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ABSTRACT The task of root-finding of the non-linear equations is perhaps, one of the most complicated
problems in applied mathematics especially in a diverse range of engineering applications. The characteris-
tics of the root-finding methods such as convergence rate, performance, efficiency, etc., are directly relied
upon the initial guess of the solution to execute the process in most of the systems of non-linear equations.
Keeping these facts into mind, based on Taylor’s series expansion, we present some new modifications of
Halley, Househölder and Golbabai and Javidi’s methods and then making them second derivative free by
applying Taylor’s series. The convergence analysis of the suggested methods is discussed. It is established
that the proposed methods possess convergence of orders five and six. Several numerical problems have
been tested to demonstrate the validity and applicability of the proposed methods. These test examples also
include some real-life problems associated with chemical and civil engineering such as open channel flow
problem, the adiabatic flame temperature equation, conversion of nitrogen-hydrogen feed to ammonia and
the van der Wall’s equation whose numerical results prove the better performance of the suggested methods
as compared to other well-known existing methods of the same kind in the literature. Finally, the dynamics
of the presented algorithms in the form of polynomiographs have been shown with the aid of computer
program by considering some complex polynomials and compared them with the other well-known iterative
algorithms that revealed the convergence speed and other dynamical aspects of the presented methods.

INDEX TERMS Order of convergence, non-linear equations, Newton’s method, Halley’s method, poly-
nomiography.

I. INTRODUCTION
In applied mathematics and engineering sciences, the root-
finding algorithms for the solution of non-linear algebraic
equations of the general form:

ξ (s) = 0, (1)

have played a key role especially in a diverse range of
fuzzy systems, image processing and engineering applica-
tions, where ξ : D ⊂ R → R is a scalar function defined
on the domain D which is an open connected set.

The associate editor coordinating the review of this manuscript and

approving it for publication was Santi C. Pavone .

We assume that α is a simple zero of (1) and s0 is an initial
guess sufficiently close to α. Using the Taylor’s series around
s0 for (1), we have

ξ (s0)+ (s− s0)ξ (s0)+
1
2!
(s− s0)2ξ ′′(s0)+ . . . = 0. (2)

If ξ ′(s0) 6= 0, we can evaluate the above expression as
follows:

ξ (s0)+ (s− s0)ξ ′(s0) = 0.

If we choose sj+1 as the root of equation, then we have

sj+1 = sj −
ξ (sj)
ξ ′(sj)

. (3)
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This is so-called the Newton’s method [8], [11], [21]
for root-finding of nonlinear functions, which converges
quadratically. From (2), one can evaluate

s = s0 −
2ξ (s0)ξ ′(s0)

2ξ ′2(s0)− ξ (s0)ξ ′′(s0)
. (4)

In iterative form:

sj+1 = sj −
2ξ (sj)ξ ′(sj)

2ξ ′2(sj)− ξ (sj)ξ ′′(sj)
, (5)

which is cubically convergent and well-known Halley’s
method [5], [15] for root-finding of non-linear scalar equa-
tions. After simplifying (2), the following equality can be
obtained:

s = s0 −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)
2ξ ′3(s0)

. (6)

In iterative form:

sj+1 = sj −
ξ (sj)
ξ ′(sj)

−
ξ2(sj)ξ ′′(sj)
2ξ ′3(sj)

, (7)

which is known as Househölder’s method [16] for solving
nonlinear equations in one variable and converges cubically.

For finding zeros of algebraic equation (1), Golbabai
and Javidi [14], by applying the basic idea of homotopy
perturbation, arrived at the following method:

s = s0 −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)

2[ξ ′3(s0)− ξ (s0)ξ ′(s0)ξ ′′(s0)]
. (8)

In iterative form:

sj+1 = sj −
ξ (sj)
ξ ′(sj)

−
ξ2(sj)ξ ′′(sj)

2[ξ ′3(sj)− ξ (sj)ξ ′(sj)ξ ′′(sj)]
, (9)

which is cubically convergent Golbabai and Javidi’s method
for finding zeros of non-linear equations in one dimension

In recent years, manymathematicians tried tomodify exist-
ingmethods using differentmathematical techniques and pro-
posed some new multi-step iterative methods, having higher
orders of convergence [1]–[4], [7], [10], [28], [29], [32],
[35], [39].

