppler shift from Rayleigh
fading channel cause the offsets. Above all, in the preprocess-
ing step the received signals are agregated to the frame length
where the vector s is [s1, s2, . . . , sN ], N = 1024. Secondly,
normalization is performed by root mean squre (RMS) to help
the networks quickly reach the global optimum point, which
can be represented by

s̄i =
si√

1
N

∑N−1
i=0 |si|

2
. (3)
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FIGURE 2. Process of frame extension.

The frame after normalization is divided into IQ compo-
nents as the Re[s̄i] term and the Im[s̄i] term, which is equal to
a 2×N matrix. In addition, To extend the 2×N matrix a copy
version of the matrix is generated and before concatenate
it below the original matrix, it will be horizontally flipped,
which can be represented by

Sj =


s̄I ,0 s̄I ,1 . . . s̄I ,N−1
s̄Q,0 s̄Q,1 . . . s̄Q,N−1
s̄I ,N−1 s̄I ,N−2 . . . s̄I ,0
s̄Q,N−1 s̄Q,N−2 . . . s̄Q,0

 , (4)

where I is the in-phase term and Q is the quadrature term.
The high-dimension representation of the frame is equal to
4 × 1024, which is used as a input for the CNN model.
Many of the samples in the frame have high-impact features,
which are obvious features to represent eachmodulation type.
Thus, This approach can obtain more high-impact features
extracted through 3 × 1 convolutional operation and 2 × 1
average pooling operation. In addition, the expanded frame is
simply implemented without high cost, but it can improve the
accuracy. This concept may have trade-off between classifi-
cation accuracy and computational complexity, which should
be considered.

B. DATASET DESCRIPTION
In this paper, DeepSig:RadioML 2018.01A dataset [27] is
utilized for the simulation, which is generated by synthesiz-
ing simulated signals with virltual propagation effects and
captured signals with real propagation effects in industrial,
scientific, and medical (ISM) band. The SNR range of the
collected data is from −10 dB to 20 dB with the step size of
2 dB, where 98304 frames are stored in each SNR according
to the number of modulation types. Finally, the dataset is
divided into 80% for training and the remaining for testing.

III. PROPOSED CNN MODEL
A. CNN MODEL
The CNN is one of advanced neural networks with hidden
layers, which can recognize patterns by learning deeply.
In general, to extract feature maps in CNN convolution, acti-
vation and pooling layers are mainly utilized. Firstly, in the
convolution layer convolutional operation is performed by
using convolutional filters to make arbitrary features, which

FIGURE 3. Proposed CNN architecture.

can be shown by

zp =
∑
p

V (p)×W (p)+ b, (5)

where V (p) is the input size with the two dimensions, W (p)
is the two-dimensional filter and b is the scalar bias, respec-
tively. Secondly, the role of activation layer is to activate
the features from the convolutional layer and the activated
features are carried to the next layer. For activation func-
tions there are several schemes such as sigmoid, hyperbolic
tangent, rectified linear unit (ReLU), where ReLU is mainly
used, which can be expressed by

z̄p =

{
zp if zp ≥ 0,
0 if zp < 0,

(6)

In the pooling layer a down-sampling function canmitigate
overfitting problem and decrease computational complexity
by reducing the feature map volume, where max-pooling
function as max(z̄p) or average-pooling function as mean(z̄p)
according to the arbitrary filter size is generally used. In addi-
tion, as a loss function stochastic gradient descent with
momentum (SGDM) optimizer is used in order to compute
the gradients and update the CNN learnable parameters (i.e.
weights and biases) based on the input.

