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ABSTRACT We study an efficient algorithm to solve the distributionally robust optimization (DRO)
problem,which has recently attracted attention as a new paradigm for decisionmaking in uncertain situations.
In traditional stochastic programming, a decision is sought that minimizes the expected cost over the
probability distribution of the unknown parameters. In contrast, in DRO, robust decision making can be
derived from data without assuming a probability distribution; thus, it is expected to provide a powerful
method for data-driven decision making. However, it is computationally difficult to solve the DRO problem
and even by state-of-art solvers the problem size that can be solved to optimality is still limited. Therefore,
we propose an efficient algorithm for solvingDRObased on consensus optimization (CO). CO is a distributed
algorithm in which a large-scale problem is decomposed into smaller subproblems. Because different local
solutions are obtained by solving subproblems, a consensus constraint is imposed to ensure that these
solutions are equal, thereby guaranteeing global convergence. We applied the proposed method to linear
programming, quadratic programming, and second-order cone programming in numerical experiments and
verified its effectiveness.

INDEX TERMS Alternating direction method of multipliers, consensus optimization, decomposition
method, distributionally robust optimization, stochastic programming.

I. INTRODUCTION
The effects of uncertainty in decision making continue to
increase in the dynamic and volatile business environment.
In recent years, the use of big data has created new possibili-
ties for decision making in such uncertain situations.

Stochastic programming has been studied extensively as a
traditional decision-making problem in uncertain situations.
In stochastic programming, given a probability distribution
p(u) of unknown parameters u, a decision x is sought that
minimizes the expected cost Ef (x, u). In the real world,
the probability distribution is unknown and must be inferred
from data. However, several difficulties arise, as described
below.

First, when optimizing an unknown true objective function
that is estimated from observed data that are subject to ran-
dom error, even if the value estimates are unbiased, the uncer-
tainty in these estimates together with the optimization-based
selection process results in the value estimates for the rec-
ommended action having high bias. This means that the
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resultant out-of-sample performance is often disappointing.
In the field of decision analysis, this is known as the opti-
mizer’s curse [1]. Second, even if the probability distribu-
tion p(u) and decision x are provided, the calculation of the
expected value E(x, u) requires multiple integrals, which is
# P-hard. Third, assumptions and validations of probability
distribution, which might involve the selection of distribution
model and parameter estimation, can take long time. Owing
to the need for quicker decision making and the shortage of
data scientists, autonomous data-driven decision making has
attracted significant practical interest.

Bertsimas and Kallus [2] noted that probability dis-
tribution is imaginary, based on human assumption, and
is never observed in practice. Furthermore, data always
really exist and are observable. Therefore, they claimed that
data-driven decision making without the explicit considera-
tion of the probability distribution should be appropriate, as it
enables decisions to be made based on evidence rather than
assumption.

Data-driven stochastic programming is an alternative
paradigm in which the probability distribution of uncertain
parameters is not known, and instead, the realization of data
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is provided. The data are composed of the training data UT
and validation data UV . In the training phase, the data-driven
decision x̂T and certificate ẑT = E[f (x̂T , u|UT )] are output,
whereas in the validation phase, the data-driven decision
of the out-of-sample performance ẑV = E[f (x̂T , u|UV )] is
evaluated.

Distributionally robust optimization (DRO) has attracted
attention as an approach for data-driven stochastic program-
ming in recent years. DRO assumes that the probability dis-
tribution lies within the ambiguity set P , which is inferred
from the data. Under this assumption, the decision x is
sought to minimize the worst-case expected cost over an
ambiguity set, i.e., supp∈P Epf (x, u). DRO exhibits several
good properties [3]. First, the worst-case approach mitigates
the optimizer’s curse and often leads to better out-of-sample
performance than the sample average approximation (SAA),
in which the probability distribution is approximated by the
empirical discrete distribution. Second, the theoretical guar-
antee of the out-of-sample performance, which is the proba-
bility of no over-fitting prob(ẑT ≤ ẑV ) occurring, is derived.
Third, asymptotic optimality is proven; that is, as the number
of samples approaches to infinity, the data-driven solution
converges to the true optimal solution of the problem. Finally,
the DRO problem can be transformed into a convex program-
ming problem, and thus, it can be solved in polynomial time.

