

Received May 31, 2021, accepted June 8, 2021, date of publication June 22, 2021, date of current version July 6, 2021. Digital Object Identifier 10.1109/ACCESS.2021.3091495

Social Network Search for Global Optimization

SIAMAK TALATAHARI^{®1,2}, HADI BAYZIDI^{®1}, AND MEYSAM SARAEE¹

¹Department of Civil Engineering, University of Tabriz, Tabriz 51666-16471, Iran ²Faculty of Engineering, Near East University, 99138 Nicosia, Turkey

Corresponding author: Siamak Talatahari (siamak.talat@gmail.com)

This work did not involve human subjects or animals in its research.

ABSTRACT In this paper, a novel metaheuristic algorithm called Social Network Search (SNS) is developed for solving optimization problems. The SNS algorithm simulates the attempts of users in social networks to gain more popularity by modeling the moods of users in expressing their opinions. These moods are named Imitation, Conversation, Disputation, and Innovation, which are real-world behaviors of users in social networks. These moods are used as optimization operators and model how users are affected and motivated to share their new views. To evaluate the performance of the SNS algorithm, two comparative studies with different properties were conducted. In the first step, 210 mathematical functions have been chosen, which include 120 fixed-dimension, 60 N-dimension, and 30 CEC 2014 problems. Seven metaheuristics are selected from the literature, and the statistical results of these methods are calculated and analyzed. Also, to provide a valid judgment about the performance of the proposed algorithm is compared to some state-of-the-art algorithms in dealing with CEC 2017 problems. According to the performance of algorithms, the SNS method is capable of achieving better results compared to the other metaheuristics in 101 cases (48%) and performed the same or comparatively in dealing with the other problems.

INDEX TERMS Optimization, algorithm, metaheuristic, social network search.

I. INTRODUCTION

Optimization is a part of the nature of human works. Expressing the issues in the form of optimization problems and then attempt to solve them is a very old task and dates back to the 4th century BC when Euclid raises the issue of maximizing the area of parallelogram inside a triangle. Today, optimization is known as a branch of applied mathematics and like other issues, mathematics is the first tool used to solve optimization problems. The establishment of the mathematical methods for solving optimization problems is contribute to the development of the calculus of variations. The gradient-based methods are one of these mathematical methods. These methods utilize the gradient of the objective function for solving the optimization problems and this property is the main drawback of these type of solvers [1]. These days, the optimization problems have become more complex in which their formulations are so difficult to be determined by the gradient-based methods. Besides, some of the problems have an implicit objective function and the gradient cannot be calculated easily. Therefore, many

The associate editor coordinating the review of this manuscript and approving it for publication was Turgay Celik^(D).

classical techniques based on mathematics are inadequate for producing pleasing results in a reasonable time [2].

The drawbacks of classical methods encouraged researchers to create new methods and then metaheuristic algorithms were invented [3]. The intrinsic and natural behavior of organizations in nature is the main source of these metaheuristic methods. Most of the natural phenomena are performed with a specific heuristic ordering. This heuristic may have been evolved over millions of years or the laws of nature may have formulated it. The heuristic rules in these phenomena are organized in such a way that the processes are performed in their simplest form. In other words, these processes may have a very complex appearance, but these complex processes follow simple logical rules. By modeling the behavior of these heuristic phenomena, they can be modeled as efficient computational methods. By studying the logic governing the heuristic of these systems, one can take advantage of the inherent benefits. Based on the practical heuristic of these phenomena, their intelligence can be used for various purposes such as simulation, modeling, and optimization methods [4].

Metaheuristic methods are optimization tools that try to combine basic heuristic methods with randomization and

FIGURE 1. The general process of metaheuristic methods.

rule-based theories, which are usually taken from natural phenomena such as evolution and swarm intelligence. Adding the randomness brings the performance of the heuristic rules to a higher level [5].

Almost any metaheuristic algorithm has a general process as shown in Fig. 1. The algorithm steps significantly affect the performance of algorithms. In other words, algorithm steps, describe the unique operators of each method in which new solutions are created. The operators of each algorithm refer to the optimal process of a particular phenomenon that they have imitated.

Fogel, Rechenberg, and Schwefel published their primary studies related to Evolutionary Programming (EP) [6] and Evolutionary Strategies (ES) [7] in the late 60s and 70s. ES was designed for numerical optimization and is one of the first basis for studies on Evolutionary Algorithms (EA) in the branch of bio-inspired computation. In 1975, another basement was formed by Holland with the publication of his book on Genetic Algorithms (GA) [8]. This work of Holland is the most famous in the field of optimization methods. In correspondence to the EA, Swarm Intelligence (SI) algorithms are inspired by the collective intelligence of a population of agents with simple behavioral patterns for communication and cooperation. In the early 90s, the fundamental concepts of Particle Swarm Optimization (PSO) [9] and Ant Colony Optimization (ACO) [10] formed the basic ideas of SI algorithms. Numerous SI methods have been introduced ever since by imitating intelligent patterns found in different phenomena in nature. The category of SI methods contains three branches. The first inspirational motivation is the behavioral models of animals, such as the Artificial Bee Colony (ABC) [11] or Firefly Algorithm (FA) [12]. The second branch includes algorithms based on physical laws, such as Charged System Search (CSS) [2]. The last one contains the algorithms that mimic various optimal behaviors of humans in different conditions. Teaching-Learning Based Optimization (TLBO) [13] is one of the human based algorithms.

Evolutionary and Swarm-based algorithms are the main branches of the metaheuristic methods. However, many algorithms use both the evolutionary and swarm operators. Cuckoo Search (CS) [14] is one of these types of algorithms. The first phase of CS is a swarm operator in which its goal is to move towards the best agent, but in the second phase, crossover is integrated with mutation and new solution generated during an evolutionary operator.

In the last decades, a huge number of metaheuristic algorithms were developed, and the study of these methods is very

TABLE 1. List of some popular metaheuristic algorithms.

AlgorithmTypeReferencesEvolutionary Programming (EP)EA[6]Evolution Strategy (ES)EA[7]Genetic Algorithms (GA)EA[8]Simulated Annealing (SA)SI[15]Ant Colony Optimization (ACO)SI[10]Genetic Programming (GP)EA[16]Particle Swarm Optimization (PSO)SI[9]Differential Evolution (DE)EA[11]Big Bang-Big Crunch Optimization (BBBC)SI[18]Artificial Bee Colony (ABC)SI[11]Imperialist Competitive Algorithm (ICA)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[21]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[23]Teaching Learning Based Optimization (TLBO)SI[24]Flower Pollination Algorithm (FA)SI[25]Water Cycle Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[26]Grey Wolf Optimizer (GWO)SI[29]Ant Lion Optimization Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Colliding Bodies Optimization (CBO)SI[33]Developed Swarm Optimizer (MOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI<		-	
Evolution Strategy (ES)EA[7]Genetic Algorithms (GA)EA[8]Simulated Annealing (SA)SI[15]Ant Colony Optimization (ACO)SI[10]Genetic Programming (GP)EA[16]Particle Swarm Optimization (PSO)SI[9]Differential Evolution (DE)EA[17]Big Bang-Big Crunch Optimization (BBBC)SI[18]Artificial Bee Colony (ABC)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[13]Firefly Algorithm (FA)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (GWO)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[34]	· · · · · · · · · · · · · · · · · · ·		
Genetic Algorithms (GA)EA[8]Simulated Annealing (SA)SI[15]Ant Colony Optimization (ACO)SI[10]Genetic Programming (GP)EA[16]Particle Swarm Optimization (PSO)SI[9]Differential Evolution (DE)EA[17]Big Bang-Big Crunch Optimization (BBBC)SI[11]Imperialist Competitive Algorithm (ICA)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[13]Firefly Algorithm (FA)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[33]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[30]Crow Search Algorithm (ISA)SI[31]Matel Optimizer (ALO)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]			
Simulated Annealing (SA)SI[15]Ant Colony Optimization (ACO)SI[10]Genetic Programming (GP)EA[16]Particle Swarm Optimization (PSO)SI[9]Differential Evolution (DE)EA[17]Big Bang-Big Crunch Optimization (BBBC)SI[18]Artificial Bee Colony (ABC)SI[11]Imperialist Competitive Algorithm (ICA)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FAA)SI[25]Water Cycle Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[30]Crow Search Algorithm (ISA)SI[31]Whale Optimizer (ALO)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (WOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]			
Ant Colony Optimization (ACO)SI[10]Genetic Programming (GP)EA[16]Particle Swarm Optimization (PSO)SI[9]Differential Evolution (DE)EA[17]Big Bang-Big Crunch Optimization (BBBC)SI[18]Artificial Bee Colony (ABC)SI[11]Imperialist Competitive Algorithm (ICA)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[12]Eagle Strategy (ES)SI[13]Teaching Learning Based Optimization (TLBO)SI[23]Teaching Learning Based Optimization (TLBO)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (WOA)SI[31]Whale Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]			
Genetic Programming (GP)EA[16]Particle Swarm Optimization (PSO)SI[9]Differential Evolution (DE)EA[17]Big Bang–Big Crunch Optimization (BBBC)SI[18]Artificial Bee Colony (ABC)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[23]Firefly Algorithm (FA)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]Stochastic Paint Optimizer (SPO)SI[34]	e ()		
Particle Swarm Optimization (PSO)SI[9]Differential Evolution (DE)EA[17]Big Bang-Big Crunch Optimization (BBBC)SI[18]Artificial Bee Colony (ABC)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[23]Firefly Algorithm (FA)SI[23]Teaching Learning Based Optimization (TLBO)SI[31]Krill Herd (KH)SI[25]Water Cycle Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (VOA)SI[31]Whale Optimization Algorithm (WOA)SI[31]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[34]			
Differential Evolution (DE)EA[17]Big Bang–Big Crunch Optimization (BBBC)SI[18]Artificial Bee Colony (ABC)SI[11]Imperialist Competitive Algorithm (ICA)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[34]	e ex /		
Big Bang–Big Crunch Optimization (BBBC)SI[18]Artificial Bee Colony (ABC)SI[11]Imperialist Competitive Algorithm (ICA)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (ISA)SI[25]Water Cycle Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[34]			
Artificial Bee Colony (ABC)SI[11]Imperialist Competitive Algorithm (ICA)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[12]Eagle Strategy (ES)SI[13]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FAA)SI[25]Water Cycle Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[34]	Differential Evolution (DE)		[17]
Imperialist Competitive Algorithm (ICA)SI[19]Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[2]Firefly Algorithm (FA)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FAA)SI[25]Water Cycle Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[30]Crow Search Algorithm (OCA)SI[31]Whale Optimizer (ALO)SI[31]Whale Optimization Algorithm (WOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Big Bang–Big Crunch Optimization (BBBC)	SI	[18]
Biogeography-Based Optimizer (BBO)EA[20]Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[2]Firefly Algorithm (FA)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[30]Crow Search Algorithm (OSA)SI[31]Whale Optimizer (ALO)SI[31]Whale Optimization Algorithm (WOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Artificial Bee Colony (ABC)	SI	[11]
Cuckoo Search (CS)SI[14]Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[2]Firefly Algorithm (FA)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Imperialist Competitive Algorithm (ICA)	SI	[19]
Gravitational Search Algorithm (GSA)SI[21]Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[2]Firefly Algorithm (FA)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Biogeography-Based Optimizer (BBO)	EA	[20]
Bat Algorithm (BA)SI[22]Charged System Search (CSS)SI[2]Firefly Algorithm (FA)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (VCA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Cuckoo Search (CS)	SI	[14]
Charged System Search (CSS)SI[2]Firefly Algorithm (FA)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (VCA)SI[31]Whale Optimization Algorithm (GOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Gravitational Search Algorithm (GSA)	SI	[21]
Firefly Algorithm (FA)SI[12]Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Bat Algorithm (BA)	SI	[22]
Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (VOA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Charged System Search (CSS)	SI	[2]
Eagle Strategy (ES)SI[23]Teaching Learning Based Optimization (TLBO)SI[13]Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (VOA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Firefly Algorithm (FA)	SI	[12]
Krill Herd (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]		SI	[23]
Krill Hed (KH)SI[24]Flower Pollination Algorithm (FPA)SI[25]Water Cycle Algorithm (WCA)SI[25]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Teaching Learning Based Optimization (TLBO)	SI	[13]
Water Cycle Algorithm (WCA)SI[3]Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (SPO)SI[34]	Krill Herd (KH)	SI	[24]
Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (ISO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Flower Pollination Algorithm (FPA)	SI	[25]
Interior Search Algorithm (ISA)SI[26]Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	Water Cycle Algorithm (WCA)	SI	[3]
Grey Wolf Optimizer (GWO)SI[27]Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]		SI	
Symbiotic Organisms Search (SOS)SI[28]Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshoper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	e ()	SI	
Colliding Bodies Optimization (CBO)SI[29]Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]		SI	
Ant Lion Optimizer (ALO)SI[30]Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]		SI	
Crow Search Algorithm (CSA)SI[31]Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]			
Whale Optimization Algorithm (WOA)SI[32]Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]	1		
Grasshopper Optimization Algorithm (GOA)SI[33]Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]			
Developed Swarm Optimizer (DSO)SI[34]Stochastic Paint Optimizer (SPO)SI[35]			
Stochastic Paint Optimizer (SPO) SI [35]			
Chaos Game Optimization (CGO) SI [11] [36]	Chaos Game Optimization (CGO)	SI	[1], [36]

popular among researchers from different fields. Simplicity, flexibility, and robustness are the main reasons for their popularity. Some of the most famous algorithms are presented in Table 1.