B. PROPOSED CNN MODEL
The proposed CNN model is designed efficiently according
to the input size for classification of 24 modulations, where
the overall architecture of the proposed CNN is displayed
in Fig. 3. To extract the feature maps a a-type block (ABlock),
a b-type block (BBlock) and two c-type blocks (CBlocks)
play a significant role, which contain multiple convolutional
layers. Above all, in the ABlock the main function is down-
sampling of the input size performed by max-pooling layers
(MPool) without loss of key features. The difference of the
BBlock and the CBlock is that one convolutional layer with
the 3 × 1 kernal is added in the BBlock, which can help the
vertical features on the spatial dimension be well extracted.
In addition, skip connections are deployed in the BBlock
and the CBlock to mitigate the vanishing gradient problem,
and all the block architectures are shown in Fig. 4. For
the convolutional operation throughout the proposed CNN
the convolution block (ConvB) is used, which contatins a
convolutional layer, a batch normalization layer and a ReLU
activation layer shown in Fig. 4c, where the stride is 1 ×
1 in the convolutional layer. The point-wise convolution
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FIGURE 4. Description of blocks in the proposed CNN. (a) ABlock;
(b) BBlock; (c) CBlock1, 2; and (d) ConvB.

operation represents a linear combination of the output fea-
ture maps with 1 × 1 kernels, which can get the effect of
dimensionality reduction. Accordingly, computational com-
plexity decreases through the point-wise convolution. And
the asymmetric kernels can minimize trainable parameters
without accuracy performance degradation compared with
3 × 3 kernels. For example, in the BBlock the asymmetric
kernels are used to extract features, which can reduce the
trainable parameters by approximately half compared with
3×3 kernals. Regarding the impact of accuracy performance
the literatures [27], [29] are referenced. In terms of computa-
tional complexity, a average-pooling layer (APool) between
the BBlock and CBlock1 plays the key role to diminish the
computational complexity due to the copied IQ samples as
well as makes a impact for the classification accuracy. The
reason is that the average-pooling operation can compress
4 rows to 2 rows while keeping the significant information
from the input. In other points for reduction of computational
complexity, point-wise convolutional layers are deployed in
the BBlock and CBlock and asymmetric filters are equipped
in the remain convolutional layers, which can reduce the
substantial number of trainable parameters. The feature map
size from the CBlock2 is completely reduced to 1 × 1 by
a global average-pooling layer (G-APool) and the output is
passed to a fully connected layer (FC). Finally, a softmax
layer (SM) computes the probability for the classification.
The detailed configuration of the proposed CNN architecture
is summarized in Table 1.

IV. NUMERICAL RESULTS
The results of simulation works with the 24-modulation
dataset are represented to demonstrate the efficiency of
the novel method that is to extend the own frame from the
receiver, and the robustness of the proposed CNN. For the
simulation parameter configuration we set the max epochs
to 45, the mini-batch size to 64, the initial learning rate
to 0.1, the drop period of the learning rate to 20, the drop
factor of the learning rate to 0.1 and the SGDM optimizer
is applied to optimize the loss value, which is sumarized
in Table 2. For training process 80% of the dataset is utilized
and for testing the other is utilized, which is simulated by
Matlab 2020b. The hardware specification for the simulation
consists of an i5 2.9 GHz CPU, 32 GB RAM, and NVIDIA

TABLE 1. Configuration of the proposed CNN.

TABLE 2. Configuration for the simulation.

FIGURE 5. The accuracy evaluation with different models.

GeForce RTX 2080 Super GPU devices. To show the per-
formance in terms of the classification accuracy and the
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FIGURE 6. Classification accuracy of 24 modulation types.

computational complexity the proposed model is compared
with the related works that includes latest models such as
MCNet [29], LCNN [26] and SCGNet [30].

First of all, the performance evaluation of the proposd
model is represented with respect to the conventional models
shown in Fig. 5. To accurately evaluate the performance the
approaches are categorized into machine learning techniques
such as kNN, DT, and SVM and deep learning technique.
As shown, the accuracy performance of the machine learn-
ing techniques is lower in the most SNRs than deep learn-
ing technique. With respect to the deep learning approach,
the performance of VGG [27] and CNN-AMC [28] is shown
as a similar trend, which is the worst group. ResNet [27]
equipped with the skip connections largely outperforms the
worst group in the high SNRs (i.e. over 10 dB) even though
the fundamental structure is almost same as VGG. Regard-
ing the best group including the latest models (i.e. MCNet,
LCNN and SCGNet) the performance is more outstanding
in the most SNRs than the aforementioned models. Above
all, LCNN that is the top in the best group from −4 dB to
20 dB SNRs is designed for the light-weight structure, which
presents 56.64% and 91.48% accuracy at 0 dB and 10 dB
SNR, respectively. Finally, the proposed model outperforms
the LCNN model by 1.51% and 2.83% at 0 dB and 10 dB
SNR, respectively. Through the literatures [27], [29], [30]
it is shown that it is hard to obtain better accuracy when it
is converged near maximum in high SNRs even though it
uses more trainable parameters. Thus, 2.83% improvement
represents high improvement. According to the result the
proposed model with the effective structure can extract deep
features to achieve superior accuracy, which also proves that
the extension frame can help the deep features be produced
in the networks.