However, unlike the case in theory, the DRO problem
often takes a very long computation time to solve because
it is a nonlinear convex programming problem. In particular,
in recent years, the problem size has become large in terms
of both the sample size and dimensionality. As an illustrative
example, Table 1 presents the calculation time of DRO using
the ambiguity set derived from Kullback–Leibler (KL) diver-
gence for a linear programming (LP) problem with variables
n = 200 and constraints m = 300. Refer to Section III
for details of the model and Section V for the experimental
environment. The upper bound of the calculation time is set
to 2 hours (h), and if this time is exceeded, it is set as not
applicable (N/A). According to Table 1, It is possible to solve
the problem in a short time up to a sample size of N = 104.
However, when the sample size is N = 105, the compu-
tation time increases drastically and the solution cannot be
calculated within 2 h. Based on this observation, even if
the original problem is simple, the calculation time in DRO
will be within an unacceptable range owing to the increase
in the sample size. As computational responsiveness is very
important for timely decision making in the rapidly changing
business environment, it is necessary to develop an algorithm
that can solve the problem efficiently with large-scale data.

In this study, we investigate an efficient algorithm to solve
the DRO. We propose a distributed optimization technique
that uses consensus optimization (CO), which has gained
popularity as a decomposition method for large-scale prob-
lems in the convex programming. CO is a type of alternating
direction method of multipliers (ADMM), which divides a
large-scale problem into multiple small-scale subproblems
and solves them in a distributed manner. As each subproblem

TABLE 1. Computation time of DRO for LP (variables n = 200, constraints
m = 300).

results in a different local solution, a consensus constraint is
imposed that ensures that these solutions are equal. Although
this CO method is inferior to second-order algorithms such
as the interior-point method in terms of the convergence rate,
its convergence is fast in many applications if high accuracy
is not required.

More precisely, the optimization methods for convex pro-
gramming iteratively solve the approximation problems to
generate a sequence of points that converge to the optimal
solution. Therefore, the calculation time is dependent on
(1) the per-iteration solution time of the approximation prob-
lem and (2) the number of iterations until convergence.
In general, a trade-off exists between the two; thus, it is
important to use the appropriate algorithm according to the
problem structure.

In the second-order method such as interior-point method,
the number of iterations is small because the approxima-
tion accuracy is high, but a computation time of at least
O((n + m + N )3) is required to solve the approximation
problem, where n is the number of decision variables, m is
the number of constraints, and N is the sample size. The
subproblems can be solved very efficiently for problems of
approximately n + m + N ∼ 104. However, these computa-
tions are unacceptable for larger-scale problems and may not
even be possible in a single iteration.

The ADMM can be interpreted as a first-order method,
in which a method that does not use second-derivative infor-
mation, such as the Hessian matrix of the objective function.
The first-order method has lower approximation accuracy
than the second-order method, and thus, a large number of
iterations for convergence is necessary when high accuracy
is required. However, as the per-iteration solution time to
solve the approximation problem is short, this may provide an
effective solution for the above-mentioned large-scale prob-
lem, unless particularly high accuracy is required.

In particular, in the field of machine learning, several stud-
ies, such as Boyd et al. [38] and Nedic [59], demonstrated
that the computation time could be reduced significantly by
dividing the training data into multiple blocks and performing
distributed learning. In this study, we expect that large-scale
problems can be solved by dividing the training data in the
same manner. In particular, as indicated in Table 1, the solu-
tion time is short for small problems, and thus, the decom-
position method is expected to reduce the computation time
significantly.

The contributions of this research are as follows:

1) An efficient algorithm for DRO is developed that
can be applied to large-scale data. In recent years,
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DRO has been applied in many filed including max-
imum likelihood estimation in machine learning, and
it is extremely important to develop a solution for
large-scale data.

2) The possibility of CO to a new application is demon-
strated. Although the concept of CO is not fairly new,
it has received considerable attention recently in the
light of the big data and cloud computing, and it is
important to find new opportunities for applications.

3) In the numerical experiments, we present application
examples and verify the effect of the proposed method
for solving problems of representative classes such as
LP, quadratic programming (QP), and SOCP.

The remainder of the paper is organized as follows: In
section II, we review the related research. Section III presents
the DRO framework. In section IV, the proposed algo-
rithm using CO is presented. The numerical experiments are
demonstrated in section V. Section VI provides the conclu-
sions and outlines future challenges.

II. LITERATURE REVIEW
A. ROBUST OPTIMIZATION
Robust optimization is a popular approach for optimization
under uncertainty. The key concept is to define an uncertainty
set of possible realizations of uncertain parameters and sub-
sequently to optimize against worst-case realizations within
this set Bertsimas et al. [4].