Metaheuristic algorithms are approximate, but their results have high accuracy and are very close to the global optimum solution [37]. These methods perform a global search in the space of the problem with an appropriate speed by employing different operators. Also, these methods find the optimal solution by comparing the limited number of results based on their rules.

Studies on metaheuristics classified into two main categories: theoretical and practical works. In practical, optimization techniques are used to find optimal solutions, while developing, modifying, improving, and hybridizing new algorithms are the most common theoretical works. New metaheuristic methods are developed to find the optimal solution for complex problems in less time than previous ones and with higher accuracy. These aims are satisfied by developing more robust algorithms that have a better ability in searching the space of problems. In addition, this property arises from the more powerful operators that relate to a heuristic phenomenon. The operators used in each algorithm express the relationships of agents of the imitated phenomenon as simple mathematical equations. In other words, these operators simulate search style in the space of problems. Given this simulation, each algorithm can behave differently when

dealing with different problems, so that one particular algorithm may not solve all problems. Therefore, it is necessary to create a new high-performance optimization algorithm that able to solve more types of problems, with better accuracy in less time compared to the previous methods.

This paper proposes a novel intelligence algorithm called Social Network Search (SNS) that simulates human behavior as users of a social network. Social network users can influence the opinions of other users on the network by sharing their views, opinions, and thoughts. Here, each agent is considered as a user and influenced by its interactions with other network users. Each of the users can also share their thoughts in the form of posts on the network and affect other people's opinions. In other words, the SNS simulate special moods that the views and opinions of users are influenced by their communications and efforts for increasing their level of popularity on the network.

Two steps are considered to evaluate the ability of the novel SNS algorithm in solving optimization problems. In the first step, a set of 210 mathematical problems (120 fix-dimensional, 60 n-dimensional, and 30 CEC 2014 special season [38]) has been used, and then the performance of the SNS algorithm compared with seven classical and novel metaheuristic methods which are chosen from the literature. The statistical results of the SNS and these metaheuristics provides a suitable dataset to be analyzed by nonparametric statistical methods. In the second step, the SNS is compared to some state-of-the-art algorithms in dealing with some complicated problems presented in CEC 2017 [39] special season. The attained results showed that the SNS algorithm is better than the other methods in most of the cases.

The remaining of this paper is organized as follows: Section II describes the inspiration and mathematical model of the proposed SNS Algorithm. Section III studies the performance of the SNS algorithm in dealing with different types of optimization problems. Section IV analyzes the behaviors of the SNS algorithm from different perspectives. Finally, conclusions are given in Section V.

II. SOCIAL NETWORK SEARCH (SNS)

Human beings are a social species, which always tries to communicate with each other. Social networks are virtual tools that created for this goal with the advent of technology. The proposed SNS algorithm simulates the interactive behavior among users in social networks to achieve more popularity. In this section, we first discuss how to model an optimization algorithm from the behavior of users in the social networks, and then the implementation of the algorithm is presented.

A. BASIC PRINCIPLES OF BEHAVIOR IN SOCIAL NETWORKS

Social networks are platforms where users can interact virtually with other users. In social networks, users can follow their favorite persons and get to know their thoughts and views. So, interacting with other users of the network may affect their opinions. The process of interacting with

FIGURE 2. A general form of a social network.

and influencing other users of the network goes through an optimal process so that users are always trying to increase their level of popularity on the network. This optimization process is the base of the current algorithm. Fig. 2 shows a general model for a social network.

In recent years, various social networks such as Researchgate, Facebook, Twitter, Instagram, and so on, have been developed. Each of these networks is designed for a specific purpose, but it can be said that the behavior of users on these networks is more or less the same. During the interactions between users, they will become familiar with other views from network users. Now, if known views are better than the current one, they will accept new views and improve their own. Then, by sharing the improved views on the network, they will strive to improve their position in the network.

B. DECISION MOODS AND MATHEMATICAL MODEL

The user's viewpoint can be affected by other views in different moods containing: Imitation, Conversation, Disputation, and Innovation. Imitation means that the views of other users are attractive, and usually, users try to imitate each other in expressing their opinions. Conversation says that users can communicate with each other and use the other views. In the Disputation, users can dispute with a group of users and talk about their opinions. Finally, Innovation indicates that sometimes a topic that users share on the networks comes from their new experiences and thoughts. Almost all metaheuristic algorithms apply a set of operations to generate new solutions. In the SNS algorithm, the new solution is achieving by one of the four moods that are look like real-world social behavior. Description and mathematical modeling of these operators (moods) are described as follows:

1) MOOD 1: IMITATION

The main property of social networks is that users can follow each other and if a person shares a new post, followers of that person may be informed about the shared topic. This feature (propagation of views) has turned networks into powerful tools for promoting information and ideas.

Users in social networks follow their relatives and some famous person, which they like. Then they will get notified

FIGURE 3. Details of the imitation mood.

FIGURE 4. The process of conversation.

with the opinions of the people who have followed the new events. Now, if the new event has challenging concepts, they will strive to post a topic about it by imitating the view of another person. The mathematical formulation of this mood can be expressed as:

$$X_{i new} = X_j + rand (-1, 1) \times \mathbb{R}$$
$$R = rand (0, 1) \times r$$
$$r = X_j - X_i$$
(1)

where, X_i represents the vector of the *j*th user's view (position) which is selected randomly and $i \neq j, X_i$ is the vector of the *i*th user's view. Also, rand(-1, 1) and rand(0, 1) are two random vectors in intervals [-1, 1] and [0, 1], respectively. In this mood, the new solution will be generated according to imitation space (Fig. 3), and this space is created using the radii of shock and popularity. The shock radius (R) reflects the amount of influence of the *j*th user, and its magnitude is considered as a multiple of r. The value of r shows the popularity radius of the *j*th user, which it is calculated based on the difference in the opinions of the *i*th and *j*th users. Also, the final effect of the shock radius is reflected by multiplying its value to a random vector in the interval of [-1,1], in which if the components of the random vector be positive, the shared view will be agreed with the *j*th opinion and vice versa. The process of the Imitation mood illustrated in Fig. 3. As can be seen, by using (1), the space of imitation will be formed, and then a point as a new view will find in the imitation space to share on the network.

2) MOOD 2: CONVERSATION

In social networks, users can interact with each other virtually and converse about different issues. The Conversation is a state in which users learn from each other and increase their information about events in the form of private chat. In Conversation, users find a sight about events through other views, and finally, due to the differences in opinions, they can draw a new vision of the issue according to (2):

$$X_{i new} = X_k + R$$

$$R = rand (0, 1) \times D$$

$$D = sign(f_i - f_i) \times (X_i - X_i)$$
(2)

where, X_k demonstrates the vector of the issue which is randomly chosen to speak about it, also, *R* is the effect of chat, which is based on the differences of opinion and represents the change in their beliefs about the issue (X_k) . *D* is the difference between the views of users and it is no parameters for such computation of difference among views, *rand* (0, 1) is a random vector in the interval [0,1], X_j is the vector of a randomly selected user's view for a chat and X_i is the vector of view of the *i*th user and it should be noted that $i \neq j \neq k$ which *j* and *k* are selected randomly. In addition, *sign* is the sign function and $sign(f_i - f_j)$ determines the moving direction of X_k by comparing f_i and f_j . The process of this decision mood is shown in Fig. 4. As can be noted, the user's view about the issue changes as a result of conversations with the *j*th user. The changed opinion is considered as a new view to

FIGURE 5. Process of changing the view during the disputation mood.

share with others. Changing the user's view about the events is considered as the relocation of the events.

3) MOOD 3: DISPUTATION

2

The disputation mood imagines a state that users explain their views about events to some other peoples and defend their opinion. In social networks, this work is done by different manners for instance in comments and groups sections. In the comments section, users see different views from other persons and maybe influenced by the expressed reasons. Besides, users can have a friendly relationship with others, so they create a virtual group to discuss their opinions on a specific subject.

In modeling this mood, a random number of users is considered as a commenter or member of a group and the new affected view in disputation is as:

$$X_{inew} = X_i + rand (0, 1) \times (M - AF \times X_i)$$
$$M = \frac{\sum_{t}^{N_r} X_t}{N_r}$$
$$AF = 1 + round(rand)$$
(3)

where, X_i is the view vector of *i*th user, *rand* (0, 1) is a random vector in the interval [0, 1], *M* is mean of views of commenters or friends in the group. *AF* is the Admission Factor, which indicates the insistence from users on their opinion in discussions with other persons and is a random integer that can be either 1 or 2. *round* (.) is a function that rounds its input to the nearest integer number, and *rand* is a random number in the interval [0, 1]. N_r is the commenters or group size and is a random number between 1 and N_{user} , and N_{user} is the number of users of network (Network size). This process illustrated in Fig. 5 in which at first, N_r number of users are selected randomly, then *M* is determined and finally by using (3), a new view can be generated.

4) MOOD 4: INNOVATION

Sometimes what users shares, is the product of their thoughts and experiences. In other words, when a person thinks about a specific issue, perhaps look at that issue in a novel way, and be able to understand the nature of that problem more accurately or can find a completely different view about it. A particular subject may have distinct features, and each of them affects the understanding of the problem. As a result, by changing the idea about one of them, the general concept of the subject will change, and a novel view will be achieved. This concept is employed to formulate the new opinion through Innovation mood as follows:

$$x_{i new}^{d} = t \times x_{j}^{d} + (1 - t) \times n_{new}^{d}$$

$$n_{new}^{d} = lb_{d} + rand_{1} \times (ub_{d} - lb_{d})$$

$$t = rand_{2}$$
(4)

where, *d* is the *d*th variable that is selected randomly in the interval [1, D], and D is the number of problem's variables. rand₁ and rand₂ are two random numbers in interval [0, 1]. Also, ub_d and lb_d are maximum and minimum values for the *d*th variable. n_{new}^d represents the new idea about the *d*th dimension of the problem. x_j^d is the current idea about *d*th variable presented by another user (*j*th user which selected randomly and $i \neq j$) and *i*th user wants to change it because of new idea (n_{new}^d) . Finally, the new view about the *d*th dimension will be created as x_{inew}^d is an interpolation about the current idea (x_j^d) and the new idea (n_{new}^d) .

Change in one dimension (x_{inew}^d) causes a general change in the main concept, and can be considered as a new view to share. This process can be modeled as follow:

$$X_{inew} = [x_1, x_2, x_3, \dots, x_{inew}^d, \dots, x_D]$$
(5)

As it is seen from (5), x_{inew}^d is a new insight into the issue under consideration from the *d*th viewpoint and replaced with the current view (x_i^d) . The outline of the construction of the new view shown in Fig. 6.

C. CHOOSING A DECISION MOOD TO CREATE THE NEW VIEW

In many algorithms that define several models to create new solutions, each agent of the algorithm must experience all of these models repeatedly. In contrast, in the SNS algorithm, only one of pre-defined four models, so-called decision

FIGURE 6. Process of expressing a new view about a new event.

FIGURE 7. Process of choosing decision moods.

moods, will be selected and executed randomly for each user in each iteration of the algorithm. In other words, all of the moods described here are real-world behaviors of users in social networks and it seems that the correct assumption is that only one of these moods occurs at a specific time (iteration) for users. As a result, the chance of occurrence of these moods is considered to be small by using a random procedure with a uniform distribution as shown in Fig. 7.

D. NETWORK RULES (CLAMPING THE ANSWERS)

Each social network defines a set of roles for its users and all users must consider these roles in shared views. Network rules in optimization algorithms, correspond to the limitations (LB and UB) of the problem's variables. Limiting the views of users is according to:

$$x_i = \min(x_i, ub_i)$$

$$x_i = \max(x_i, lb_i)$$
(6)

In (6), x_i is the *i*th variable of X_{inew} (new view), ub_i and lb_i are the *i*th component of LB and UB of problem.

E. PUBLISHING RULE (REPLACEMENT STRATEGY)

Due to the different moods of decision-making and their process, the opinion of each user will change, and the new view can be used. However, whether or not a new view can be shared will depend on its worth. In other words, if the new view is better than the current one, it will be accepted and shared, otherwise, it will be rejected. Therefore, to determine the value of new view, the objective function of X_{inew} must be calculated and then compared to the value of the current view (X_i) by (7):

for minimization problem :

$$X_{i} = \begin{cases} X_{i}, & f(X_{i}) < f(X_{i new}) \\ X_{i new}, & f(X_{i new}) \ge f(X_{i}) \end{cases}$$
(7)

F. THE TERMINATING CRITERION

In the metaheuristic algorithms, the search process will be finished according to one or a combination of some terminating criteria, and the best result will be reported. Some of these criteria are explained here:

- The mean of variation of the objective function across the entire network is less than the specified tolerance.
- The best objective function value in a specified number function evaluations (NFEs), unchanged.
- The best result reaches to a specified value. This value can be the global solution that determined in the literature or can be a threshold value, which is defined based on the required precision.
- After a maximum number of NFEs. This maximum value can be determined based on the required computational effort of problems.
- The value of the objective function does not change during the specified period of time. This period is the time in which the objective function do not change across the entire network.
- The optimization process time has reached the predetermined value. The process time is calculated using the CPU time and its threshold is defined based on the specifications of computer systems and objective function complexity.