In 20th century, Ostrowski [34] proposed a fourth-order
two-step iterative algorithm by considering Newton’s iter-
ation method as a predictor. Later, Traub [40] considered
Newton’s algorithm as a predictor and corrector step and
presented a new root-finding algorithm with the same con-
vergence of order four. Noor et al. in 2007 [31], established
a new second-derivative free two-step Halley’s method with
the help of a finite difference scheme and proved that the
proposed algorithm possessed the fifth order of convergence.
Nazeer et al. [30], in (2016), proposed a new second deriva-
tive free generalized Newton-Raphson’s method with con-
vergence of order five using finite difference scheme. After
that Kumar et al. [23], in 2018, established a new sixth-order
parameter based family of algorithm for solving non-linear
equations. In 2019, Solaiman et al. [38] suggested derivative
free optimal fourth-order and eighth-order modifications of
King’s method by implementing the composition technique

combined with rational interpolation, and the idea of Padé
approximation. Very recently, Naseem et al. [27] presented
some new ninth order iterative algorithms for determining the
zeros of non-linear scalar equations and then presented their
graphical representation by means of polynomiographs using
different complex polynomials.

In this paper, we suggested and then analyzed six new
iteration schemes. The derivation of these iteration schemes is
purely based on Taylor’s series expansion. Out of the six sug-
gested schemes, three are second-derivative free. We approx-
imate the second derivative by means of Taylor’s series that
results some new efficient techniques. The suggested iter-
ations schemes bearing quintic and sextic convergence and
showing fast and better performance in comparison with the
similar existing well-known iterative algorithms. We com-
pared the numeric behaviors of the suggested methods with
the other similar existing methods in literature by solving
some test functions which also include some real-life prob-
lems associated with the chemical and civil engineering and
their results proved the supremacy of the suggested methods
to the other comparable methods. The dynamics of the sug-
gested methods in the form of polynomiographs with the aid
of computer technology have been presented and compared
with the other similar existing methods that revealed the con-
vergence speed and other dynamical aspects of the suggested
methods and proved the superiority of the proposed methods
to the other ones in comparison.

The rest of the paper is divided as follows. Six novel itera-
tion schemes for computing zeros of non-linear equations are
given in Section 2. In Section 3, we discussed the convergence
criterion of the suggested schemes. In Section 4, several test
examples along with the engineering problems have been
solved to show the performance, applicability and validity of
the suggested schemes. In Section 5, the polynomiographs
of some complex polynomials through the suggested iter-
ation schemes have been presented and compared with
other methods. Finally, the conclusion of the paper is given
in Section 6.

II. MAIN RESULTS
Let ξ : D → R, D ⊂ R is a scalar function defined on the
domain D where D is an open connected set, then from (2),
one can write:

s = s0 −
ξ (s0)
ξ ′(s0)

−
(s− s0)2ξ ′′(s0)

2ξ ′(s0)
. (10)

Now from (4), (6) and (8), we can write the following
expressions:

s− s0 = −
2ξ (s0)ξ ′(s0)

2ξ ′2(s0)− ξ (s0)ξ ′′(s0)
, (11)

s− s0 = −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)
2ξ ′3(s0)

, (12)

s− s0 = −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)

2[ξ ′3(s0)− ξ (s0)ξ ′(s0)ξ ′′(s0)]
. (13)
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Using (11), (12) and (13) in (10), we obtain the following
expressions:

s = s0 −
ξ (s0)
ξ ′(s0)

−
2ξ2(s0)ξ ′(s0)ξ ′′(s0)

4[ξ ′4(s0)−ξ (s0)ξ ′2(s0)ξ ′′(s0)]+ξ2(s0)ξ ′′2(s0)
, (14)

s = s0 −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)[2ξ ′2(s0)+ ξ (s0)ξ ′′(s0)]2

8ξ ′7(s0)
,

(15)

s = s0 −
ξ (s0)
ξ ′(s0)

−
ξ2(s0)ξ ′′(s0)[2ξ ′2(s0)− ξ (s0)ξ ′′(s0)]2

8ξ ′3(s0)[ξ ′2(s0)− ξ (s0)ξ ′′(s0)]2
.

(16)

After rewriting the above expressions in the general form
with the insertion of Newton’s iterationmethod as a predictor,
we arrive at a new algorithms of the form:
Algorithm 1: For a given s0, compute the approximate

solution sj+1 by the following iterative scheme:

tj = sj −
ξ (sj)
ξ ′(sj)

, j = 0, 1, 2, . . . ,

sj+1 = tj −
ξ (tj)
ξ ′(tj)

−
2ξ2(tj)ξ ′(tj)ξ ′′(tj)

4[ξ ′4(tj)− ξ (tj)ξ ′2(tj)ξ ′′(tj)]+ ξ2(tj)ξ ′′2(tj)
.

Algorithm 2: For a given s0, compute the approximate
solution sj+1 by the following iterative schemes:

tj = sj −
ξ (sj)
ξ ′(sj)

, j = 0, 1, 2, . . . ,

sj+1 = tj −
ξ (tj)
ξ ′(tj)

−
ξ2(tj)ξ ′′(tj)[2ξ ′2(tj)+ ξ (tj)ξ ′′(tj)]2

8ξ ′7(tj)
.