Charnes and Cooper [5] first proposed chance-constrained
programming. Soyster [6] presented the concept of uncer-
tainty sets of parameters and determined the solution for
the worst-case value. Ben-Tal and Nemirovski [7]–[9] and
Ghaoui et al. [10], [11] constructed a theoretical foundation
for modern robust optimization, with a focus on deriving
a tractable robust counterpart for the LP under ellipsoidal
parameter uncertainty. Bertsimas and Sim [12] proposed the
concept of the ‘‘price of robustness,’’ which flexibly adjusted
the level of conservatism of the robust solutions in terms of
the probabilistic bounds of constraint violations.

Extensive review papers are available on the sub-
ject; see Ben-Tal et al. [13], [14], Gorissen et al. [15],
Gabrel et al. [16], Sozuer and Thiele [17], Delage and Iancu
[18], and the references therein.

Recent studies have been conducted in connection with
stochastic programming. Bandi and Bertsimas [19] proposed
a novel approach to analyze stochastic systems based on
robust optimization in order to overcome the computational
intractability with high dimensions. Nemirovski [20] pre-
sented several simulation-based and simulation-free com-
putationally tractable approximations of chance-constrained
convex programs, primarily those of chance-constrained
linear, conic quadratic, and semidefinite programming.
Ben-Tal et al. [21] proposed a systematic means of construct-
ing the robust counterpart of a nonlinear uncertain inequality
that was concave in the uncertain parameters, using support
functions, conjugate functions, and Fenchel duality.

B. DISTRIBUTIONALLY ROBUST OPTIMIZATION
DRO is a paradigm for decision making under uncertainty
whereby the uncertain problem data are governed by a prob-
ability distribution that is itself subject to uncertainty. Delage
and Ye [22] proposed a DRO model with a moment-based
ambiguity set. Ben-Tal et al. [23] studied the problem
of constructing robust classifiers when the training was
plagued with uncertainty. They employed Bernstein bound-
ing schemes to relax the chance-constrained problem as con-
vex second-order cone programming (SOCP), the solution
of which was guaranteed to satisfy the probabilistic con-
straint. Dupacova and Kopa [24] investigated the robustness
for stochastic programs in which the set of feasible solutions
was dependent on the unknown probability distribution P, and
they derived local bounds using a contamination technique.
Xu et al. [25] studied probabilistic interpretations of robust
optimization. They established a connection between robust
optimization and DRO, demonstrating that the solution to
any optimization problem is also a solution to a DRO prob-
lem. They considered the case in which multiple uncertain
parameters belonged to the same fixed dimensional space and
determined the set of distributions of the equivalent DRO
problem. Zymler et al. [26] developed tractable semidefi-
nite programming-based approximations for distributionally
robust individual and joint chance constraints, assuming that
only the first- and second-order moments as well as the sup-
port of the uncertain parameters were provided. Sun et al. [27]
developed a distributionally robust joint chance-constrained
optimization model for a dynamic network design problem
under demand uncertainty. Wiesemann et al. [30] introduced
standardized ambiguity sets that contained all distributions
with prescribed conic representable confidence sets and with
mean values residing on an affine manifold. They derived
conditions under which DRO problems based on standard-
ized ambiguity sets were computationally tractable. Ben-Tal
et al. [21] proposed robust linear optimization problems
with uncertainty regions defined by φ-divergences. Bertsi-
mas and Kallus [2] proposed the concept of ‘‘predictive
prescription.’’ Within this framework, the objective was to
minimize the conditional expected cost wherein a decision
was selected in an optimal manner to minimize an uncer-
tain cost that depended on a random variable based on an
observation of auxiliary covariates. Bertsimas and Van Parys
[29] proposed a framework known as ‘‘bootstrap robust ana-
lytics,’’ which integrated DRO and the statistical bootstrap
that were designed to produce out-of-sample guarantees by
exploiting the use of a confidence region, derived from φ-
divergence. Esfahani and Kuhn [3] proposed an ambiguity
set that was derived from the Wasserstein distance. Rahimian
andMehrotra [32] reviewed the recent advancements in DRO
from the modeling, theoretical, and algorithmic perspectives.
Kirschner et al. [33] studied the DRO problem with an
unknown objective function, namely distributionally robust
Bayesian optimization. They proposed an algorithm with a
performance guarantee, in which the performance was mea-
sured by the kernel-based maximum mean discrepancy dis-
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tance. Chen et al. [34] proposed a decomposition algorithm
for two-stage DROwith a phi-divergence ambiguity set. They
introduced the nonanticipativity constraints for the first-stage
decision and decomposed the problem using Lagrangian
relaxation. Huang et al. [35] studied multi-stage DRO with
the coherence-risk measure. They proposed decomposition
methods based on the cutting-plane method. Moreover,
they applied their proposed algorithms to the multi-product
assembly and portfolio problems, and demonstrated that the
risk-averse approach outperformed the risk-neutral approach.