G. IMPLEMENTATION OF ALGORITHM

The flowchart of the SNS algorithm is illustrated in Fig. 8, and according to the basic principles of social behavior in networks, the SNS algorithm is implemented in three levels including initialization, increasing popularity, and checking terminating conditions as follows:

1) LEVEL 1: INITIALIZATION

• Create initial network: To create an initial network, at first, the number of users, the maximum number of iterations, and limits of the variables are determined. Then the initial view for each user created as:

$$X_0 = LB + rand (0, 1) \times (UB-LB)$$
(8)

where, X_0 is the primitive view vector for each user, and *rand* (0, 1) is a random vector in the interval [0, 1]. *UB* and *LB* are the vector of maximum and minimum vector of the variables, respectively. Then, the objective function for each user's views is calculated.

FIGURE 8. The flowchart of the SNS algorithm.

2) LEVEL 2: INCREASING POPULARITY

For each user in each iteration of the algorithm, repeat the following steps:

- Select and implement a decision mood: Select randomly one of the four moods with uniform distribution and then follow the procedure of the selected mood.
- Control the limits of the new view: Control the new view by the network rules according to the Equation (6).
- Evaluation the new view: Calculate the objective function for the new view.
- Check the publishing role (Replacement strategy): If the new view is better than the current one, publish it. Otherwise, the new view will be rejected. (according to the Equation (7))

3) LEVEL 3: CHECKING TERMINATING CONDITIONS

• Terminating conditions: Repeat the increasing popularity level until a terminating criterion is achieved.

III. VALIDATION

This section investigates the performance of the proposed SNS in dealing with different types of optimization problems. Two comparative procedures are considered based on the properties of the utilized problems. In the first one, the algorithm is tested using traditional benchmark functions and compared with some successful methods from the literature, while in the second approach, the performance of the SNS algorithm is compared to some state-of-the-art algorithms in dealing with the problem of CEC 2017 special season.

A. TRADITIONAL BENCHMARK TEST FUNCTIONS

In this subsection, at first, the description of the 210 mathematical benchmark problem is presented. Then, the selected metaheuristic methods and their settings are reviewed. In the next subsection, the evaluation criteria and results are explained, and finally, nonparametric statistical methods are used to evaluate the performance of the new algorithm.

1) TEST FUNCTIONS

The No Free Lunch (NFL) theorem [40] has logically proved that no algorithm can solve all types of problems with different characteristics. To evaluate the capability of the proposed SNS in solving various sets of benchmark functions with different properties, a set of 210 mathematical problems has been used. Based on the dimensions and the type of these problems they have been categorized into three groups: Fixed-dimension, N-dimension, and CEC 2014 special season problems. These 210 benchmark functions are most of the well-known mathematical functions and are used here to show the capability of the SNS in solving further problems compared to other algorithms. Also, another application of these problems is to create a suitable dataset to be used in non-parametric statistical methods to examine the performance of the proposed algorithm more carefully.

Between these functions, F1 to F120 are Fixed-dimensional functions, and the first 92 functions have two dimensions while the other 28 functions have dimensions of 3 to 10, accordingly. The second group of benchmark functions consists of 60 test cases. In these problems, the dimensions are free and are called N-dimensional test functions. In this study, the dimensions are set to 30 (thirty dimensional (30D) functions) as F_{121} to F_{180} . The third group of problems consists of 30 difficult mathematical functions of the CEC 2014 special season. In CEC 2014, three rotated, thirteen shifted and rotated, six hybrid, and eight composite functions are considered which are named as F_{181} to F_{210} . It should be noted that the error values are considered for $F_{181}\xspace$ to F_{210} and the dimension of these benchmarks are set to 30 as well. The details of the discussed mathematical functions in these groups are all presented in Tables 11, 12, and 13 in Appendix A. In these tables, C, NC, D, ND, S, NS, Sc, NSC, U, and M denote Continuous, Non-Continuous, Differentiable, Non-Differentiable, Separable, Non-Separable, Scalable, Non-Scalable, Unimodal and Multi-modal, respectively. In addition, R, D, and Min describe the variables range, variables dimension, and the global minimum of the functions.

2) METAHEURISTIC ALGORITHMS FOR COMPARISON

To evaluate the overall performance of the SNS algorithm, various optimization methods are utilized as comparative strategies to provide a valid study. The selected metaheuristics for this purpose are the CS, TLBO, GWO, SOS, CSA, WOA, and CGO algorithms. Some of these algorithms are newly introduced and the most recent and improved versions of these algorithms are utilized, here. CS is a method that inherited its operator from GA, DE, and PSO, and in recent years has been recognized as a convenient optimization tool. TLBO, GWO, WOA and SOS are newly developed methods that have introduced new operators for solving optimization problems and have shown worthy performance in dealing with various optimization issues. CSA is a method that derived its operator from the PSO algorithm in which a

TABLE 2. Parameter summary of comparative strategies.

Metaheuristic	Parameter	Description	Value
CS	р	Discovery rate of alien eggs	0.25
CSA	ap	Awareness probability	0.10
	Fl	Flight length	2.00

global search version of PSO is combined with the mutation operator. Finally, CGO is a robust algorithm that innovated a novel method for solving optimization problems, and its results showed that it is capable of outperforming various metaheuristics in dealing with different optimization problems. According to this description, it can be concluded that these algorithms seem to be proper for comparing the performance of the SNS algorithm. Also, some of these algorithms have specific parameters that have a vital role in the performance of algorithms and they should be tuned carefully. Between selected methods, CS and CSA have some parameters, and a summary of these parameters is presented in Table 2. It is worth mentioning that these parameters have been selected based on the previously published works or by performing some sensitive analyses for selected examples, and our simulation results shows that the value of these parameters can be utilized with a high level of confidence. The other utilized metaheuristics are parameter free. One of the features of parameter-free algorithms is that they solve problems independently from the characteristics of search space. In other words, the parameter-free algorithms are closer to the definition of block box methods. While in parametric algorithms, the parameters should be tuned based on the characteristics of the search space and this task takes them away from this concept. In addition to this disadvantage, the process of parameter tuning will need more efforts and computational costs. In other words, to estimating the proper value of a parameter, different set of parameters should be tested in a specific interval (for example 10 different options). Therefore, each problem needs to be investigated 10 times, and consequently, their computational cost will increase with the same proportion and the total NFEs for each problem will be 10^* (required time for one run).

3) NUMERICAL RESULTS

This section presents the obtained results of the SNS algorithm and other methods in solving mathematical test functions. Due to the random nature of the metaheuristic algorithms, the results obtained from one run is not sufficient to evaluate the performance of an algorithm. Therefore, each of the algorithms used in this study runs 50 times independently for each problem. Also, the population size for all of the algorithm should not be affected by this value; however, since some results are reported from literature, it seems using another value is not fair. In other words, all of algorithms use the same population size for all problems to have a fair competition. In addition, determining the population size for each algorithm in dealing with each problem will be very tedious due to need more computational costs.

TABLE 3. Number of times that each method placed in each rank.

Туре	Algorithm	Rank1	Rank2	Rank3	Rank4	Rank5	Rank6	Rank7	Rank8
Fixed-dimension	CS	2	3	11	8	15	51	15	14
	TLBO	7	31	34	26	10	7	3	0
	GWO	20	5	0	4	1	1	41	48
	SOS	1	11	9	23	50	16	3	3
	CSA	7	11	11	30	23	10	16	11
	WOA	6	3	3	5	5	20	38	40
	CGO	19	20	42	12	9	8	2	4
	SNS	54	32	12	8	4	6	2	0
N-dimension	CS	0	2	3	7	2	5	18	23
	TLBO	1	6	28	6	8	9	2	0
	GWO	3	24	3	2	5	7	7	9
	SOS	3	4	7	12	24	2	2	5
	CSA	2	4	2	0	5	6	23	18
	WOA	7	4	2	5	7	25	6	4
	CGO	9	11	8	21	5	3	2	1
	SNS	35	5	5	8	4	3	0	0
CEC 2014	CS	4	7	2	3	7	3	3	1
	TLBO	0	3	7	5	6	5	1	3
	GWO	2	1	4	0	4	2	11	6
	SOS	1	9	3	10	4	2	1	0
	CSA	1	3	3	3	4	9	6	1
	WOA	0	0	1	1	0	4	5	19
	CGO	10	4	2	5	1	5	3	0
	SNS	11	5	7	3	4	0	0	0

TABLE 4. Average and overall ranks of algorithms.

	Fixed-dimension		N-dime	ension	CEC 2014		
Methods	Average rank	Overall rank	Average rank	Overall rank	Average rank	Overall rank	
CS	5.6125	6	6.51666667	8	3.93333333	4	
TLBO	3.26666667	3	3.81666667	3	4.6	5	
GWO	6.06666667	7	4.26666667	4	5.76666667	7	
SOS	4.56666667	4	4.43333333	5	3.56666667	3	
CSA	4.6625	5	6.36666667	7	5.06666667	6	
WOA	6.43333333	8	5	6	7.26666667	8	
CGO	3.225	2	3.4	2	3.33333333	2	
SNS	2.16666667	1	2.16666667	1	2.46666667	1	

Obviously, the number of different runs is necessary because of stochastic nature of these methods and if the algorithms treat more stable, performing a small number of runs becomes sufficient. Since the number of different runs does not affect the performance of algorithms and this is just used to create a data set of performance of algorithms, we use the same number reported in the literature.

The termination criterion is a combination of the third and fourth criteria that presented in section II.F. In fact, in prepared codes for implementing selected algorithms, we use a parameter to count the evaluations (CountEval) just after performing a function evaluation process, and a while structure is used for controlling this counter as Algorithm 1. Therefore, the number of evaluations can be controlled in all condition. The maximum number of function evaluations (*MaxEval*) is considered as 150000 for all of the metaheuristics (the maximum number of iterations determined based on the chosen *MaxEval*), and the tolerance of 1×10^{-12} from the optimal solution is considered as threshold value. According to this criterion, as soon as the best answer of the algorithms reaches a tolerance less than the predefined value, the algorithm stops, and the difference between the obtained solution and the global solution is considered zero, otherwise the search process will be continued until the maximum NFE reaches to 150000. Also, the NFEs reported for each algorithm will be counted until the algorithms meet each of the stop criteria.

The statistical results of 50 independent optimizations runs for the Fixed-dimension, N-dimension, and CEC2014 benchmark problems are presented in Tables 14, 15, and 16 in Appendix B, respectively. These results include minimum (Min), average (Mean), maximum (Max), standard deviation (Std. Dev.), and mean of NFEs of each algorithm in dealing

IEEE Access

Algorithm 1 The procedure of function evaluation counting in algorithms.

- 1 %Main Loop of Algorithms
- 2 *MaxEval* is defined as the maximum number of function evaluations.
- 3 CountEval = 0
- 4 while CountEval ≤ MaxEval or reach the threshold value from the optimal solution do

```
5:6X_{new} is generated during the algorithm process7:8F_{new} = \cot(X_{new}) % Function Evaluation9CountEval \leftarrow CountEval + 1% repeat for each X_{new}10:11end while
```

TABLE 5. Wilcoxon signed ranks test results. Comparison Type \mathbf{R}^+ R-Т p-value SNS vs CS 226 0.854172 Fixed-dimension 209 209 N-dimension 89 1186 89 1.19E-07 CEC 2014 184 281 184 0.318490 SNS vs TLBO **Fixed-dimension** 105 246 105 0.073364 N-dimension 88 263 88 0.026261 CEC 2014 63 402 63 0.000489 SNS vs GWO Fixed-dimension 173 3832 173 7.14E-14 N-dimension 18 447 18 1.02E-05 CEC 2014 51 414 51 0.000189 SNS vs SOS Fixed-dimension 184 281 184 0.318490 N-dimension 85 266 85 0.021532 CEC 2014 121 314 121 0.036920 SNS vs CSA 202 263 202 Fixed-dimension 0.530440 N-dimension 24 1152 24 7.26E-09 CEC 2014 81 384 81 0.001832 SNS vs WOA Fixed-dimension 257 3838 257 5.82E-13 422 74 N-dimension 74 6.50E-05 CEC 2014 465 0 0 1.73E-06 312 216 SNS vs CGO Fixed-dimension 216 0.369425 N-dimension 112 164 112 0.429067 CEC 2014 232 203 203 0.753873

with each of the benchmark problems. Also, the last row of each function shows the rank of algorithms. The ranking is based on the value of the Means. Besides, if the Means of several algorithms were the same in solving one problem, the ranking was based on the NFEs. The mean of results represents the accuracy of the algorithms, and NFEs is a criterion that determines their computational cost. Therefore, both of these criteria are necessary to be considered in the ranking process to determine which algorithm is capable of providing robust performance in dealing with optimization problems. Besides, in ties (a situation in which both the Means and NFEs are equal), average ranks are computed. The

TABLE 6. Friedman test results.

	Type of	Type of problem						
	Fixed-d	imension	N-dimer	nsion	CEC 20	14		
Methods	R	Rank	R	Rank	R	Rank		
CS	3.74	2	6.05	7	3.93	4		
TLBO	3.76	3	3.84	3	4.6	5		
GWO	6.54	8	4.91	6	5.76	7		
SOS	3.85	4	3.91	4	3.56	3		
CSA	3.99	5.5	6.12	8	5.06	6		
WOA	6.44	7	4.38	5	7.26	8		
CGO	3.99	5.5	3.46	2	3.33	2		
SNS	3.67	1	3.3	1	2.46	1		
Statistic	213.4		85.11		81.38			
p-value	1E-42		1E-15		7E-15			

TABLE 7. Friedman aligned ranks test results.