Algorithm 3: For a given s0, compute the approximate
solution sj+1 by the following iterative schemes:

tj = sj −
ξ (sj)
ξ ′(sj)

, j = 0, 1, 2, . . . ,

sj+1 = tj −
ξ (tj)
ξ ′(tj)

−
ξ2(tj)ξ ′′(tj)[2ξ ′2(tj)− ξ (tj)ξ ′′(tj)]2

8ξ ′3(tj)[ξ ′2(tj)− ξ (tj)ξ ′′(tj)]2
.

Which are the modifications of Halley, Househölder and
Golbabai and Javidi’s methods respectively. For applying the
above defined algorithms, one has to find the first as well
as second derivatives of the given function ξ (s). But in several
cases, we face such a situation where the second derivative of
the function does not exist and our method fails to find the
solution. To resolve this issue, we use Taylor’s series around
s for the approximation of the second derivative as follows:

ξ (sj) = ξ (tj)+ (sj − tj)ξ ′(tj)+
(sj − tj)2

2
ξ ′′(tj), (17)

which implies:

ξ ′′(tj) =
2[ξ ′(sj)(ξ (sj)− ξ (tj))− ξ (sj)ξ ′(tj)]ξ ′(sj)

ξ2(sj)
= Q(sj, tj). (18)

Using (18) in Algorithms 1-3, we obtain some new algo-
rithms as follows:
Algorithm 4: For a given s0, compute the approximate

solution sj+1 by the following iterative scheme:

tj = sj −
ξ (sj)
ξ ′(sj)

, j = 0, 1, 2, . . . ,

sj+1 = tj −
ξ (tj)
ξ ′(tj)

−
2ξ2(tj)ξ ′(tj)Q(sj, tj)

4[ξ ′4(tj)− ξ (tj)ξ ′2(tj)Q(sj, tj)]+ ξ2(tj)Q2(sj, tj)
.

Algorithm 5: For a given s0, compute the approximate
solution sj+1 by the following iterative schemes:

tj = sj −
ξ (sj)
ξ ′(sj)

, j = 0, 1, 2, . . . ,

sj+1 = tj −
ξ (tj)
ξ ′(tj)

−
ξ2(tj)Q(sj, tj)[2ξ ′2(tj)+ ξ (tj)Q(sj, tj)]2

8ξ ′7(tj)
.

Algorithm 6: For a given s0, compute the approximate
solution sj+1 by the following iterative schemes:

tj = sj −
ξ (sj)
ξ ′(sj)

, j = 0, 1, 2, . . . ,

sj+1 = tj −
ξ (tj)
ξ ′(tj)

−
ξ2(tj)Q(sj, tj)[2ξ ′2(tj)− ξ (tj)Q(sj, tj)]2

8ξ ′3(tj)[ξ ′2(tj)− ξ (tj)Q(sj, tj)]2
.

Which are novel second-derivative free iterative algorithms
for computing zeros of non-linear algebraic equations. The
most important characteristic of these suggested methods is
their applicability to all those non-linear scalar functions in
which the second derivative does not exist. The approxima-
tion of the second derivative causes less number of computa-
tions per iteration which results in better efficiency indices of
the presented methods as compared to those methods which
require second derivative. The numerical results of the solved
test examples proved their best performance in comparison
with the other similar existing methods in literature.

III. CONVERGENCE ANALYSIS
In this section, we shall discuss the convergence criterion of
the suggested iteration schemes.
Theorem 1: Suppose that α is a simple root of the equation

ξ (s) = 0. If ξ (s) is sufficiently smooth in the neighborhood
of α, then the orders of convergence of Algorithms 1–3 are at
least six.
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Proof: To analyze the convergence of the proposed
algorithms, suppose that α is a root of the equation ξ (s) = 0
and ej be the error at nth iteration, then ej = sj − α and by
using Taylor’s series expansion, we have

ξ (sj) = ξ ′(α)ej +
1
2!
ξ ′′(α)e2j +

1
3!
ξ ′′′(α)e3j

+
1
4!
ξ (iv)(α)e4j +

1
5!
ξ (v)(α)e5j +

1
6!
ξ (vi)(α)e6j +O(e

7
j ),

ξ (sj) = ξ ′(α)[ej+c2e2j +c3e
3
j +c4e

4
j +c5e

5
j +c6e

6
j + O(e7j )]

(19)

ξ ′(sj) = ξ ′(α)[1+ 2c2ej + 3c3e2j + 4c4e3j + 5c5e4j
+ 6c6e5j + 7c7e6j + O(e

7
j )], (20)

where

cj =
1
j!
ξ (j)(α)
ξ ′(α)

.