As mentioned above, various modeling methods for uncer-
tainties have been proposed, leading to an equivalent con-
vex robust counterpart. However, in many cases, the robust
counterpart is a nonlinear problem, and therefore, the cal-
culation time may be very long. In particular, it is difficult
to apply such methods to datasets in which the numbers
of samples and dimensions are large. Therefore, it is very
important to develop an algorithm that can solve large-scale
data efficiently.

C. ALTERNATING DIRECTION METHOD OF MULTIPLIERS
CO is a type of decomposition method and its decomposition
principle is based on the ADMM. The ADMMwas proposed
by Glowinski and Marrocco [36] and further developed by
Gabay and Mercier [37]. For details on the ADMM, refer to
Boyd et al. [38]. The ADMM is a form of the operator split-
ting method, which was proposed in the 1950s. The ADMM
has been proven to be equivalent to various operator splitting
methods. Glowinski [39] first derived the convergence rate
of the ADMM. Han and Yuan [40], and Davis and Yin [41],
[42] derived the convergence rate of the ADMM in different
settings. Makhdoumi and Ozdaglar [43] demonstrated the
convergence rate of a distributed ADMM over networks.
Liu et al. [44] proposed a communication-censored ADMM
for decentralized CO. Falsone et al. [45] proposed the track-
ing ADMM for distributed constraint-coupled optimization.
Eisen et al. [46] presented a primal-dual quasi-Newton
method for exact CO. In recent years, many examples of
the application to machine learning have been provided
[47]– [55]). Pinnau et al. [56] proposed an integrated frame-
work of swarm intelligence metaheuristics and CO. They
presented a gradient-free optimization method for general
non-convex programs. Xu et al. [57] proposed consensus
ADMM in which each agent automatically tuned the local
penalty parameters in an adaptive manner. Fang et al. [58]
proposed a consensus ADMM approach whereby the New-
ton method was applied for each subproblem to improve
the quality of the subproblem solutions. They applied their
proposed method to multi-class classification problems and
demonstrated the superior performance over other state-of-
the-art methods. Carrillo et al. [60] improved the algorithm
of Pinnau et al. [56] by introducing component-wise isotropic
Brownian motion and the random selection of mini-batches.
Chen et al. [61] considered a CO problem with data edge
computing in which there were communication bottlenecks
and nodes with slow responses. They proposed a coded

stochastic incremental ADMM to mitigate the impact of the
straggling nodes by leveraging the data redundancy. They
demonstrated that the proposed algorithm had a convergence
rate of O(1/

√
k). Chen et al. [62] presented a randomized

incremental primal dual method to solve the CO problem,
whereby the dual variable over the connected multi-agent
network in each iteration was only updated at a randomly
selected node.

III. DISTRIBUTIONALLY ROBUST OPTIMIZATION
A. DATA-DRIVEN STOCHASTIC PROGRAMMING
We consider the following stochastic programming problem:

minimize Ef (x, u)
subject to x ∈ X , (1)

where x ∈ Rn is the decision variable, u ∈ Rr is the unknown
parameter, f (x, u) is the objective function, and X is the
feasible set. In practice, the distribution p(u) is not known, and
it must therefore be inferred from the data. These are known
as data-driven settings. In the data-driven settings, p(u) is
partially observable through a finite set of M independent
samples, e.g., past realization of the random variable

UT := {u1, · · · , uM },

which is known as the training dataset. In the training phase,
a decision x̂T is sought by solving the following problem (2):

minimize E[f (x, u)|UT ]
subject to x ∈ X . (2)

This solution x̂T is known as the data-driven solution and
its objective function value ẑT = E[f (x̂T , u)|UT ] is known as
the certificate.

The goal of a data-driven problem is to minimize the out-
of-sample performance of a data-driven solution x̂T that is
defined as (3).

ẑV = Ef (x̂T , u). (3)

However, as p(u) is unknown, the exact out-of-sample
performance cannot be evaluated in practice; therefore, it is
evaluated by the validation dataset UV = {û1, · · · , ûN },
as follows (4):

Epf (x̂T , u) '
1
N

N∑
j=1

f (x̂T , ûj). (4)

A natural approach for generating data-driven solutions
x̂T is the SAA formulation that approximate d(p) with the
empirical distribution prob(u = uj) = pj = (1/N ). The SAA
formulation with training samples uj can be expressed as (5)

minimize
1
M

M∑
j=1

f (x, uj)

subject to x ∈ X . (5)

However, this formulation often leads to poor out-
of-sample performance.
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B. DISTRIBUTIONALLY ROBUST OPTIMIZATION
In this section, we present the DRO problem. DRO is a
powerful paradigm for solving the data-driven stochastic pro-
gramming problem (1). DRO has the following form:

minimize sup
p∈P

Ep(u)f (x, u)

subject to x ∈ X , (6)

where P is the ambiguity set of the probability distribu-
tion, which is a family of probability distribution. In DRO,
the worst-case expected cost is minimized, whereby the
expectation is taken over the ambiguity set.