	Type of	Type of problem							
	Fixed-di	mension	N-dimen	sion	CEC 2014				
Methods	R	Rank	R	Rank	R	Rank			
CS	377.41	1	310.49	7	104	4			
TLBO	423.03	4	211.96	4	107.96	5			
GWO	697.99	8	246.40	6	169.6	7			
SOS	413.01	3	197.60	2	85.33	1			
CSA	425.08	5	340.5	8	128.36	6			
WOA	678.17	7	222.2	5	186.63	8			
CGO	428.97	6	204.36	3	94.66	3			
SNS	400.31	2	190.45	1	87.43	2			
Statistic	236.38		89.913		74.02				
p-value	230.38 2 E-47		1 E-16		74.02 2 E-13				

TABLE 8. Quade test results.

	Type of	Type of problem						
	Fixed-d	imension	N-dimer	nsion	CEC 201	4		
Methods	R	Rank	R	Rank	R	Rank		
CS	3.60	2	6.27	7	3.69	4		
TLBO	3.71	3	3.73	4	4.34	5		
GWO	6.92	8	4.96	6	6.13	7		
SOS	3.74	4	3.49	3	3.67	3		
CSA	3.81	5	6.63	8	5.11	6		
WOA	6.73	7	4.36	5	7.52	8		
CGO	3.92	6	3.39	2	2.77	2		
SNS	3.53	1	3.13	1	2.73	1		
Statistic	42.19		17.32		15.97			
p-value	4E-7		0.015		0.025			

ties are obtained in F_4 , F_{16} , F_{17} , F_{45} , F_{97} , F_{99} , F_{122} , F_{178} , and F_{225} , and the corresponding ranks are bolded and underlined.

According to these results, the SNS algorithm has a comparative result compared to the other methods. In most cases, the SNS achieved the first rank. Also, the number of times that each algorithm obtained each of the ranks is counted for

TABLE 9. Summary of the CEC 2017 test functions.

No.	Function	D	Min
F211, F240, F269, F298	Shifted and Rotated Bent Cigar Function	10, 30, 50, 100	0
-	Removed by committee	-	-
F212, F241, F270, F299	Shifted and Rotated Zakharov Function	10, 30, 50, 100	0
F213, F242, F271, F300	Shifted and Rotated Rosenbrock's Function	10, 30, 50, 100	0
F214, F243, F272, F301	Shifted and Rotated Rastrigin's Function	10, 30, 50, 100	0
F215, F244, F273, F302	Shifted and Rotated Expanded Scaffer's F6 Function	10, 30, 50, 100	0
F216, F245, F274, F303	Shifted and Rotated Lunacek Bi_Rastrigin Function	10, 30, 50, 100	0
F217, F246, F275, F304	Shifted and Rotated Non-Continuous Rastrigin's Function	10, 30, 50, 100	0
F218, F247, F276, F305	Shifted and Rotated Levy Function	10, 30, 50, 100	0
F219, F248, F277, F306	Shifted and Rotated Schwefel's Function	10, 30, 50, 100	0
F220, F249, F278, F307	Hybrid Function 1 (N=3)	10, 30, 50, 100	0
F221, F250, F279, F308	Hybrid Function 2 (N=3)	10, 30, 50, 100	0
F222, F251, F280, F309	Hybrid Function 3 (N=3)	10, 30, 50, 100	0
F223, F252, F281, F310	Hybrid Function 4 (N=4)	10, 30, 50, 100	0
F224, F253, F282, F311	Hybrid Function 5 (N=4)	10, 30, 50, 100	0
F225, F254, F283, F312	Hybrid Function 6 (N=4)	10, 30, 50, 100	0
F226, F255, F284, F313	Hybrid Function 6 (N=5)	10, 30, 50, 100	0
F227, F256, F285, F314	Hybrid Function 6 (N=5)	10, 30, 50, 100	0
F228, F257, F286, F315	Hybrid Function 6 (N=5)	10, 30, 50, 100	0
F229, F258, F287, F316	Hybrid Function 6 (N=6)	10, 30, 50, 100	0
F230, F259, F288, F317	Composition Function 1 $(N=3)$	10, 30, 50, 100	0
F231, F260, F289, F318	Composition Function 2 (N=3)	10, 30, 50, 100	0
F232, F261, F290, F319	Composition Function 3 $(N=4)$	10, 30, 50, 100	0
F233, F262, F291, F320	Composition Function 4 $(N=4)$	10, 30, 50, 100	0
F234, F263, F292, F321	Composition Function 5 $(N=5)$	10, 30, 50, 100	0
F235, F264, F293, F322	Composition Function 6 $(N=5)$	10, 30, 50, 100	0
F236, F265, F294, F323	Composition Function 7 $(N=6)$	10, 30, 50, 100	0
F237, F266, F295, F324	Composition Function 8 $(N=6)$	10, 30, 50, 100	0
F238, F267, F296, F325	Composition Function 9 $(N=3)$	10, 30, 50, 100	0
F239, F268, F297, F326	Composition Function 10 (N=3)	10, 30, 50, 100	0

FIGURE 9. The average rank of advanced algorithms compared to the SNS algorithm for CEC 2017 problems.

fixed-dimension, n-dimension, and CEC 2014 problems and presented in Table 3 (not counted in ties). As it is seen, in dealing with 120 fixed-dimension problems, the SNS method placed in the first rank 54 times. Also, the SNS method has never been ranked as last one. In solving 60 n-dimension benchmark problems, the SNS gained the first rank 35 times, without being in the last two ranks. In dealing with 30 CEC 2014 problems, the SNS obtained the first rank 11 times without placing in the last three ranks.

As the overall rank of each algorithm, the average of ranks is calculated and presented in Table 4. Based on this table, it can be understood that the SNS algorithm is able to obtain the first rank in all three groups of problems. This rank indicates the superiority of the SNS algorithm over other selected algorithms. Also, despite the NFL theorem stating that there is no way to solve all the problems, the SNS algorithm has been able to solve more problems than other algorithms.

4) NONPARAMETRIC STATISTICAL ANALYSIS

In this section, nonparametric statistical methods are used to compare the SNS algorithm with the other algorithms. Usually, these methods are employed to decide when one algorithm is considered better than another one. Nonparametric statistical tests are separated into two groups: pairwise comparisons and multiple comparisons. The pairwise comparison is a comparison between two algorithms, while the multiple comparisons compare more than two algorithms. In this paper, four well-known nonparametric tests, the Wilcoxon signed-rank test (pairwise comparison),the Friedman test, Friedman Aligned Ranks, and Quade tests (multiple comparisons), are conducted for this purpose [41].

The statistical hypothesis provide insight to conclude inferences about the data and samples. For this reason, two hypotheses, the null hypothesis H₀ and the alternative hypothesis H₁ are defined. The null hypothesis, H₀, states that there is no difference between the two algorithms, whereas the alternative hypothesis, H₁, indicates a difference. To determine the probability of rejecting the null hypothesis, a level of statistical significance (α) is defined. Also, in most of cases, instead of using α , the p-value is defined, which is the probability of the truth of H₀. If the p-value will be less than

D		EBOwithCMAR	LSHADE-cnEpSin	MM_OED	PPSO	SNS
	T_0	0.0413	0.1093	2.157784	0.276	0.0535
	T_1	0.8218	0.8391	0.146416	2.065	1.42135532
10	\widehat{T}_2	7.5794	2.1835	6.704923	66.085	8.374587613
	$\widehat{T}_2 - T_1 / T_0$	163.622276	12.30009149	3.039464098	231.9565217	129.9669587
	T_1	1.1507	1.057	0.592848	4.361	2.007279523
30	\widehat{T}_2	6.591	3.6724	20.84485	72.468	9.505778715
	$\widehat{T}_2 - T_1 / T_0$	131.7263923	23.92863678	9.385555737	246.7644928	140.1588634
	T_1	1.8792	1.4338	1.606688	5.148	3.027281319
50	\widehat{T}_2	8.7886	3.7066	38.51665	95.842	10.32139432
	$\widehat{T}_2 - T_1 / T_0$	167.2978208	20.79414456	17.10549434	328.6014493	136.3385608
	T_1	5.6887	3.0237	5.776893	12.463	8.241336589
100	\widehat{T}_2	18.4969	7.7564	72.62159	152.411	15.43096949
	$\widehat{T_2} - T_1 / T_0$	310.125908	43.30009149	30.97840053	507.057971	134.3856617

 TABLE 10. Computational complexity of the SNS algorithm and other methods.

FIGURE 10. A presentation of the SNS operators in dealing with F121.

the α , then H₀ is rejected, and whatever the p-value is smaller, the null hypothesis is rejected with more probability [41].

The Wilcoxon signed-rank test is a non-parametric statistical test and used to compare two samples [42]. In optimization, the Wilcoxon signed-rank test aims to detect differences in the performance of two different algorithms by calculating the differences between their ranks on average results from solving the problems. The results of the Wilcoxon signed ranked test for all the pairwise comparisons concerning the SNS for studied benchmark functions are presented in Table 5. In all experiments, the level of significance, α , is considered to be equal to 0.05.

In Wilcoxon signed ranked test, if the R^+ is less than the R^- the SNS performs better than the compared method. According to these results, R^+ in all cases is less than $R^$ except for CGO in solving the CEC 2014 problems. These results show that the SNS performed better than all methods in solving all types of problems. In addition, in solving CEC 2014 problems comparing to the CGO, the difference between T and R^+ is not very large. Also, the p-values show a significant improvement over the CS for n-dimension functions, TLBO for all types of problems, GWO for all type of problems, SOS for n-dimension and CEC 2014 functions, CSA for n-dimension and CEC 2014 functions, WOA for all type of problems.

The result of the Friedman test is shown in Table 6 for ranking the used algorithms. The Friedman test is a non-parametric statistical test developed by Milton Friedman [43]. This method is used to compare several sets of data by determining the average rank of them. According to the Friedman test, the SNS placed in the first rank in all types of problems. In fixed-dimension problems, the R statistic of the SNS is not so different from the results of CS and TLBO because just the Mean result of methods is used as a metric for compression of the performance of algorithms, and the NFEs are not considered. If the effect of NFEs is considered, the result of this test changed to what is shown in Tables 3 and 4. In both conditions, the SNS ranked first, and the result is the same for the SNS algorithm.

In Friedman aligned rank test, the average of each set of values are calculated and then subtracted from the results [44]. The ranks are based on the shifted values, and called aligned ranks. The results are presented in Table 7. According to the results of the Friedman aligned ranks test,

FIGURE 11. The convergence curves of unimodal functions.

in dealing with Fixed-dimension problems, the SNS gains the second rank, and the CS algorithm was placed in the first rank. In solving N-dimension benchmarks, the SNS achieved the first rank, and the SOS algorithm was placed in the second rank. Also, in solving the CEC 2014 special season, the Friedman aligned rank method ranked the SOS algorithm as the first algorithm and placed the SNS algorithm in the second rank.

Quade test is the other non-parametric statistical method introduced by Dana Quade in 1979 [45]. In this method, the effect of the weight of the rows is emphasized. The Quade test is an extension of the Wilcoxon signed-rank test and often performs more effectively than the Friedman test. The results of the Quade test are presented in Table 8. The Quade test shows that the SNS method can earn the first rank in all type of problems compared to other methods. Also, in solving Fixed-dimension problems, the CS placed in the second rank while CGO is on the second place for the other problems.

B. COMPARING TO STATE-OF-THE-ART ALGORITHMS

In this subsection, the CEC 2017 special season problems are considered to compare the performance of the

orthogonal experimental design (MM_OED) [48], and proactive particles in swarm optimization (PPSO) [49]. The list of 30 mathematical functions presented in Table 9. Also, the mathematical details of these functions are presented by the CEC 2017 competition committee [39]. These mathematical functions are consisting of three unimodal and seven multimodal shifted and rotated functions, ten hybrid functions and ten composite functions. These test functions are considered in four dimensions of 10, 30, 50, and 100.
The statistical results of the SNS and seven other successful algorithms in solving 10-, 30-, 50- and 100- dimension problems are presented in Tables 17, 18, 19, and 20 in

algorithms in solving 10-, 30-, 50- and 100- dimension problems are presented in Tables 17, 18, 19, and 20 in Appendix C, respectively. These results are based on the 51 independent runs. The tolerance of 1×10^{-8} from the optimal solution is considered as threshold value The total number of function evaluations for each test problem is taken as $10000 \times D$, where D is the problem dimension. The results confirm that the SNS method can provide very

SNS algorithm with four other state-of-the-art algorithms

including effective butterfly optimizer with covariance matrix adapted retreat (EBOwithCMAR) [46], ensemble sinusoidal

differential covariance matrix adaptation with Euclidean

neighborhood (LSHADE-cnEpSin) [47], multi-method based

FIGURE 12. The convergence curves of multimodal functions.

FIGURE 13. Idealized schema of global search.

comparative results in solving these complex optimization problems.

The selected techniques for comparing in this step are some advanced methods, for example LSHADE-cnEpSin is one the very advanced method with some additional tools. Its framework is based on the following algorithms:

- Self-adapting control parameters differential evolution (jDE) is an adaptive version of the differential evolution (DE) in which the crossover rate (Cr) and mutation factor (F) are determined adaptively.