With the help of equations(19)–(20), we get

tj = ξ ′(α)[α + c2e2j + (2c3 − 2c22)e
3
j + (3c4 − 7c2c3

+ 4c32)e
4
j +(−6c

2
3+20c3c

2
2−10c2c4+4c5−8c

4
2)e

5
j

+ (−17c4c3 + 28c4c22 − 13c2c5 + 5c6 + 33c2c23
− 52c3c32 + 16c52)e

6
j + O(e

7
j )], (21)

ξ (tj) = ξ ′(α)[c2e2j + (2c3 − 2c22)e
3
j + (5c32 − 7c2c3

+ 3c4)e4j + (24c3c22 − 12c42 − 10c2c4 + 4c5

− 6c23)e
5
j + (−73c3c32 + 34c4c22 + 28c52

+ 37c2c23 − 17c4c3 − 13c2c5 + 5c6)e6j
+O(e7j )], (22)

ξ ′(tj) = ξ ′(α)[1+ 2c22e
2
j + (4c2c3 − 4c32)e

3
j

+ (6c2c4 − 11c3c22 + 8c42)e
4
j + 28c3c32

− 20c4c22 + 8c2c5 − 16c52)e
5
j + (−16c4c2c3

− 68c3c42 + 12c33 + 60c4c32 − 26c5c22 + 10c2c6
+ 32c62)e

6
j + O(e

7
j )], (23)

ξ ′′(tj) = ξ ′(α)[2c2 + 6c2c3e2j + (12c23 − 12c3c22)e
3
j

+ (−42c2c23 + 18c4c3 + 24c3c32 + 12c4c22)e
4
j

+ (−12c2c4c3 + 24c5c3 − 36c33 + 120c23c
2
2

− 48c3c42 − 48c4c32)e
5
j + (−78c3c2c5 + 30c3c6

− 54c4c23 − 96c3c4c22 + 198c2c33 − 312c23c
3
2

+ 96c3c52 + 72c2c24 + 144c4c42 + 20c5c32)e
6
j

+O(e8j )]. (24)

Using equations (21)–(24) in Algorithms 1–3, we arrive at
the same result as follows:

sj+1 = α − c3c32e
6
j + O(e

7
j ),

which implies that

ei+1 = −c3c32e
6
j + O(e

7
j ).

The above equality shows that the orders of convergence
of the Algorithms 1–3 are at least six. �
Theorem 2: Suppose that α is a simple root of the equation

ξ (s) = 0. If ξ (s) is sufficiently smooth in the neighborhood
of α, then the convergence orders of Algorithms 4–6 are at
least five.

Proof: With the help of equations (19)–(23), we have

Q(sj, tj) = ξ ′(α)[2c2 + 2c3ej + (4c2c3 + 2c4)e2j
+ (4c2c4 − 8c3c22 + 8c23 + 2c5)e3j + (4c2c5

+ 20c3c4 − 28c2c23 + 16c3c32 − 2c22c4 + 2c6)e4j
+ (4c2c6 + 12c24 − 8c4c32 + 24c5c3 − 2c5c22
+ 80c23c

2
2 − 32c3c42 + 2c7 − 44c2c3c4 − 24c33)e

5
j

+ (4c2c7 + 28c4c5 + 28c3c6 − 2c6c22 − 4c2c24
− 68c4c23 + 40c4c42 + 132c2c33 − 208c23c

3
2

+ 64c3c52 + 2c8 − 56c2c3c5 + 60c4c3c22)e
6
j

+O(e7j )]. (25)

Using equations (21), (22), (23) and (25)
in Algorithms 4–6, we achieve the same equality as given
below:

sj+1 = α − c3c22e
5
j + O(e

6
j ),

which implies that

ei+1 = −c3c22e
5
j + O(e

6
j ).

The above equality shows that the orders of convergence
of Algorithms 4–6 are at least five. �

IV. NUMERICAL RESULTS
To prove the supremacy of the suggested iteration schemes
on the other comparable methods, we included four real-life
engineering problems and seven arbitrary problems in
the form of transcendental and algebraic equations and
compared the numerical results of the suggested itera-
tion schemes (Algorithms 1–6) with Noor’s method one
(NM1) [33], Noor’s method two (NM2) [33], Ostrowski’s
method (OM) [34], Traub’s method (TM) [40] and modified
Halley’s method (MHM) [31].
To show the numerical comparison of the above defined

methods with our presented algorithms, we consider the fol-
lowing nine examples. In all examples, we take ε = 10−15

in the following stopping criterion of the computer programs
|sj+1 − sj| < ε. We solved all the test examples with the aid
of the computer program Maple 15.
Example 1: Open Channel Flow Problem The water flow

in an open channel with a uniform flow condition is given
by Manning’s equation [26], having the following standard
form:

Water Flow = F =
√
mar

2
3

n
, (26)

where m, a and r represent the slope, area and hydraulic
radius of the corresponding channel respectively and n
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TABLE 1. Numerical comparison among different algorithms for the engineering problems ξ1 − ξ4.

denotes Manning’s roughness coefficient. For a rectangular
shaped channel, having width b and depth of water in the
channel s, then we may write:

a = bs, & r =
bs

b+ 2s
.