The ambiguity set P is the fundamental input of DRO,
and it is desirable to have the following properties: P should
be sufficiently rich to contain the true data-generating distri-
bution with high confidence; P should be sufficiently small
to exclude pathological distributions, which would incen-
tivize overly conservative decisions; P should also be easy to
parameterize from the data; andP should facilitate a tractable
reformulation of the DRO problem.

Several methods are available to form the ambiguity set P
from the data, including moment ambiguity sets, confidence
regions of goodness-of-fit tests, a ball in the space of the
probability distributions using a probability distance function
such as the Prohorov metric and Wasserstein metric, and
φ-divergence. This study examines the properties of DRO
problems in which the distributional uncertainty is handled
via φ-divergences Ben-Tal et al. [28].
φ-divergences measure the distance between two nonneg-

ative vectors p = (p1, · · · , pM )T and q = (q1, · · · , qM )T ,
where p and q satisfy

∑M
j=1 pj =

∑M
j=1 qj = 1.

The φ-divergence is defined as

D(p, q) =
M∑
j=1

qjφ
(
pj
qj

)
, (7)

where φ(t), which is known as the φ-divergence function,
is a convex function on t ≥ 0. The φ-divergence satisfies
D(p, q) ≥ 0 and D(p, q) = 0 if and only if p = q, and it can
thus be used as a measure of deviation between two positive
vectors.

Using the φ-divergence, the ambiguity set P can be
expressed as (8):

P = {p : D(p, q) ≤ η,
M∑
j=1

pj = 1, pj ≥ 0,∀j}, (8)

where q is the nominal value with qj = 1/M and η

is the target distance. By restricting the probability distri-
bution in the ambiguity set, i.e., p ∈ P , the optimiza-
tion model hedges against distributional uncertainty. When
η is set appropriately, the decision maker can control the
risk preferences between the risk-neutral and risk-averse
approaches.

C. FORMULATION
The formulation of DRO with φ-divergence is as follows (9):

minimize sup
p

M∑
j=1

pjf (x, uj)

subject to x ∈ X

D(p, q) ≤ ρ,
M∑
j=1

pj = 1

p ≥ 0. (9)

We present the dual formulation to derive the closed form
of the inner maximization. For a given x, the inner maximiza-
tion is a convex optimization problem. The inner problem is
formulated as (10)

maximizep
M∑
j=1

pjf (x, uj)

subject to D(p, q) ≤ ρ,
M∑
j=1

pj = 1,

pj ≥ 0. (10)

Let λ and µ denote the Lagrangian multipliers. When the
first and second constraints are multiplied by λ and µ, and
the constraints are eliminated, we obtain the Lagrangian (11)

L(p, µ, λ) =
M∑
j=1

pjf (x, uj)+ λρ − λ
M∑
j=1

qjφ(
pj
qj
)

+µ− µ

M∑
j=1

pj. (11)

For simplicity of exposition, we use sj to denote the
following:

sj =
f (uj, x)− µ

λ
⇔ f (x, uj) = λsj + µ.

Using this expression, we obtain the following
reformulation:

L(p, µ, λ) =
M∑
j=1

pj(λsj + µ)+ λρ − λ
M∑
j=1

qjφ(
pj
qj
)

+µ− µ

M∑
j=1

pj

= λρ + µ+ λ

M∑
j=1

(pjsj − qjφ(
pj
qj
))

= λρ + µ+ λ

M∑
j=1

qj(sj
pj
qj
− φ(

pj
qj
)).
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According to the definition of the conjugate function

φ?(s) = sup
t≥0
{st − φ(t)},

we obtain the following reformulation:

λρ + µ+ sup
p≥0

λ

M∑
j=1

qj(sj
pj
qj
− φ(

pj
qj
))

= λρ + µ+ λ

M∑
j=1

qjφ?(sj).

Combining the dual problem with the outer minimization
results in the dual formulation (12)

minimize µ+ ρλ+ λ
M∑
j=1

qjφ?(sj)

subject to f (x, uj) = λsj + µ, j = 1, · · · ,N

x ∈ X

λ ≥ 0. (12)

For further details, refer to Ben-Tal et al. [28] and Bayrak-
san and Love [31].