- The adaptive differential evolution with an optional external archive (JADE) can be considered as a new version of jDE with two modifications. The first one is related to the generation Cr and F, and the second one is on using a new formulation for the mutation.
- Success-history-based adaptive differential evolution (SHADE) is an improved version of JADE in which Cr and F are adapted based on historical memory. LSHADE is an enhanced version of SHADE that equipped the SHADE with the Linear Population Size Reduction (LPSR) strategy.
- LSHADE-cnEpSin is a method that develops a new version of LSHADE using Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood.

As it is clear the final developed method is somehow very complex and improved variant compared to a new simple algorithm such as SNS that aims to reach good result but save the simplicity for implementing.

Also, user-friendliness and simplicity are essential features of this new algorithm that are considered in its framework. While adding some features of the advanced algorithm to

FIGURE 14. Global search process of nine benchmark functions.

the new algorithm can improve its performance. As a result, the point worth mentioning is that the SNS may not outperform all of these methods and the main aim of this comparison is to determine the level of the SNS despite its simplicity. This comparison determines the level of efficiency of the SNS algorithm among advanced methods in solving complex problems in which the complexity of these methods in implementation is increased due to the benefit from special techniques in their structures. Fig. 9 presents the average rank of advanced algorithms compared to the SNS algorithm for CEC 2017 problems. As it is clear although the SNS is not the best algorithm, it is among the three best ones.

The CEC 2017 committee [39] proposed a simple and efficient procedure to study the computational time and complexity of algorithms in dealing with the CEC 2017 problems,

VOLUME 9, 2021

as presented in Algorithm 2. According to this procedure, the complexity is reflected by calculating four times: T_0 , T_1 , T_2 , and \hat{T}_2 . The T_0 is the computing time of the test program in lines 1 to 12 in Algorithm 2. The T_1 is given by the time of 200000 evaluations of F_{18} by itself with dimensions D (lines 13-18). T_2 is the total computing time of the algorithm in 200000 evaluations of the same D dimensional F_{18} (lines 21-43), and \hat{T}_2 indicates the mean values of five different runs of T_2 (lines 19-46). To calculate the complexity time of other algorithms, lines 23-43 should be changed based on their procedure. The computational times are calculated for different dimensions, and the comparative complexity results of the SNS algorithm and other methods are presented in Table 10. According to these results, the SNS algorithm can perform competitively compared to other metaheuristics.

TABLE 11. Details of the fixed-dimensional benchmark mathematical functions.

	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [41] \\ [41] \\ [42] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	$\begin{array}{c} -200\\ -195.629\\ -4.590102\\ -2.02180^{\prime\prime}\\ 1\\ 0\\ 0\\ 0\\ -106.7642\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
$ F_1 = Ackley 4 or Modified Ackley C, D, NS, NS, M [-1,2] and [-1,1] 2 [41] -2, F_4 = Ackingma Function C, D, NS, NS, NS, M [-1,2] and [-1,1] 2 [41] -2, M = Model Standard Standa$	F_3 Ackley 4 or Modified Ackley C, D, NS, Sc, M $[-32, 32]$ 2 F_4 Adjiman Function C, D, NS, NSc, M $[-1, 2]$ and $[-1, 1]$ 2 F_5 Bartels Conn Function C, D, NS, NSc, M $[-1, 2]$ and $[-1, 1]$ 2 F_5 Bartels Conn Function C, D, NS, NSc, M $[-4.5, 4.5]$ 2 F_7 Becker-Lago function S $[-10, 10]$ 2 F_8 Biggs EXP2 Function C, D, NS, NSc, M $[0, 20]$ 2 F_9 Bird Function C, D, NS, NSc, M $[0, 20]$ 2 F_{10} Bohachevsky 1 Function C, D, NS, NSc, M $[-100, 100]$ 2 F_{12} Bohachevsky 2 Function C, D, NS, NSc, M $[-100, 100]$ 2 F_{13} Booth Function C, D, NS, NSc, M $[-10, 10]$ 2 F_{14} Box-Betts Quadratic Sum C, D, NS, NSc, M $[-5, 15]$ 2 F_{14} Branin RCOS Function C, D, NS, NSc, M $[-5, 10]$ and $[0, 15]$ 2 F_{15} Branin RCOS Function C, D, NS, NSc, M $[-5, 10]$ and $[0, 12]$ 2 <t< td=""><td>$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [42] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$</td><td>-4.590102 -2.02180 1 0 0 -106.7643 0 0 0 0 0 0.397887 5.559037 0 0 0</td></t<>	$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [42] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	-4.590102 -2.02180 1 0 0 -106.7643 0 0 0 0 0 0.397887 5.559037 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \\ [41] \\ [42] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	-2.02180 1 0 0 -106.764 0 0 0 0 0 0 0 0 0 0 0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \\ [41] \\ [42] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	-2.02180 1 0 0 -106.764 0 0 0 0 0 0 0 0 0 0 0 0 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \end{bmatrix}$ $\begin{bmatrix} 41 \\ [42] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	$ \begin{array}{c} 1\\ 0\\ 0\\ -106.7643\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
	M M F_6 Beale Function C, D, NS, NSc, U $[-4.5, 4.5]$ 2 F_7 Becker-Lago function S $[-10, 10]$ 2 F_8 Biggs EXP2 Function C, D, NS, NSc, M $[0, 20]$ 2 F_9 Bird Function C, D, NS, NSc, M $[-2\pi, \pi]$ 2 F_{10} Bohachevsky 1 Function C, D, S, NSc, M $[-100, 100]$ 2 F_{11} Bohachevsky 2 Function C, D, NS, NSc, M $[-100, 100]$ 2 F_{12} Bohachevsky 3 Function C, D, NS, NSc, M $[-100, 100]$ 2 F_{13} Booth Function C, D, NS, NSc, M $[-100, 100]$ 2 F_{14} Box-Betts Quadratic Sum C, D, NS, NSc, M $[0.9 1.2]$ F_{14} Box-Betts Quadratic Sum C, D, NS, NSc, M $[-5, 10]$ and $[0, 15]$ 2 F_{16} Branin RCOS Function C, D, NS, NSc, M $[-5, 15]$ 2 F_{16} Branin RCOS 2 Function C, D, NS, NSc, M $[-5, 10]$ and $[0, 12]$ 2 F_{17} Brent Function C, D, NS, NSc, M $[-5, -5]$ and $[-3, 2]$	$ \begin{bmatrix} 41 \\ 42 \\ 41 \\ 41 \\ 41 \\ 41 \\ 41 \\ 41 \\$	$\begin{array}{c} 0\\ 0\\ -106.764:\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0.397887:\\ 5.559037\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 42] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	$\begin{array}{c} 0\\ 0\\ -106.764:\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0.397887:\\ 5.559037\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 42] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	$\begin{array}{c} 0\\ 0\\ -106.764 \\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$
	F8 Biggs EXP2 Function C, D, NS, NSc, M $[0, 20]$ 2 F9 Bird Function C, D, NS, NSc, M $[-2\pi, \pi]$ 2 F10 Bohachevsky 1 Function C, D, NS, NSc, M $[-2\pi, \pi]$ 2 F11 Bohachevsky 2 Function C, D, S, NSc, M $[-100, 100]$ 2 F12 Bohachevsky 3 Function C, D, NS, NSc, M $[-100, 100]$ 2 F12 Bohachevsky 3 Function C, D, NS, NSc, M $[-100, 100]$ 2 F13 Booth Function C, D, NS, NSc, M $[-100, 100]$ 2 F14 Box-Betts Quadratic Sum C, D, NS, NSc, M $[0.12]$ 911.2] and 2 F15 Branin RCOS Function C, D, NS, NSc, M $[0.91.2]$ 2 F16 Branin RCOS 2 Function C, D, NS, NSc, M $[-5, 15]$ 2 F17 Brent Function C, D, NS, NSc, M $[-5, 10]$ and $[0, 12]$ 2 F18 Bukin 2 Function C, ND, S, NSc, M $[-15, -5]$ and $[-3, 2]$ 3] F20 Bukin 6 Function C, ND, NS, NSc, M $[-15, -5]$ and $[-3, 2]$ 3] F21	$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	0 -106.764: 0 0 0 0 0.397887 5.559037 0 0 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	-106.764: 0 0 0 0.3978874 5.559037 0 0 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0.397887\\ 5.559037\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{array}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0.397887\\ 5.559037\\ 0\\ 0\\ 0\\ 0\\ 0\\ \end{array}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	0 0 0.3978874 5.559037 0 0 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} 41 \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \\ [41] \end{bmatrix}$	0 0 0.3978874 5.559037 0 0 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[41] [41] [41] [41] [41] [41] [41] [41]	0 0.397887 5.559037 0 0 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[41] [41] [41] [41] [41] [41] [41] [41]	0 0.3978874 5.559037 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 10.9 & 1.2 \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & $	[41] [41] [41] [41] [41] [41] [41]	0.397887 5.559037 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 10.9 & 1.2 \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & 1.2 \\ \\ \end{bmatrix} $ $ \begin{bmatrix} 10.9 & $	[41] [41] [41] [41] [41] [41] [41]	0.397887 5.559037 0 0
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	[41] [41] [41] [41] [41] [41]	0.397887 5.559037 0 0
	F_{16} Branin RCOS 2 Function C, D, NS, NSc, M $[-5, 15]$ 2 F_{17} Brent Function C, D, NS, NSc, U $[-10, 10]$ 2 F_{18} Bukin 2 Function C, D, NS, NSc, M $[-5, 10]$ and $[0 12]$ 2 F_{19} Bukin 4 Function C, ND, S, NSc, M $[-5, -5]$ and $[-3, 2]$ 3] F_{20} Bukin 6 Function C, ND, NS, NSc, [-15, -5] and $[-3, 2]$ 3] F_{21} Camel Function-Three Hump C, D, NS, NSc, M $[-5, 5]$ 2	[41] [41] [41] [41] [41] [41]	5.559037 0 0
$ F_{16} & Brent Function C, D, NS, NSc, U [-10, 10] 2 [41] \\ F_{16} & Bukin 2 Function C, D, NS, NSc, M [-5] and [0 12] 2 [41] \\ F_{10} & Bukin 4 Function C, ND, S, NSc, M [-5] and [-3, 2 [41] \\ $	F_{17} Brent Function C, D, NS, NSc, U $[-10, 10]$ 2 F_{18} Bukin 2 Function C, D, NS, NSc, M $[-510]$ and $[012]$ 2 F_{19} Bukin 4 Function C, ND, S, NSc, M $[-510]$ and $[-3, 2]$ 3] F_{20} Bukin 6 Function C, ND, NS, NSc, [-15, -5] and [-3, 2] 3] F_{21} Camel Function-Three Hump C, D, NS, NSc, M $[-5, 5]$ 2	[41] [41] [41] [41] [41]	0 0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{18} Bukin 2 Function C, D, NS, NSc, M [-5 10] and [0 12] 2 F_{19} Bukin 4 Function C, ND, S, NSc, M [-15, -5] and [-3, 2 3] F_{20} Bukin 6 Function C, ND, NS, NSc, [-15, -5] and [-3, 2 3] F_{21} Camel Function-Three Hump C, D, NS, NSc, M [-5, 5] 2	[41] [41] [41] [41]	0 0
	F_{19} Bukin 4 Function C, ND, S, NSc, M $[-15, -5]$ and $[-3, 2]$ F_{20} Bukin 6 Function C, ND, NS, NSc, M $[-15, -5]$ and $[-3, 2]$ M 3] F_{21} Camel Function-Three Hump C, D, NS, NSc, M $[-5, 5]$ 2	[41] [41] [41]	0
	F_{19} Bukin 4 Function C, ND, S, NSc, M $[-15, -5]$ and $[-3, 2]$ F_{20} Bukin 6 Function C, ND, NS, NSc, [-15, -5] and [-3, 2] M 3] F_{21} Camel Function-Three Hump C, D, NS, NSc, M $[-5, 5]$ 2	[41] [41] [41]	0
	3] F_{20} Bukin 6 Function C, ND, NS, NSc, $[-15, -5]$ and $[-3, 2$ M 3] F_{21} Camel Function-Three Hump C, D, NS, NSc, M $[-5, 5]$ 2	[41] [41]	
	F_{20} Bukin 6 FunctionC, ND, NS, NSc, $[-15, -5]$ and $[-3, 2]$ M 3] F_{21} Camel Function-Three HumpC, D, NS, NSc, M $[-5, 5]$ 2	[41]	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$M \qquad 3]$ $F_{21} \qquad Camel Function-Three Hump \qquad C, D, NS, NSc, M \qquad [-5, 5] \qquad 2$	[41]	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F_{21} Camel Function-Three Hump C, D, NS, NSc, M $[-5, 5]$ 2		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	F_{21} Camel Function-Three Hump C, D, NS, NSc, M $[-5, 5]$ 2		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ_{22} Canter Function-Six Hump C, D, NS, NSC, M $[5, 5]$ 2	E411	-1.0316
			-24.15682
		[41]	-2000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{25} Chen V Function C, D, NS, NSc, M [-500, 500] 2	[41]	-2000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{26} Chichinadze Function C. D. S. NSc. M [- 30, 30] 2	[41]	-43.72192
			-2.062612
			0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[41]	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{30} Deckkers–Aarts Function C, D, NS, NSc, M [-20, 20] 2	[41]	-24776.52
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{31} Easom Function C, D, S, NSc, M [-100, 100] 2	[41]	-1
Function1.7Figurate FunctionC, D, NS, Sc, M[-5, 5]2[41]Figurate FunctionC, D, NS, Sc, M[-5, 5]2[41]Figurate FunctionC, D, NS, NSc, M[-1, 1]2[41]Figurate FunctionC, D, NS, NSc, M[-1, 1]2[41]-1Figurate FunctionC, D, NS, NSc, M[-1, 1]2[41]Figurate Function <th< td=""><td></td><td></td><td></td></th<>			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		[41]	1.7127804
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		E 4 1 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0
	F_{34} Egg Holder C, D, NS, Sc, M [-512+512] 2	[41]	-959.640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F ₃₅ Exp 2 Function S [0, 20] 2	[42]	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.064470
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[41]	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{39} Hansen Function C, D, S, NSc, M [-10, 10] 2	[41]	-166.029
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{40} Himmelblau Function C. D. NS, NSc. M [-5, 5] 2	[41]	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-2.3458
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			124.3621
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			-0.67366
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F_{44} Leon Function C, D, NS, NSc, U [-1.2, 1.2] 2	[41]	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-176.541
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-176.137
F_{48} McCormick Function C, D, NS, NSc, M $[-1.5, 4]$ and $[-3, 2]$ $[41]$ F_{49} Mexican hat Function NS $[-10, 10]$ 2 $[42]$ -16 F_{50} Michaelewicz 2 Function S $[0, \pi]$ 2 $[42]$ -16 F_{51} Mishra 3 Function C, D, NS, NSc, M $[-10, 10]$ 2 $[41]$ -0 F_{52} Mishra 4 Function C, D, NS, NSc, M $[-10, 10]$ 2 $[41]$ -0 F_{53} Mishra 5 Function C, D, NS, NSc, M $[-10, 10]$ 2 $[41]$ -0 F_{54} Mishra 6 Function C, D, NS, NSc, M $[-10, 10]$ 2 $[41]$ -2 F_{55} Mishra 10 Function C, D, NS, NSc, M $[-10, 10]$ 2 $[41]$ -2 F_{56} Mishra 10 Function C, D, NS, NSc, M $[-10, 10]$ 2 $[41]$ -2 F_{57} Parsopoulos Function C, D, NS, NSc, M $[-10, 10]$ 2 $[41]$ -0 F_{58} Pen Holder Function C, D, NS, NSc, M $[-10, 10]$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[41]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			-1.91322
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{49} Mexican hat Function NS $[-10, 10]$ 2	[42]	-19.9666
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-1.8013
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-0.18465
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			-0.19941
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[41]	-1.01983
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		[41]	-2.28395
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[41]	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	F_{58} Pen Holder Function C, D, NS, NSc, M [-11, 11] 2	[41]	-0.96353:
F_{60} Price 1 Function C, ND, S, NSc, M [-500, 500] 2 [41] F_{61} Price 2 Function C, D, NS, NSc, M [-10, 10] 2 [41] F_{62} Price 3 Function C, D, NS, NSc, M [-500, 500] 2 [41]			0.9
F_{61} Price 2 Function C, D, NS, NSc, M $[-10, 10]$ 2 [41] F_{62} Price 3 Function C, D, NS, NSc, M $[-500, 500]$ 2 [41]			
F ₆₂ Price 3 Function C, D, NS, NSc, M [-500, 500] 2 [41]			0
			0.9
	F ₆₂ Price 3 Function C, D, NS, NSc, M [-500, 500] 2	[41]	0
		[41]	0
			-3873.724