Using these values in (26), we obtain:

F =
√
mbs
n

(
bs

b+ 2s
)
2
3
.

To find the depth of water in the channel for a given
quantity of water, the above equation may be written in the
form of non-linear function as:

ξ1(s) =
√
mbs
n

(
bs

b+ 2s
)
2
3
− F .

We take the values of different parameters as F = 14.15
m3/s, b = 4.572m, m = 0.017 and n = 0.0015. We choose
the initial guess s0 = 0.4 to start the iteration process and
the corresponding results through different iteration schemes
are given in Tab. 1.
Example 2: Adiabatic Flame Temperature Equation The

adiabatic flame temperature equation is represented by the
following relation:

ξ2(s) = 1H+ a1 (s− 298)+
a2
2

(
s2 − 2982

)
+
a3
3

(
s3 − 2983

)
,

where 1H = −57798, a1 = 7.256, a2 = 0.002298, a3 =
0.00000283. For further details, see [36], [37] and the ref-
erences therein. The above function is actually a polynomial
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TABLE 2. Numerical comparison among different algorithms for transcendental and Algebraic problems ξ5 − ξ9.

of degree three and by the fundamental theorem of Algebra,
it must have exactly three roots. Among these roots, α =
4305.3099136661 is a simple one which we approximated
through the proposed methods by choosing the initial guess
s0 = 2050 and the numerical results have been shown
in Tab. 1.

Example 3: Fraction Conversion of Nitrogen-Hydrogen to
Ammonia We take this example from [6], which describe the
fractional conversion of nitrogen-hydrogen feed to ammo-
nia, usually known as fractional conversion. In this prob-
lem, the values of temperature and pressure have been taken
as 5000C and 250 atm respectively. This problem has the
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TABLE 3. Comparison of number of iterations required for different iterative methods for ε = 10−100.

FIGURE 1. The colormap used for generating polynomiographs.

following non-linear form:

−0.186−
8s2 (s− 4)

2

9 (s− 2)3
= 0,

which can be easily reduced to the following polynomial:

ξ3(s) = s4 − 7.79075s3 + 14.7445s2 + 2.511s− 1.674.

Since the degree of the above polynomial is four, so, it must
have exactly four roots. By definition, the fraction conversion
lies in (0, 1) interval, so only one real root exists in this
interval which is 0.2777595428. The other three roots have
no physical meanings. We started the iteration process by the
initial guess s0 = 0.1. The numerical results through different
methods have been shown in Tab. 1.
Example 4: Finding Volume fromVanDerWall’s Equation

In Chemical Engineering, the van der Waal’s equation has
been used for interpreting real and ideal gas behavior [41],
having the following form:

(P+
A1n2

V 2 ) (V − nA2) = nRT .

By taking the specific values of the parameters of the above
equation, we can easily convert it to the following non-linear
function:

ξ4(s) = 0.986s3 − 5.181s2 + 9.067s− 5.289,

where s represents the volume that can easily be found by
solving the function ξ4. Since the degree of the polynomial is
three, so it must possess three roots. Among these roots, there
is only one positive real root 1.9298462428 which is feasible
because the volume of the gas can never be negative. We start
the iteration process with the initial guess s0 = 2.0 and their
results can be seen in Tab. 1.
Example 5: Transcendental and Algebraic Problems To

numerically analyze the suggested algorithms, we consider
the following five transcendental and algebraic equations
and their numerical results can be seen in Tab. 2.

ξ5(s) = s3 + 4s2 − 10,

ξ6(s) = s3 − 10,

ξ7(s) = s2 + sin (
s
5
)−

1
4
,

ξ8(s) = ses
2
− sin2 (s)− 3 cos (s)+ 5,

ξ9(s) = ln (s)− cos(s).

Algorithm 7: Polynomiograph’s Generation
Input: p ∈ C— polynomial, A ⊂ C— area, m —

maximum number of iterations, I — iteration
method, ε— accuracy, colormap [0 . . .C − 1] —
colormap with C colors.

Output: Polynomiograph for the complex polynomial p
in area A.

for z0 ∈ A do
i = 0
while i ≤ m do

zj+1 = I (zj)
if |zj+1 − zj| < ε then

break
i = i+ 1

color z0 by means of colormap.