For the 24-modulation accuracy performance of the pro-
posed model the results are shown in Fig. 6 in detail, which is
divided into 3 groups. In the first group in Fig. 6a, from 8 dB
to the end SNRs all the modulations reach the accuracy over
90% except 128 APSK even though the most modulations are
difficult to predict especially in the bad channel conditions.
On the contrary, from 6 dB to −6 dB the classification
accuracy of the schemes at large decreases rapidly, where

64 APSK suffers from a significant performance degradation
next to 128 APSK. Thus, 64 and 128 APSK are more vul-
nerable to predict as the SNRs weakens. In the second group
in Fig. 6b, 64 and 256 QAM keep the accuracy relatively
low as the SNR increases upward due to the lack of identical
features, which is major concern to solve. On the other hand,
OOK and GMSK that are the low order modulations easily
reach high accuracy in low SNR, which yield 100% and
98.7% at 0 dB SNR, respectively. In the last group in Fig. 6c
the difficult modulation type is AM-DSB-SC, which rarely
reach over 90% in the high SNRs even though the remains
easliy keep over 90%. However, as the SNR decreases to the
low domain the performance of AM-SSB-SC drops rapidly.
Finally, both AM-SSB-SC and AM-DSB-SC present similar
performance trends in the low SNRs. In low SNRs region
there are large fluctuations (e.g. the QPSK curve in Fig. 6(a),
the 64 QAM curve in Fig. 6(b) and the AM-DSB-SC curve
in Fig. 6(c)). Those are caused by the lightweight and simple
CNN architecture, which can be relatively weak to extract
the deep features for identification of each modulation in low
SNRs. Moreover, QPSK, 64 QAM and AM-DSB-SC signals
have the similar patterns with 256 QAM, AM-SSB-WC and
128 QAM, respectively. Thus, when the high-level features
are not extracted, the fluctuation phenomenon can occur.

Based on the aforementioned results, for a visual analysis
a confusion matrix is presented at 10 dB SNR in Fig. 7.
According to the confusion matrix, most of the modulations
are excellently recognized. However, it is known that AM-
DSB-SC, 64 QAM and 256 QAM are difficult to recognize.
The reason is that AM-DSB-SC is mainly confused with
128 APSK and 128 QAM, and 64 QAM and 256 QAM are
mostly confused by AM-SSC-WC and QPSK, respectively.

The performance comparison to the frame sizes is shown
in Table 3. The effect of the extension method is not sig-
nificantly outstanding when compared with the no extension
frame. However, in the high SNR region the extension frame
can help the networks extract more features. According to
the result the 4 × 1024 frame shows that the performance
is approximately 1% on average from 6 dB to 20 dB SNR
better than the 2× 1024 frame. The reason why the extended
frame method shows weak robustness in the low SNRs is
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FIGURE 7. Confusion matrix of the proposed model at SNR 10 dB, where
the classification accuracy is 94.15%.