TABLE 11. (Continued.) Details of the fixed-dimensional benchmark mathematical functions.

F ₆₅	Ripple 1 Function	NS	[0, 1]	2	[42]	-2.2
F ₆₆	Ripple 25 Function	NS	[0, 1]	2	[42]	-2
F ₆₇	Rosenbrock Modified Function	C, D, NS, NSc, M	[-2, 2]	2	[41]	34.040243
F_{68}	Rotated Ellipse Function	C, D, NS, NSc, U	[- 500, 500]	2	[41]	0
F ₆₉	Rotated Ellipse 2 Function	C, D, NS, NSc, U	[-500, 500]	2	[41]	0
F ₇₀	Rump Function	C, D, NS, NSc, U	[-500, 500]	2	[41]	0
F ₇₁	Scahffer 1 Function	C, D, NS, NSc, U	[-100, 100]	2	[41]	0
F ₇₂	Scahffer 2 Function Scahffer 3 Function	C, D, NS, NSc, U	[-100, 100]	2 2	[41]	0 0.0015669
F ₇₃ F ₇₄	Scahffer 4 Function	C, D, NS, NSc, U C, D, NS, NSc, U	[-100, 100] [-100, 100]	$\frac{2}{2}$	[41] [41]	0.292579
F ₇₅	Schwefel 2.6 Function	C, D, NS, NSc, U	[-100, 100]	2	[41]	0.292579
F ₇₆	Schwefel 2.36 Function	C, D, S, Sc, M	[0, 500]	2	[41]	-3456
F ₇₇	Table 1/Holder Table 1	C, D, S, NSc, M	[-10, 10]	2	[41]	5150
- //	Function	0, 2, 3, 1000, 111	[10,10]	-	[]	-26.92034
F ₇₈	Table 2/Holder Table 2	C, D, S, NSc, M	[-10, 10]	2	[41]	
	Function					-19.2085
F ₇₉	Table 3/Carrom Table Function	C, D, NS, NSc, M	[-10, 10]	2	[41]	-24.15682
F ₈₀	Testtube Holder Function	C, D, S, NSc, M	[-10, 10]	2	[41]	-10.8723
F ₈₁	Tripod Function	C, D, NS, NSc, M	[-100, 100]	2	[41]	0
F ₈₂	Ursem 1 Function	S	[-2.5, 3] and $[-2,]$	2	[42]	
			2]			-4.816814
F ₈₃	Ursem 3 Function	NS	[-2, 2] and [-1.5,	2	[42]	
-		210	1.5]		[10]	-3
F_{84}	Ursem 4 Function	NS	[-2,2]	2	[42]	-1.5
F ₈₅	Ursem Waves Function	NS	[-0.9, 1.2] and $[-$	2	[42]	0 5576
Б	Venter Sobiezcczanski-	C, D, S, NSc	1.2, 1.2] [- 50, 50]	2	[41]	-8.5536
F ₈₆	Sobieski Function	C, D, S, NSC	[- 30, 30]	2	[41]	-400
F ₈₇	Wayburn Seader 1 Function	C, D, NS, Sc, U	[-500, 500]	2	[41]	-400
F_{88}	Wayburn Seader 2 Function	C, D, NS, Sc, U	[-500, 500]	2	[41]	0
F_{89}	Wayburn Seader 3 Function	C, D, NS, Sc, U	[-500, 500]	2	[41]	19.10588
F ₉₀	Zettl Function	C, D, NS, NSc, U	[-5,10]	2	[41]	-0.003791
F ₉₁	Zirilli or Aluffi-Pentini's	C, D, S, NSc, U	[-10, 10]	2	[41]	
	Function					-0.352386
F ₉₂	Zirilli Function 2	C, D, S, S, M	[-500, 500]	2	[41]	0
F ₉₃	Biggs EXP3 Function	C, D, NS, NSc, M	[0, 20]	3	[41]	0
F_{94}	Gulf Research Problem	C, D, NS, NSc, M	[0.1, 100] and [0,	3	[41]	
			25.6] and [0, 6.5]			0
F_{95}	Hartman 3 Function	C, D, NS, NSc, M	[0, 1]	3	[41]	-3.862782
F ₉₆	Helical Valley	C, D, NS, Sc, M	[-10, 10]	3	[41]	0
F ₉₇	Meyer–Roth Function	NS	[0, 1]	3	[42]	4.00E-05
F ₉₈	Mishra 9 Function	C, D, NS, NSc, M	[-10, 10]	3	[41]	0
F99	Wolfe Function	C, D, S, Sc, M	[0, 2]	3 4	[41]	0
F_{100}	Biggs EXP4 Function Colville Function	C, D, NS, NSc, M C, D, NS, NSc, M	[0, 20] [-10, 10]	4	[41] [41]	0 0
$F_{101} F_{102}$	Corana Function	DC, ND, S, Sc, M	[-500, 500]	4	[41]	0
F_{102} F_{103}	DeVilliers Glasser 1 Function	C, D, NS, NSc, M	[1, 100]	4	[41]	0
F_{103}	Gear Function	NS	[12, 60]	4	[42]	0
F_{104} F_{105}	Miele Cantrell Function	C, D, NS, NSc, M	[-1, 1]	4	[42]	0
F_{106}	Shekel 5	C, D, NS, Sc, M	[0, 10]	4	[41]	-10.1532
F_{107}	Shekel 7	C, D, NS, Sc, M	[0, 10]	4	[41]	-10.40292
F_{108}	Shekel 10	C, D, NS, Sc, M	[0, 10]	4	[41]	-10.5364
F_{109}	Trefethen	C, D, NS, NSc, M	[-10, 10]	4	[41]	-3.306869
F_{110}	Biggs EXP5 Function	C, D, NS, NSc, M	[0, 20]	5	[41]	0
F_{111}	DeVilliers Glasser 2 Function	C, D, NS, NSc, M	[1, 60]	5	[41]	0
F_{112}	Dolan Function	C, D, NS, NSc, M	[- 100, 100]	5	[41]	-529.8714
F ₁₁₃	Michaelewicz 5 Function	S	$[0,\pi]$	5	[42]	-4.687658
F_{114}	Biggs EXP6 Function	C, D, NS, NSc, M	[-20, 20]	6	[41]	0
F_{115}	Hartman 6 Function	C, D, NS, NSc, M	[0, 1]	6	[41]	-3.322368
F_{116}	Trid 6 Function	C, D, NS, NSc, M	[-36,36]	6	[41]	-50
F_{117}	Watson Daviani Eurotian	C, D, NS, Sc, M	[-5, 5]	6	[41]	0.002288
F ₁₁₈	Paviani Function Michalewicz 10	C, D, NS, Sc, M S	[2.0001, 10] $[0, \pi]$	10 10	[41] [42]	-45.77847 -9.66015
$F_{119} = F_{120}$	Trid 10 Function	C, D, NS, NSc, M	[0, n] [-100,100]	10	[42]	-9.66013
- 120	The for anothen	-, -, 110, 1100, 111	[100,100]	10	[11]	200

TABLE 12. Details of the N-dimensional benchmark mathematical functions.