Tables 1–2 exhibit the numerical comparison of the
suggested iteration schemes with the other similar-nature
existing algorithms. In the columns of the presented tables,
N represents the iterations consumed by different algorithms,
|ξ (s)| denotes the absolute value of ξ (s) at final approxi-
mation, sj+1 shows the final approximated root, |sj+1 − sj|
represents the absolute distance between the two consec-
utive approximations, (ACOC) denotes the approximated
computational order of convergence having the following
approximated formula:

ACOC ≈
ln |(sj+1−sj)|
|(sj−sj−1)|

ln |(sj−sj−1)|
|(sj−1−sj−2)|

.

The above approximation was suggested in (2007) by
Cordero and Torregrosa [12] and the last column represents
CPU time consumption in seconds, taken by different itera-
tion schemes to find the required approximate solution of the
given problem.
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FIGURE 2. Polynomiographs associated with the polynomial p1(z). (a) stands for NM1, (b) for NM2, (c) for
OM, (d) for TM, (e) for MHM, (f) for Algorithm II, (g) for Algorithm II, (h) for Algorithm II, (i) for
Algorithm II, (j) for Algorithm II, and (k) for Algorithm II.
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FIGURE 2. (Continued.) Polynomiographs associated with the polynomial p1(z). (a) stands for
NM1, (b) for NM2, (c) for OM, (d) for TM, (e) for MHM, (f) for Algorithm II, (g) for Algorithm II, (h) for
Algorithm II, (i) for Algorithm II, (j) for Algorithm II, and (k) for Algorithm II.

By carefully examining the numerical results contained
in Tables 1–2, one can easily predict that the newly con-
structed iteration schemes took less number of iterations
and determined the approximate roots of different test prob-
lems with better precision than the approximations obtained
through the other five comparable methods.

Also, the proposed iterations schemes performing fast and
achieved the defined stopping criterion for determining the
approximate solutions of different test problems by taking
less CPU time in seconds that can be seen in the last column
of Tables 1–2. Shorty, we can claim that the performance
and efficiency of the proposed iterations schemes are bet-
ter as compared to the other comparable existing iteration
schemes. We did all the numerical calculations and the CPU
time consumption in seconds by using the computer software
Maple 15.

Table 3 exhibits the comparison of the iterations consumed
by different algorithms with the newly presented methods
for the root-finding of non-linear functions with the accuracy
ε = 10−100. Here the columns of the table denote the iter-
ations’ number for various test functions together with the
initial guess s0.

The numerical results as shown in Table 3, again certified
the fast and better performance of the presented algorithms
in terms of number of iterations for the above defined stop-
ping criterion with the given accuracy. In all test examples,
the proposed algorithms consumed less number of iterations
in comparison with the other iterative algorithms.

V. POLYNOMIOGRAPHY
The problems related to finding the roots of polynomials have
played a vital role in engineering and mathematical sciences.
It is one of the oldest and most deeply studied mathematical
problems as one can study the history of Mathematics that
the ancient Greeks and Sumerians considered such practical
problems in 3000B.C, that can now be stated as a root-finding
problems using modern mathematical language. In the seven-
teenth century, Newton suggested an algorithm for approxi-
mating the roots of polynomials. After that Cayley [9] studied
the chaotic and strange behavior while applying Newton’s
method on cubic polynomial x3−1 in the complex plane. The
problem arose from Cayley was explained by Julia in 1919.
The Julia sets bought many new discoveries i.e., Mandelbrot
set and Fractal in 1970 [25]. The term ‘‘Polynomiography’’
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FIGURE 3. Polynomiographs associated with the polynomial p2(z). (a) stands for NM1, (b) for
NM2, (c) for OM, (d) for TM, (e) for MHM, (f) for Algorithm II, (g) for Algorithm II, (h) for
Algorithm II, (i) for Algorithm II, (j) for Algorithm II, and (k) for Algorithm II.

VOLUME 9, 2021 92255



A. Naseem et al.: Novel Iteration Schemes for Computing Zeros of Non-Linear Equations

FIGURE 3. (Continued.) Polynomiographs associated with the polynomial p2(z). (a) stands for NM1, (b)
for NM2, (c) for OM, (d) for TM, (e) for MHM, (f) for Algorithm II, (g) for Algorithm II, (h) for Algorithm II,
(i) for Algorithm II, (j) for Algorithm II, and (k) for Algorithm II.