TABLE 3. Performance comparison to frame sizes.

the frames are impaired by the effects of Rayleigh fading
and thermal noise. Thus, it is relatively difficult to overcome
the impairment due to low signal strength and extract the
discriminative features for each modulation even though the
frames are extended. On the contrary, in the high SNRs
the extended frames can help the discriminative features
extracted by the proposed model. For example, at the first
index of the extended frame two in-phase, quadrature signal
values are positioned, which are similar but different. Thus,
high-impact features to represent the modulation identifica-
tion can be strengthened by 3×1 convolution and 2×1 pool-
ing operations. In addition, the 6 × 1024 frame is combined
with 4×1024 frame and 2×1024 frame, where 2×1024 frame
is aligned in random order. The 2× 2048 frame is composed
by horizontally concatenating the 2 × 1024 frame with the
2× 1024 extension frame.

In Table 4. the additional performance comparison with
2*128 and 4*128 which is the extension version is shown to
represent the effect of the proposed method through a new

FIGURE 8. Computational complexity analysis.

TABLE 4. Performance comparison on RML2016.10B.

dataset, RML2016.10b [31]. The dataset has 10 modulation
types, which are 8 PSK, AM-DSB, BPSK, CPFSK, GFSK,
PAM4, 16 QAM, 64 QAM, QPSK and WBFM, respectively.
Each type contains the number of 90,000 frames from−10 dB
to 18 dB. Therefore, 900,000 frames are used for the sim-
ulation at the same condition as the RML2018.10A dataset.
As shown in Table 4, the performance of the proposedmethod
is better in overall SNRs, which shows almost the same result
as the RadioML 2018.01A dataset. Therefore, the proposed
method represents the valid effect based on the simulation
results.

To evaluate the computational complexity, Fig. 8 presents
it regarding the seven CNN models. As a result, the pre-
dicted time of the proposed model is slightly longer than the
LCNN by approximately 0.03 ms even though the trainable
parameter of the proposed model is smaller by roughly 6.5%.
The reason is that the input size increases by the extension
frame. The extended frame may cause more computational
complexity compared with no extended frame method as
displayed in Fig. 8. The predicted time of the proposed
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model, SCGNet, LCNN, MCNet, CNN-AMC, ResNet and
VGG takes 0.08, 0.13, 0.057, 0.125, 0.127, 0.146 and
0.131 millisecond, respectively. Considering that the pro-
posed model is similar with the LCNN model, the proposed
method can increase more by 0.023 millisecond additionally.
However, comprehensively the impact compared with the
others is not fatal. Thus, it can be applied to a general system
model. The predicted time of the other models is quite longer
because SCGNet, MCNet and ResNet adopt multiple blocks
which causes additional operations and deep convolutional
networks. Further, VGG structure is not efficient for the
lightweight due to 3 × 3 kernels and CNN-AMC adopts
several FC layers, which can cause considerable trainable
parameters. Comprehensively, the proposed model applying
the novel method presents the robust performance compared
with the others despite the slight increase of the predicted
time. Thus, the novel method causes a tradeoff between the
accuracy and computational complexity.

V. CONCLUSION
In this paper, we propose a new method that extends the
own frame by copying and flipping itself, which can improve
the recognition accuracy even though the extended frame
is not original from the transmitter. According to the input
size the CNN architecture for AMC is effectively designed,
where point-wise convolutions and asymmetric kernels are
adopted to reduce the computational complexity. For the sim-
ulation evaluation the DeepSig:RadioML 2018.01A dataset
is utilized, which contains 24 modulation types. According
to the simulation results the classification accuracy of the
proposed model is superior to the other models in the SNR
range from−4 dB to 20 dB, where the accuracy performance
is 94.15% at 10 dB SNR. In terms of the computational com-
plexity, the predicted time of the proposed model is slightly
longer than the LCNN by approximately 0.03ms due to the
increase of the input size. However, comparing with the other
models the proposed model gets relatively low complexity.
Therefore, the robustness of the proposed model is verified
via a comparison with the state-of-the-art models in terms
of the accuracy and complexity performance. One of the
shortcomings of the proposed method is that in low SNR
region it can not help the discriminative features extracted due
to the low signal strength and the impairment. The other is
that it causes more computational complexity compared with
the normal frame method. The proposed method has very low
cost to apply to a system and low complexity to implement.
Thus, for the future works the comparison with the simulation
and the implement performance is performed to evaluate the
effects of the proposed method in a real system.
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