No.	Function	Type	Range	D 20	Formulation	Min
F ₁₂₁	Ackley 1 Function	C, D, NS, Sc,M	[-35,35]	30	[41]	0
F_{122} F_{123}	Alpine 1 Function Brown Function	C, ND, S, NSc,U C, D, NS, Sc, U	[-10, 10] [-1, 4]	30 30	[41] [41]	0 0
F_{123} F_{124}	Chung Reynolds Function	C, D, PS, Sc, U	[-100, 100]	30	[41]	0
F_{124} F_{125}	Cosine Mixture	C, ND, S, Sc, M	[-1, 1]	30 30	[41]	-3
F_{126}	Cosine Function	C, D, S, Se, M	[-1, 1]	30	[41]	0
F_{127}	Deb 1 Function	C, D, S, Sc, M	[-1, 1]	30	[41]	-1
F_{128}	Deb 3 Function	C, D, S, Sc, M	[0, 1]	30	[41]	-1
F_{129}	Dixon and Price Function	C, D, NS, Sc, U	[-10, 10]	30	[41]	0
F_{130}	Exponential Function	C, D, NS, Sc, M	[-1,1]	30	[41]	-1
F_{131}	Griewank Function	C, D, NS, Sc, M	[-100,100]	30	[41]	0
F ₁₃₂	Holzman 2 Function	S	[-10,10]	30	[42]	0
F ₁₃₃	Levy 8 Function	NS	[-10, 10]	30	[42]	0
F ₁₃₄	Mishra 1 Function	C, D, NS, Sc, M	[0, 1]	30	[41]	2
F ₁₃₅	Mishra 2 Function	C, D, NS, Sc, M	[0, 1]	30	[41]	2
F ₁₃₆	Mishra 7 Function	C, D, NS, NSc, M	[-10, 10]	30	[41]	0
F ₁₃₇	Mishra 11 Function	C, D, NS, NSc, M	[-10,10]	30	[41]	0
F ₁₃₈	Pathological Function	C, D, NS, NSc, M	[-100, 100]	30	[41]	0
F ₁₃₉	Pint'er Function	C, D, NS, Sc, M	[-10, 10]	30	[41]	0
F_{140}	Powell Singular Function	C, D, NS, Sc, U	[-4,5]	30	[41]	0
F_{141}	Powell Singular 2 Function	C, D, NS, Sc, U	[-4,5]	30	[41]	0
F_{142}	Powell Sum Function	C, D, S, Sc, U	[-1, 1]	30	[41]	0
F ₁₄₃	Rastrigin Function	C, D, S, M	[-5.12, 5.12]	30	[41]	0
F_{144}	Qing Function	C, D, S, Sc, M	[- 500, 500]	30	[41]	0
F_{145}	Quartic	C, D, S, Sc	[-1.28, 1.28]	30	[41]	0
F_{146}	Quintic Function	C, D, S, NSc, M	[-10, 10]	30	[41]	0
F_{147}	Rosenbrock Function	C, D, NS, Sc, U	[-30, 30]	30	[41]	0
F_{148}	Salomon Function	C, D, NS, Sc, M	[-100, 100]	30	[41]	0
F_{149}	Sargan	C, D, NS, Sc, M	[-100, 100]	30	[41]	0
F_{150}	Schumer Steiglitz Function	C, D, S, Sc, U	[-100, 100]	30	[41]	0
F ₁₅₁	Schwefel Function	C, D, PS, Sc, U	[-100, 100]	30	[41]	0
F ₁₅₂	Schwefel 1.2 Function	C, D, NS, Sc, U	[-100, 100]	30	[41]	0
F ₁₅₃	Schwefel 2.4 Function	C, D, S, NSc, M	[0, 10]	30	[41]	0
F ₁₅₄	Schwefel 2.20 Function	C, ND, S, Sc, U	[-100, 100]	30	[41]	0
F ₁₅₅	Schwefel 2.21 Function	C, ND, S, Sc, U	[-100, 100]	30	[41]	0
F_{156}	Schwefel 2.22 Function	C, D, NS, Sc, U	[-100, 100]	30	[41]	0
F ₁₅₇	Schwefel 2.23 Function	C, D, NS, Sc, U	[-10, 10]	30	[41]	0
F ₁₅₈	Schwefel 2.26 Function	C, D, S, Sc, M	[-500, 500]	30	[41]	-418.9828
F ₁₅₉	Shubert	C, D, S, NSc, M	[-10, 10]	30	[41]	-186.7309
F ₁₆₀	Shubert 3	C, D, S, NSc, M	[-10, 10] [-10, 10]	30 30	[41]	-29.6759
F ₁₆₁	Shubert 4	C, D, S, NSc, M		30 30	[41]	-25.74177
F ₁₆₂	Schaffer F6 Sphere Function	C, D, NS, Sc, M	[-100, 100] [0, 10]	30 30	[41] [41]	0 0
F ₁₆₃	Step Function	C, D, S, Sc, M	[-100, 100]	30	[41]	0
F_{164} F_{165}	Step 2 Function	DC, ND, S, Sc, U DC, ND, S, Sc, U	[-100, 100] [-100, 100]	30	[41]	0
F_{165} F_{166}	Step 2 Function	DC, ND, S, Sc, U	[-100, 100]	30	[41]	0
F_{166} F_{167}	Step int Function	DC, ND, S, Sc, U	[-5.12, 5.12]	30	[41]	-155
F_{168}	Streched V Sine Wave Function	C, D, NS, Sc, U	[-10, 10]	30	[41]	0
F ₁₆₉	Sum Squares Function	C, D, S, Sc, U	[-10, 10]	30	[41]	0
F_{170}	Styblinski–Tang Function	C, D, NS, NSc, M	[-5,5]	30	[41]	-1174.985
F_{171}	Trigonometric 1 Function	C, D, NS, Sc, M	$[0, \pi]$	30	[41]	0
F ₁₇₂	Trigonometric 2 Function	C, D, NS, Sc, M	[-500, 500]	30	[41]	1
F ₁₇₃	W/Wavy Function	C, D, S, Sc, M	$[-\pi, \pi]$	30	[41]	0
F_{174}	Weierstrass	C, D, S, Sc, M	[-0.5, 0.5]	30	[41]	0
F_{175}	Whitley	C, D, NS, Sc, M	[-10.24, 10.24]	30	[41]	0
F ₁₇₆	Xin-She Yang (Function 1)	DC, ND, NS, Sc, M	[-20, 20]	30	[41]	0
F_{177}	Xin-She Yang (Function 2)	DC, ND, NS, Sc, M	[-10, 10]	30	[41]	0
F_{178}	Xin-She Yang (Function 3)	DC, ND, NS, Sc, M	$[-2\pi, 2\pi]$	30	[41]	-1
F ₁₇₉	Xin-She Yang (Function 4)	DC, ND, NS, Sc, M	[-5,5]	30	[41]	-1
F_{180}	Zakharov Function	C, D, NS, Sc, M	[-5,10]	30	[41]	0

TABLE 13. Details of the CEC 2014 special season.

No.	Function	Туре	Range	D	Formulation	Min
F ₁₈₁	Rotated High Conditioned	Rotated	[-100, 100]	30	[38]	0
	Elliptic Function					
F ₁₈₂	Rotated Bent Cigar Function	Rotated	[-100, 100]	30	[38]	0
F ₁₈₃	Rotated Discus Function	Rotated	[-100, 100]	30	[38]	0
F ₁₈₄	Shifted and Rotated	Shifted and	[-100, 100]	30	[38]	0
	Rosenbrock's Function	Rotated				
F ₁₈₅	Shifted and Rotated Ackley's	Shifted and	[-100, 100]	30	[38]	0
	Function	Rotated				
F_{186}	Shifted and Rotated	Shifted and	[-100, 100]	30	[38]	0
	Weierstrass Function	Rotated				
F ₁₈₇	Shifted and Rotated	Shifted and	[-100, 100]	30	[38]	0
	Griewank's Function	Rotated				
F ₁₈₈	Shifted Rastrigin's Function	Shifted	[-100, 100]	30	[38]	0
F ₁₈₉	Shifted and Rotated Rastrigin's	Shifted and	[-100, 100]	30	[38]	0
	Function	Rotated	- / -			
F ₁₉₀	Shifted Schwefel's Function	Shifted	[-100, 100]	30	[38]	0
F ₁₉₁	Shifted and Rotated Schwefel's	Shifted and	[-100, 100]	30	[38]	0
	Function	Rotated				
F ₁₉₂	Shifted and Rotated Katsuura	Shifted and	[-100, 100]	30	[38]	0
	Function	Rotated				
F ₁₉₃	Shifted and Rotated HappyCat	Shifted and	[-100, 100]	30	[38]	0
175	Function	Rotated	. , ,			
F ₁₉₄	Shifted and Rotated HGBat	Shifted and	[-100, 100]	30	[38]	0
154	Function	Rotated	. , ,		L]	
F ₁₉₅	Shifted and Rotated Expanded	Shifted and	[-100, 100]	30	[38]	0
155	Griewank's plus Rosenbrock's	Rotated	. , ,		L]	
	Function					
F ₁₉₆	Shifted and Rotated Expanded	Shifted and	[-100, 100]	30	[38]	0
- 150	Scaffer's F6 Function	Rotated	[]		r1	-
F ₁₉₇	Hybrid Function 1 (N=3)	Hybrid	[-100, 100]	30	[38]	0
F ₁₉₈	Hybrid Function 2 (N=3)	Hybrid	[-100, 100]	30	[38]	Ő
F ₁₉₉	Hybrid Function 3 (N=4)	Hybrid	[-100, 100]	30	[38]	Ő
F_{200}	Hybrid Function 4 (N=4)	Hybrid	[-100, 100]	30	[38]	Ő
F_{201}	Hybrid Function 5 ($N=5$)	Hybrid	[-100, 100]	30	[38]	Ő
F_{202}	Hybrid Function 6 ($N=5$)	Hybrid	[-100, 100]	30	[38]	Ő
F_{203}	Composition Function 1 (N=5)	Composite	[-100, 100]	30	[38]	ŏ
F ₂₀₄	Composition Function 2 ($N=3$)	Composite	[-100, 100]	30	[38]	Ő
F ₂₀₅	Composition Function 3 $(N=3)$	Composite	[-100, 100]	30	[38]	Õ
F ₂₀₆	Composition Function 4 ($N=5$)	Composite	[-100, 100]	30	[38]	Ő
F ₂₀₇	Composition Function 5 ($N=5$)	Composite	[-100, 100]	30	[38]	ŏ
F_{208}	Composition Function 6 ($N=5$)	Composite	[-100, 100]	30	[38]	Ő
F ₂₀₉	Composition Function 7 ($N=3$)	Composite	[-100, 100]	30	[38]	ŏ
F_{210}	Composition Function 8 ($N=3$)	Composite	[-100, 100]	30	[38]	Ő

IV. DISCUSSION AND ALGORITHM ANALYSIS

This section first explains how the proposed method employs the exploration and exploitation in the search space of the problem, and then the mechanism of the decision moods is studied in terms of analysis of interactive forces. Then the convergence and global search capability of the SNS are analyzed. Finally, the computational cost and complexity of the SNS will be investigated.

A. EXPLOITATION AND EXPLORATION ANALYSIS

Exploration reveals the ability of an algorithm in local optima avoidance to discover the more promising area(s) of the search space. Also, exploitation shows the local search ability in achieved regions for improving the quality of the obtained solutions. These capacities should be embedded in the operators, and the right balance between them increases the efficiency of the algorithm. In the SNS algorithm, the new solution is created in the process of Imitation, Conversation, Disputation, and Innovation moods. Each of these operators has their specific manner, which can lead to exploitation or exploration. The aspects of each operator briefly described below:

• In the Imitation mood, users try to imitate other users, and the new solutions are generated based on the shock radius (R), popularity radius (r) and random numbers. The place of the new solutions determines the exploration and exploitation of this mood. In other words, if the generated solution is placed between the *i*-th and *j*-th solutions, it is considered as exploitation, and if its place becomes out of them, it approaches exploration. Also, as the algorithm progresses, its exploitative behavior becomes more evident due to the convergence of users and slight changes in their positions. Therefore, this mood can benefit from

		Methods							
No.	Statistics	CS	TLBO	GWO	SOS	CSA	WOA	CGO	SNS
F1	Min	-200	-200	-200	-200	-200	-200	-200	-200
	Mean	-200	-200	-200	-200	-200	-200	-200	-200
	Max	-200	-200	-200	-200	-200	-200	-200	-200
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	55584	6686	1927	8208	63892	29331	5664	4209
	Rank	7	4	1	5	8	6	3	2
F2	Min	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903
	Mean	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903
	Max	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903	-195.62903
	Std. Dev.	2.842E-13	2.842E-13	3.546E-10	2.842E-13	2.842E-13	3.674E-10	2.842E-13	2.842E-13
	NFEs	28512	5976	150000	11376	11453	99075	5752	4878
	Rank	6	3	8	4	5	7	2	1
F3	Min	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016
	Mean	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016
	Max	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016	-4.5901016
	Std. Dev.	6.217E-15	6.217E-15	3.29E-09	6.217E-15	6.217E-15	5.183E-10	6.217E-15	6.217E-15
	NFEs	28450	6376	150000	13648	10339	102827	4920	5210
	Rank	6	3	8	5	4	7	1	2
F4	Min	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068
	Mean	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068
	Max	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068	-2.0218068
	Std. Dev.	8.882E-16	8.882E-16	8.882E-16	8.882E-16	6.809E-12	8.882E-16	8.882E-16	8.882E-16
	NFEs	8206	1720	71923	3412	148460	3459	2224	1720
	Rank	6	<u>1.5</u>	7	4	8	5	3	<u>1.5</u>
F5	Min	1	<u>1.5</u> 1	1	1	1	1	1	<u>1.5</u> 1
	Mean	1	1	1	1	1	1	1	1
	Max	1	1	1	1	1	1	1	1
	Std. Dev.	0	1 0	0	0	0	0	0	0
	NFEs	42278	5432	1652	6940	50095	25979	4684	3646
	Rank	42278	4	1052	5	8	6	3	2
F6	Min	0	4		3 0	8 0	0	0	2 0
10			0	1.927E-11	0	0		0	0
	Mean	0		6.187E-10		0	2.235E-13	0	0
	Max Std Davi	0	0 0	4.427E-09	0		2.892E-12		
	Std. Dev.	0		7.853E-10	0	0 8222	6.443E-13	0	0 4023
	NFEs	29494	6102 3	150000	10904	0222	58393 7	4196 2	4025
F7	Rank	6	5	8	5	4	,	2	1
1 /	Min Maar	0	0	9.922E-11	0	0	0 6 777E 10	0	0
	Mean	0	0	3.937E-09	0	0	6.777E-10	0	0
	Max Std. D	0	0	2.125E-08	0	0	5.128E-09	0	0
	Std. Dev.	0	0	4.613E-09	0	0	1.173E-09	0	0
	NFEs	26622	8286	150000	18488	9337	139788	13376	7438
F8	Rank	6	2	8	5	3	7	4	1
1.0	Min	0	0	6.724E-12	0	0	0	0	0
	Mean	0	0	5.048E-10	0	0	3.56E-11	0	0
	Max	0	0	3.424E-09	0	0	2.457E-10	0	0
	Std. Dev.	0	0	6.444E-10	0	0	4.547E-11	0	0
	NFEs	20358	3138	150000	7088	8269	133405	3728	2727
БО	Rank	6	2	8	4	5	7	3	1
F9	Min	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454
	Mean	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454
	Max	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454	-106.76454