was first introduced in 2005 by Kalantari [17], [18].
He defined polynomiography as the combination of both
science and art related to visualization of the root-finding
process for a polynomial in the complex plane. The indi-
vidual image produced as a result of polynomiography is
thus called a ‘‘Polynomiograph’’. The polynomiographs can
be generated by any iterative scheme i.e., Newton’s method,
Halley’s method etc. Polynomiography has vast applications
in many fields of science and art. In the last few years,
many researchers worked on polynomiography and generated
new and nice-looking images through different algorithms.
Soleimani et al. [39], suggested some new iterative methods
free from derivatives and then presented their fractal behav-
iors by means of their basins of attraction. In [22], the authors
generated beautiful polynomiographs using Ishikawa and
Mann iterations that were quite new and looked aesthetically
pleasing comparing to the ones from standard Picard itera-
tion. In 2016, the authors modified Abbasbandy’s method [1]
and then presented polynomiographs through the modified
method [20]. Gdawiec [13] in 2017, used three different
approaches, i.e., affine and s-convex combination, the use
of iteration processes from fixed point theory and multi-step

polynomiography and obtained new and diverse fractal pat-
terns that have many applications in textile or ceramics pat-
terns. In [24], the authors presented some new graphical
objects obtained by the use of the escape time algorithm
and the derived criteria. They presented graphical examples
by means of Jungck-CR iteration process with s-convexity.
In 2019, Kalantari and Lee [19] introduced new ways of
creating mathematical art through a novel Newton-Ellipsoid
method for solving polynomial equations. The nature of
polynomiographs under Newton-Ellipsoid seems to be very
different from the other images, which opens the possibility
of generating novel artistic images.

A. APPLICATIONS
To generate a polynomiograph via a computer program,
we have to select an initial rectangle R containing the roots of
the polynomial. Then for each point z0 in the region, we run
an iterative method, and then color the point corresponding
to z0 is depended upon the approximate convergence of the
truncated orbit to a root, or lack thereof. The resolution of
the image depends on our discretization of the rectangle R.
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FIGURE 4. Polynomiographs associated with the polynomial p3(z). (a) stands for NM1, (b) for NM2,
(c) for OM, (d) for TM, (e) for MHM, (f) for Algorithm II, (g) for Algorithm II, (h) for Algorithm II, (i) for
Algorithm II, (j) for Algorithm II, and (k) for Algorithm II.
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FIGURE 4. (Continued.) Polynomiographs associated with the polynomial p3(z). (a) stands for
NM1, (b) for NM2, (c) for OM, (d) for TM, (e) for MHM, (f) for Algorithm II, (g) for Algorithm II, (h) for
Algorithm II, (i) for Algorithm II, (j) for Algorithm II, and (k) for Algorithm II.

For example, discretizing R into 2000 by 2000 grid yields a
high-resolution image.

According to the Fundamental Theorem of Algebra, any
complex polynomial with complex coefficients {cn, cn−1,
. . . , c1, c0}:

p(z) = cnzn + cn−1zn−1 + . . .+ c1z+ c0 (27)

or by its zeros (roots) {r1, r2, . . . , rn−1, rn} :

p(z) = (z− r1)(z− r2) . . . (z− rn) (28)

of degree n has n roots (zeros) which may or may not be
distinct. The degree of polynomial describes the number
of basins of attraction and localization of basins can be
controlled by placing roots on the complex plane manually.

Usually, the polynomiographs are colored and their color-
ing depends upon the number of iterations needed to approx-
imate the roots of some polynomial with given accuracy and
a chosen iterative scheme. The general and base algorithm
for the generation of polynomiograph is presented in the
following Algorithm 7.

In Algorithm 7, the convergence test (zj + 1, zj, ε) returns
TRUE if the applied method has converged to the root,
and FALSE otherwise. The most common and widely used

convergence test has the following standard form:

|zj+1 − zj| < ε, (29)

where zj+1 and zj are two consecutive points in an iteration
process and ε > 0 is a given accuracy. In this paper, we also
use the stopping criterion (29).

Using newly developed algorithms and other similar exist-
ing methods, we obtained novel, colorful, attractive and
interesting polynomiographs. The different coloring of poly-
nomiographs relies on the number of iterations requires to
approximate the roots of the polynomial with given accuracy
ε. A large number of such images can be generated by giving
different values to the parameter m, where m represents the
upper bound of the number of iterations.

We consider the following complex polynomials for
the purpose of polynomiographs’ generation through the
proposed algorithms and compare them with the other
well-known two-step algorithms.

p1(z) = z3 − 1, p2(z) = (z3 − 1)2, p3(z) = z4 − 1,

p4(z) = (z4 − 1)2.

We used the computer program Mathematica 12.0 for
creating all the presented images by taking the accuracy
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FIGURE 5. Polynomiographs associated with the polynomial p4(z). (a) stands for NM1, (b) for NM2, (c) for OM,
(d) for TM, (e) for MHM, (f) for Algorithm II, (g) for Algorithm II, (h) for Algorithm II, (i) for Algorithm II, (j) for
Algorithm II, and (k) for Algorithm II.
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FIGURE 5. (Continued.) Polynomiographs associated with the polynomial p4(z). (a) stands for
NM1, (b) for NM2, (c) for OM, (d) for TM, (e) for MHM, (f) for Algorithm II, (g) for Algorithm II, (h)
for Algorithm II, (i) for Algorithm II, (j) for Algorithm II, and (k) for Algorithm II.