IV. CONSENSUS OPTIMIZATION
DRO becomes more difficult to apply as the sample size
increases. However, the calculation time is short when using
the decomposition method and it becomes possible to solve
even large-scale problems. In this research, we propose
a distributed optimization algorithm using CO, which has
attracted substantial attention in the field of convex optimiza-
tion in recent years.

A. PROPOSED ALGORITHM
The central concept of the proposed algorithm is that the
problem can be decomposed into training data blocks.
As each subproblem results in different solutions x̂kT , a con-
sensus constraint is imposed that ensures that these solutions
agree, i.e. are equal.

We divide the training data into K blocks and the problem
intoK subproblems. The k-th subproblem is expressed as (13)

minimize µk + ρλk + λk
M∑
j=1

qjφ?(sj)

subject to f (xk , uj) = λksj + µk , j ∈ Jk
xk ∈ X

λk ≥ 0, (13)

where xk , µk , andλk are the decision variables for the k-th
problem and Jk is the index set for the k-th block.
Using this subproblem, the original problem can be formu-

lated as (14)

minimize
K∑
k=1

Fk (x̃k )

subject to x̃k − z = 0, k = 1, · · · ,K , (14)

where Fk (x̃) is the optimal value of DRO for the k-th block,
x̃ = [xT , µ, λ]T are local variables, and z is a global vari-
able. The equality constraint is a consensus constraint that
indicates that the local variables are equal.
It has been established that this CO can be solved effi-

ciently by applying the ADMM. The augmented Lagrangian
is expressed as (15)

Lρ(x̃, z, y)=
K∑
k=1

(
Fk (x̃k )+ yTk (x̃k − z)+(ρ/2)||x̃k − z||

2
2

)
,

(15)

where ρ is known as the penalty parameter. In the ADMM,
x̃, y, z are updated alternately.

x̃ t+1k := argminx̃k

(
Fk (x̃k )+ ytTk (x̃k − zt )

+(2/ρ)||x̃k − zt ||22
)

(16)

zt+1 :=
1
K

K∑
k=1

(
x̃ t+1k + (1/ρ)ytk

)
(17)

yt+1k := ytk + ρ(x̃
t+1
k − zt+1). (18)

Using
∑K

k=1 y
t
k = 0, as described in (25), the algorithm is

expressed as follows:

x t+1k := argminxk

(
Fk (x̃k )+ ytTk (x̃k − x̄ t )

+ (ρ/2)||x̃k − x̄ t ||
)

(19)

yt+1k := ytk + ρ(x̃
t+1
k − x̄ t+1), (20)

where x̄ t = (1/K )
∑K

k=1 x̃
t
k . At each iteration, the local

variable x̃ tk is updated, the average x̄ t is obtained, and yt is
updated to reduce the deviation between the local variable
and the average.

B. OPTIMALITY CONDITION AND STOPPING CRITERIA
The Lagrangian of CO is expressed as (21)

L(x̃, z, y) =
N∑
k=1

(
Fk (x̃k )+ yTk (x̃k − z)

)
. (21)

The optimality condition of the problem is the feasibility
of the main problem (22):

x̃?k − z
?
= 0 (22)

and the dual feasibility formulated as (23)(24):

∇Fk (x̃?k )+ y
?
k = 0 (23)

K∑
k=1

y?k = 0. (24)

In this case, zt+1 minimizes Lρ(x̃
t+1
k , z, yt ), and the follow-

ing equation (25) holds:

0 = ∇zLρ(x̃
t+1
k , z, yt )

∣∣∣
z=zt+1
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=

K∑
k=1

(
ytk + ρ(x̃

t+1
k − zt+1)

)
=

K∑
k=1

yt+1k . (25)

Therefore,
∑K

k=1 y
t
k = 0 always holds, and thus, the equa-

tion (24) is always satisfied. Similarly, x̃ t+1 minimizes
Lρ(x̃, zt , yt ), and the following equation (26) holds:

0 = ∇Fk (x̃
t+1
k )+ ytk + ρ(x̃

t+1
k − x̄ t )

= ∇Fk (x̃
t+1
k )+ yt+1k + ρ(x̄ t+1 − x̄ t ). (26)

Therefore, the third term can be regarded as a dual residual.
The main residual r t and dual residual st can be defined
as (27)(28)

r t :=
K∑
k=1

(x̃ tk − x̄
t ) (27)

st := ρ
K∑
k=1

(x̄ t − x̄ t−1). (28)

The stopping criteria are that the primal residual r t and dual
residual st fall within the tolerance εpri, εdual , which can be
described as (29)(30)

||r t ||2 ≤ εpri (29)

||st ||2 ≤ εdual . (30)

The convergence proof for the consensus optimization for
the general convex problem can be found in several refer-
ences, such as [43]–[45].