ε = 0.01, and the upper bound of the number of iterations
m = 15. The colormap used for the coloring of iterations
in the generation of polynomiographs is presented in the
following Fig. 1.
Example 6 (Polynomiographs for the Polynomial p1(z)Via

Different Iteration Schemes): In this example, we compare
the dynamical results of different iterative methods with our
presented algorithms by considering the cubic polynomial
z3 − 1. This complex polynomial has three distinct zeros: 1,

−
1
2 −
√
3
2 i,−

1
2 +
√
3
2 i. We ran all the algorithms to obtain the

simple zeros of the considered polynomials and the results in
the form of polynomiographs are presented in Fig. 2.
Example 7 (Polynomiographs for the Polynomial p2(z)

Via Different Iteration Schemes): This example includes the
dynamical comparison of the proposed algorithms with dif-
ferent iterative methods of the same nature by considering
the complex polynomial (z3 − 1)2. This complex polynomial
has six degree and according to the fundamental theorem of
Algebra, it has exactly six roots. These roots are not simple
and have a multiplicity 2. Out of these six roots, only three

roots are distinct which are: 1, − 1
2 −

√
3
2 i, −

1
2 +

√
3
2 i. With

the aid of computer program, We ran all the algorithms to

obtain the simple zeros of the considered polynomials and
the results in the form of polynomiographs are presented
in Fig. 3.
Example 8 (Polynomiographs for the Polynomial p3(z)Via

Different Iteration Schemes): In this experiment, we con-
sider the quartic polynomial z4 − 1 to show the dynamical
aspects of different algorithms. This polynomial has four
simple zeros namely:−1,−i, i, 1which can be easily seen on
the complex plane of the presented images. We obtained the
polynomiographs through the proposed algorithms and then
compared them with the other methods by means of computer
technology. The presented figures showing the regions of
convergence of the considered algorithms and certified that
the proposed algorithms possess larger convergence areas
than the other methods in comparison. The dynamic results
in the form of polynomiographs are presented in Fig. 4.
Example 9 (Polynomiographs for the Polynomial p4(z)Via

Different Iteration Schemes): In the last and final experiment,
we show the dynamics of different algorithms by taking the
complex polynomial (z4−1)2, having all zeros with multiplic-
ity 2. This polynomial has eight degree with repeated roots
and has only four distinct zeros namely: −1, −i, i, 1 which
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can be easily seen on the complex plane of the presented
images. The repeated roots appear with the same colors on
the corresponding complex plane of the polynomiographs.
The shades of the colors showing the performance and
efficiency of the considered algorithm through which the
polynomiograph have been generated. The darker the color,
the more efficient will be the method and the presented images
showing the superiority of the proposed algorithms that can
be seen from Fig. 5.

After observing the generated images carefully, one can
predict two important properties of the algorithms. One of
them is the convergence speed of the considered algorithm,
which can be depicted by the shade of the color. The dark-
ness of the colors showing less number of iterations of the
considered algorithm and vice versa. The second property of
the algorithms is their dynamical aspects. The low dynamics
are in those specific areas which contain a small variation
of colors, whereas in areas having large variation of colors
the dynamics are high. The appearance of black color in
the presented images locate those particular places in which
the solution cannot be achieved for the given number of
iterations. The same color areas in the presented figures rep-
resent the same number of iterations consumed by different
algorithms to approximate the solution and give a similar
view to the contour lines on the map.

VI. CONCLUDING REMARKS
Based on Taylor’s series expansion, six new iteration schemes
for the solution of non-linear functions have been presented,
and three of them are second derivative free. We approxi-
mated the second derivative by means of Taylor’s series that
results in some new efficient techniques. The convergence
criterion of the proposed methods has been discussed. It is
established that the suggested iteration schemes bearing the
convergence of orders five and six. The numeric and dynamic
comparisons of the proposed methods have been presented
by considering some engineering and arbitrary test problems.
The overall numerical results contained in Tables 1–2,
certified the faster and more accurate approximations to the
exact solutions than the other compared methods of the same
kind. The dynamics of the suggested methods in the form of
polynomiographs represented the convergence with a larger
area in comparison with the other compared methods. These
dynamics also revealed the faster convergence speed and
other dynamical features of the proposed algorithms and
proved the superiority of the suggested methods among the
other ones in comparison. Using the idea of this paper, one
can derive a class of new iterative algorithms and create
some newmathematical art through these algorithms in future
work. The proven results of this paper may give rise to further
research in this field.
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