C. OVERALL ALGORITHM
The overall algorithm is summarized as follows:

given ρ, εpri, εdual
repeat1-4
1. x̃-update

x t+1k := argminxk
(
Fk (x̃k )+ ytTk (x̃k − x̄ t )

+(ρ/2)||x̃k − x̄ t ||
)

2. x̄-update: x̄ t+1 =
∑K

k=1 x̃
t+1
k

3. y-update: yt+1k := ytk + ρ(x̃
t+1
k − x̄ t+1)

4. t-update: t := t + 1

until ||r t ||2 ≤ εpri and ||st ||2 ≤ εdual .

The proposed method is efficient because it divides a
large-scale problem into multiple small-scale easier subprob-
lems to solve. Moreover, the dual variables are updated so
that the difference between x̃k and x̄ is reduced in order for a
consensus to be formed.

V. NUMERICAL EXAMPLES
The results of the numerical experiments are presented in
this section. In the experiments, KL divergence was used as
the φ-divergence function to construct the DRO. The dis-
tributionally robust counterparts (DRCs) of these problems
were all convex programming problems. An explanation is
provided in subsection A.

We randomly generated problem examples for the typical
convex programming problems, namely LP, QP, and SOCP.
The generation and results of each problem example are
presented in subsections B to D. The combination of the
number of variables n and the number of constraints m was
set to (n,m) = {(20, 30), (200, 300), (2000, 3000)} for the
problem size. In each case, the sample size N was increased
to N = {101, 102, · · · }, and if no answer was provided
within 2 h, N/A was assigned. The number of block divisions
was K = 10. The intersection of the termination conditions
was εpri = 10−1, εdual = 10−1.
We compared the results to ECOS [63] and SCS [64], state-

of-art interior-point solver and ADMM solver, respectively.
All experiments were conducted in an experimental environ-
ment using an Intel (R) Core (TM) i7-8700 CPU 3.20 GHz
3.19 GHz with 32 GB of memory. The program was coded
by julia, and the ECOS and SCS solver was called using the
convex.jl package.

A. KL DIVERGENCE
Various φ-divergence functions have been proposed to date,
each of which performs effectively [31]. In this study, we used
the KL divergence between p, q, expressed as (31)

Dkl(p, q) =
M∑
j=1

(pj log(pj/qj)− pj + qj). (31)

Using KL divergence, the ambiguity set P can be
expressed as (32)

P = {p :
M∑
j=1

Dkl(p, q) ≤ ρ,
M∑
j=1

pj = 1, pj ≥ 0,∀j}. (32)

The conjugate of the KL divergence is formulated as (33)

φ?(s) = es − 1. (33)

The formulation of DRO using KL divergence is expressed
as (34)

minimize µ+ ρλ+ λ
M∑
j=1

qj(esj − 1)

subject to f (x, uj) = λsj + µ, j = 1, · · · ,N

x ∈ X

λ ≥ 0. (34)

B. LINEAR PROGRAMMING
1) PROBLEM INSTANCES
We considered the following LP problem (35):

minimize cT x

subject to Ax ≥ b. (35)
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TABLE 2. Comparison of computation time of DRO for LP.

The problem instance was generated as follows: Each
element of c was randomly generated from the uniform
distribution U(0, 1), and its absolute value was obtained.
Each element of A was randomly generated from the normal
distribution N (0, 12) and its absolute value was obtained.
Moreover, b generated a random solution x0 and sets b = Ax0.
Each element of x0 was randomly generated from the normal
distribution N (0, 12) and its absolute value was obtained.

2) RESULTS
Table 2 displays the experimental results. The computation
time of ECOS, SCS and CDRO are shown, where ECOS and
SCS refer to the DRC of problem (35) that was solved by each
solver directly, and CDRO refers to the problem optimized by
the proposed method. The number of iterations for CDRO is
indicated.

According to Table 2, when (n,m) = (20, 30), ECOS was
faster up to N ≤ 104, but when N = 105, the problem could
be solved only by CDRO. In the case of (n,m) = (200, 300),
ECOS was faster until N ≤ 103, and CDRO was faster
at N = 104. In the case of (n,m) = (2000, 3000), when
N = 101, the problem could not be solved by ECOS, but
it could be solved by CDRO.

The results demonstrate that ECOS is faster when the
sample size is small and CDRO is faster when the sample
size increases. Moreover, problems that cannot be solved by
ECOS or SCS can be solved by CDRO, particularly when the
numbers of dimensions and samples are large. The effective-
ness of the proposed technique was validated based on these
results.

C. QUADRATIC PROGRAMMING
1) PROBLEM INSTANCES
We considered the following QP problem (36):

minmize xTQx + cT x

subject to lb ≤ Ax ≤ ub. (36)

The problem instance was generated as follows: Each
element of c was randomly generated from the normal dis-
tribution N (0, 12) and its absolute value was obtained. Fur-
thermore, lb was generated from the uniform distribution
−U(0, 1) and ubwas generated from the uniform distribution
U(0, 1).

TABLE 3. Comparison of computation time of DRO for QP.

2) RESULTS
The experimental results are presented in Table 3. When
(n,m) = (20, 30), ECOS was faster up to N ≤ 102,
and CDRO was faster from N ≥ 103. In particular, when
N = 104, the problem could be solved only by CDRO. In the
case of (n,m) = (200, 300), CDRO was faster in all cases,
and in the case of N = 104, the problem could be solved only
by CDRO.

The results demonstrate that CDRO is faster as the prob-
lem and sample sizes increase, as in the case of the LP
problem. Moreover, CDRO can solve problems that cannot
be solved by ECOS or SCS, particularly when the num-
bers of dimensions and samples are large. The effective-
ness of the proposed technique was validated based on these
results.

D. SECOND-ORDER CONE PROGRAMMING
1) PROBLEM INSTANCES
We considered the following SOCP problem (37):

minimize f T x

subject to ||Ax + b||2 ≤ cT x + d . (37)

The problem instance was generated as follows: Each ele-
ment of f ,A, b, c was randomly generated from the normal
distributionN (0, 12) and its absolute value was obtained. For
d , a random solution x0 was generated and set as d = ||Ax0+
b||2−cT x0. Each element of x0 was randomly generated from
the normal distribution N (0, 12) and its absolute value was
obtained.

2) RESULTS
The experimental results are displayed in Table 4. When
(n,m) = (20, 30), ECOS was faster up to N ≤ 103,
whereas CDRO was faster from N ≥ 104. In particu-
lar, when N = 105, the problem could be solved only
with CDRO. When (n,m) = (200, 300), the normal
DRO was faster up to N ≤ 103 and CDRO was faster
at N = 104.
The results indicate that CDRO is faster when the problem

and sample sizes are large, as in the case of the LP and
QP problems. Furthermore, and CDRO can solve large-scale
problems that ECOS or SCS cannot solve. The effective-
ness of the proposed technique was validated based on these
results.
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TABLE 4. Comparison of computation time of DRO for SOCP.

VI. CONCLUSION
The use of data to make decisions in uncertain situations
is becoming increasingly important. A new optimization
paradigm known as DRO has been attracting attention as a
methodology for this purpose. DRO offers significant poten-
tial because it can derive robust decision making from data
without assuming a probability distribution. However, DRO
problem is difficult to solve and the problem size that can be
solved to optimality is limited. In this research, we proposed
an efficient algorithm to solve the large-scale DRO problems.
We have developed an algorithm that applies CO, which has
attracted attentions as a decompositionmethod for large-scale
problems in the convex programming. In CO, a large-scale
problem is decomposed into smaller subproblems and a con-
sensus constraint is imposed so that the local solutions of the
subproblems become equal. Therefore, the calculation is fast
and the solution can be obtained efficiently even in large-scale
problems. We conducted numerical experiments in which we
applied the proposed method to DRO for LP, QP, and SOCP.
The results demonstrate that the proposed method is faster
than state-of-art solvers when the problem and sample sizes
are large, and the proposed method can solve larger-scale
problems. The effectiveness of the proposed method was
verified based on these results.

Future issues include research on optimization algorithms
for each subproblem. Each subproblem presented in the pro-
posed algorithm is a convex programming. However, even
by the state-of-art solver, the numerical stability was not
sufficient; thus, the development of an algorithm to solve
the subproblem reliably is required. Another expansion is the
application of CO to other DROmodels. There are other DRO
models that use moment ambiguity set and the Wasserstein
ambiguity set, and it is expected that the decomposition
approach proposed in this research can be used to increase the
speed for solving these models. Finally, further speedup can
be considered by integrating other decomposition methods.
The primal and dual variables of DRO, modeled as one
decision variable, can be further decomposed in the ADMM
form.
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