	Std. Dev. NFEs	8.527E-14 34568	8.527E-14 6622	3.939E-07 150000	8.527E-14 13060	8.527E-14 11024	2.638E-08 148377	8.527E-14 8392	8.527E-14 5652
	Rank	6	2	8	5	4	7	3	1
F10	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	ů 0	0	0	0	0	ů 0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	28000	4192	1126	5000	13524	8888	3412	2532
	Rank	8	4	1	5	7	6	3	2352
F11	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	29616	4544					3408	2595
				1132	5204	13637 7	10363		
F12	Rank	8	4	1	5		6	3	2
112	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	28952	5748	1301	6508	12687	30153	3556	3198
E12	Rank	7	4	1	5	6	8	3	2
F13	Min	0	0	1.461E-11	0	0	1.07E-07	0	0
	Mean	0	0	1.771E-09	0	0	1.351E-06	0	0
	Max	0	0	1.2E-08	0	0	4.999E-06	0	0
	Std. Dev.	0	0	2.3E-09	0	0	1.028E-06	0	0
	NFEs	20906	4018	150000	8788	8633	150000	4084	3181
	Rank	6	2	7	5	4	8	3	1
F14	Min	0	0	2.877E-11	0	0	2.841E-12	0	0
	Mean	0	0	2.973E-09	0	0	1.297E-06	0	0
	Max	0	0	2.824E-08	0	0	4.265E-06	0	0
	Std. Dev.	0	0	5.208E-09	0	0	1.452E-06	0	0
	NFEs	16310	41228	150000	76788	5412	150000	6372	17342
	Rank	3	5	7	6	1	8	2	4
F15	Min	0.3978874	0.3978874	0.3978874	0.3978874	0.3978874	0.3978874	0.3978874	0.3978874
	Mean	0.3978874	0.3978874	0.4006432	0.3978874	0.3978874	0.406155	0.3978874	0.3978874
	Max	0.3978874	0.3978874	0.432336	0.3978874	0.3978874	0.432336	0.3978874	0.3978874
	Std. Dev.	1.11E-16	1.11E-16	0.0093457	1.11E-16	1.11E-16	0.0147124	1.11E-16	1.11E-16
	NFEs	35660	6406	150000	11324	8316	136189	8608	5187
	Rank	6	2	7	5	3	8	4	1
F16	Min	5.5589144	5.5589144	5.5589144	5.5589144	5.5589144	5.5589144	5.5589144	5.5589144
	Mean	5.5589144	6.0846196	6.775203	5.5589144	5.5589144	6.4209323	5.5589144	6.2348189
	Max	5.5589144	6.8105893	7.7084013	5.5589144	5.5589144	7.7084013	5.5589144	6.8105893
	Std. Dev.	1.776E-15	0.6177734	0.4858225	1.776E-15	1.776E-15	0.6427167	1.776E-15	0.6238316
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	<u>2.5</u>	5	8	<u>2.5</u>	<u>2.5</u>	7	<u>2.5</u>	6
F17	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	288	104	51	200	35981	50	200	154
	Rank	7	3	2	<u>5.5</u>	8	1	<u>5.5</u>	4
F18	Min	0	0	0	0	1.491E-11	0	0	0
	Mean	0	0	0	0	2.007E-10	0	0	0

	Max	0	0	0	0	9.984E-10	0	0	0
	Std. Dev.	0	0	0	0	1.901E-10	0	0	0
	NFEs	10534	2224	648	4572	150000	1780	2016	2210
F19	Rank	7	5	1	6	8	2	3	4
119	Min	0	0	9.003E-09	0	0	1.166E-10	0	0
	Mean	0	0	5.417E-07	0	0	5.423E-07	0	0
	Max	0	0	3.452E-06	0	0	3.404E-06	0	0
	Std. Dev.	0	0	7.386E-07	0	0	7.949E-07	0	0
	NFEs	30370	4604	150000	10812	17654	150000	5176	3759
F20	Rank	6	2	7	4	5	8	3	1
120	Min	0.0038996	0.0038965	0.0255936	0.0297797	0.0003664	0.0054232	0.0012132	0.0006775
	Mean	0.0234636	0.0348298	0.0805913	0.0788531	0.010007	0.0346474	0.0373489	0.0225633
	Max	0.0574624	0.0500789	0.1569108	0.1926237	0.0299283	0.0617385	0.0701633	0.05
	Std. Dev.	0.0119074	0.0141074	0.0257983	0.0297099	0.0068626	0.0146866	0.0164924	0.01623
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
E01	Rank	3	5	8	7	1	4	6	2
F21	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	20260	3382	861	3760	7161	5603	2616	1931
EDD	Rank	8	4	1	5	7	6	3	2
F22	Min	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316
	Mean	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316
	Max	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316	-1.0316
	Std. Dev.	4.441E-16							
	NFEs	4360	1534	5390	2276	2232	1310	1672	1497
522	Rank	7	3	8	6	5	1	4	2
F23	Min	-24.156816	-24.156816	-24.156816	-24.156816	-24.156816	-24.156816	-24.156816	-24.156816
	Mean	-24.156816	-24.156816	-24.156815	-24.156816	-24.156816	-24.156815	-24.156816	-24.156816
	Max	-24.156816	-24.156816	-24.156813	-24.156816	-24.156816	-24.15681	-24.156816	-24.156816
	Std. Dev.	3.553E-15	3.553E-15	5.589E-07	3.553E-15	3.553E-15	1.439E-06	3.553E-15	3.553E-15
	NFEs	13320	4544	149997	10304	8962	97312	4228	3993
E24	Rank	6	3	7	5	4	8	2	1
F24	Min	-2000	-1000	-1999.8707	-999.99991	-2000	-1000	-2000	-1000.0017
	Mean	-1997.7827	-999.96011	-1016.3392	-964.32923	-2000	-999.99824	-2000	-1000
	Max	-1906.8297	-998.05895	-922.15891	-378.75066	-2000	-999.9132	-2000	-1000
	Std. Dev.	13.084779	0.2716303	141.28368	97.131556	0	0.0121484	0	0.0002402
	NFEs	150000	150000	150000	150000	77838	150000	45920	150000
F25	Rank	3	7	4	8	2	6	1	5
F23	Min	-2000	-1000	-1999.5434	-1000.0059	-2000	-2000	-2000	-1000
	Mean	-2000	-1000	-1019.9643	-999.97746	-2000	-1999.8681	-1900.0005	-1000
	Max	-2000	-1000	-999.24073	-998.86693	-2000	-1995.4497	-1000.005	-1000
	Std. Dev.	0	0	139.93993	0.1586488	0	0.6368071	299.9985	1.401E-11
	NFEs	42884	150000	150000	150000	53989	121249	49352	150000
E2(Rank	1	7	5	8	2	3	4	6
F26	Min	-43.721918	-43.721918	-43.721918	-43.721918	-43.721918	-43.721918	-43.721918	-43.721918
	Mean	-43.721918	-43.721918	-43.721918	-43.721918	-43.721918	-43.648389	-43.721918	-43.721918
	Max	-43.721918	-43.721918	-43.721917	-43.721918	-43.721918	-42.497173	-43.721918	-43.721918
	Std. Dev.	1.421E-14	1.421E-14	1.614E-07	1.421E-14	1.421E-14	0.2908495	1.421E-14	1.421E-14
	NFEs	16418	3312	147350	5896	5113	114452	3656	2276
E07	Rank	6	2	7	5	4	8	3	1
F27	Min	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119

	Maar	2.0626110	2.0(2(110	2.0(2(110	2.0626110	2.0(2(110	2.0(2(110	2.0(2(110	2.0(2(110
	Mean	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119
	Max Std Dav	-2.0626119	-2.0626119 1.332E-15	-2.0626119 5.107E-11	-2.0626119	-2.0626119	-2.0626119	-2.0626119	-2.0626119
	Std. Dev. NFEs	1.332E-15 21678	1.552E-15 7020	150000	1.332E-15 15364	1.332E-15 8141	2.703E-12 67897	1.332E-15 6312	1.332E-15 6009
	Rank	6	3	8	5	4	7	2	1
F28	Min	0	0	8 7.557E-11	0	4	, 1.403E-12	2	0
	Mean	0	0	2.77E-08	0	0	1.405E-12	0	0
	Max	0	0	2.77E-08 1.49E-07	0	0	1.784E-07	0	0
	Std. Dev.	0	0	3.438E-08	0	0	3.398E-08	0	0
	NFEs	56178	29560	150000	63812	12426	150000	8552	18900
	Rank	5	4	8	6	2	7	1	3
F29	Min	0	0	8.553E-08	0	0	, 1.8E-10	0	0
	Mean	1.4	0.1471518	1.694803	0.0038277	0.7376044	1.465E-07	0.04	0
	Max	2	1.5587986	2.0000001	0.1913833	2	8.866E-07	2	0
	Std. Dev.	0.9165151	0.3034133	0.7052078	0.0267937	0.952814	2.199E-07	0.28	0
	NFEs	122584	147776	150000	117952	117111	150000	38220	36593
	Rank	7	5	8	3	6	2	4	1
F30	Min	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518
	Mean	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518
	Max	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518	-24776.518
	Std. Dev.	0	0	0.0001487	0	0	5.603E-05	-24770.510	0
	NFEs	38798	5630	150000	13940	18586	150000	6068	5912
	Rank	6	1	8	4	5	7	3	2
F31	Min	-1	-1	-1	-1	-1	-1	-1	-1
	Mean	-1	-1	-1	-1	-1	-1	-1	-1
	Max	-1	-1	-1	-1	-1	-1	-1	-1
	Std. Dev.	0	0	3.397E-09	0	0	8.1E-10	0	0
	NFEs	45940	7440	150000	11080	11413	145166	4556	3904
	Rank	6	3	8	4	5	7	2	1
F32	Min	1.7127804	1.7127804	1.7127804	1.7127804	1.7127804	1.7127804	1.7127804	1.7127804
	Mean	1.7127804	1.7127804	1.7127805	1.7127804	1.7127804	1.7127804	2.2180334	1.7127804
	Max	1.7127804	1.7127804	1.7127814	1.7127804	1.7127804	1.7127805	26.975431	1.7127804
	Std. Dev.	0	0	2.262E-07	0	0	3.23E-08	3.5367711	0
	NFEs	43330	5938	150000	12668	19224	150000	8512	4695
	Rank	5	2	7	3	4	6	8	1
F33	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	24730	3940	960	4352	8874	4651	2932	2167
	Rank	8	4	1	5	7	6	3	2
F34	Min	-959.64066	-959.64066	-959.64066	-959.64066	-959.64066	-959.64066	-959.64066	-959.64066
	Mean	-959.64066	-959.64066	-928.80949	-959.64066	-957.72826	-959.64066	-959.64066	-957.03819
	Max	-959.64066	-959.64066	-718.16746	-959.64066	-956.91823	-959.64066	-959.64066	-894.5789
	Std. Dev.	1.137E-13	1.137E-13	55.04248	1.137E-13	1.2172588	3.119E-12	1.137E-13	12.74945
	NFEs	61674	11908	150000	12584	150000	107811	6208	11318
	Rank	4	2	8	3	6	5	1	7
F35	Min	0	0	2.324E-11	0	0	0	0	0
	Mean	0	0	4.327E-10	0	0	2.014E-11	0	0
	Max	0	0	2.861E-09	0	0	4.679E-10	0	0
	Std. Dev.	0	0	5.833E-10	0	0	6.615E-11	0	0
	NFEs	19960	3138	150000	6936	8309	122119	3712	2712
	Rank	6	2	8	4	5	7	3	1

IEEEAccess

F36	Min	0	0	2.029E-09	0	0	7.224E-09	0	0
	Mean	0	0	6.9714157	0	0	6.567E-05	0	0
	Max	0	0	49.795824	0	0	0.0011818	0	0
	Std. Dev.	0	0	17.278505	0	0	0.0001737	0	0
	NFEs	39624	7298	150000	9936	12887	150000	5496	4642
	Rank	6	3	8	4	5	7	2	1
F37	Min	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704
	Mean	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704
	Max	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704	0.0644704
	Std. Dev.	4.163E-17	4.163E-17	6.698E-11	4.163E-17	4.163E-17	3.288E-11	4.163E-17	4.163E-17
	NFEs	17910	2742	150000	5948	5477	115416	3236	2307
	Rank	6	2	8	5	4	7	3	1
F38	Min	3	3	3	3	3	3	3	3
	Mean	3	3	3.0000002	3	3	3.0000001	3	3
	Max	3	3	3.0000015	3	3	3.0000026	3	3
	Std. Dev.	0	0	2.798E-07	0	0	3.63E-07	0	0
	NFEs	27650	4332	150000	9112	9513	148048	4128	3315
	Rank	6	3	8	4	5	7	2	1
F39	Min	-166.02908	-166.02908	-166.02908	-166.02908	-166.02908	-166.02908	-166.02908	-166.02908
	Mean	-166.02908	-166.02908	-165.60086	-166.02908	-166.02908	-166.02908	-166.02908	-166.02908
	Max	-166.02908	-166.02908	-144.61821	-166.02908	-166.02908	-166.02907	-166.02908	-166.02908
	Std. Dev.	1.421E-13	1.421E-13	2.9975209	1.723E-09	1.421E-13	1.817E-06	1.421E-13	1.421E-13
	NFEs	102932	21848	150000	75648	16488	150000	25508	11654
	Rank	5	3	8	6	2	7	4	1
F40	Min	0	0	1.791E-09	0	0	0	0	0
	Mean	0	0	5.276E-08	0	0	1.848E-08	0	0
	Max	0	0	4.765E-07	0	0	3.398E-07	0	0
	Std. Dev.	0	0	8.774E-08	0	0	6.05E-08	0	0
	NFEs	41850	7638	150000	16148	10199	144693	12764	6890
	Rank	6	2	8	5	3	7	4	1
F41	Min	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458
	Mean	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458
	Max	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458	-2.3458
	Std. Dev.	2.22E-15	2.22E-15	2.22E-15	2.22E-15	2.22E-15	2.22E-15	2.22E-15	2.22E-15
	NFEs	4432	1010	67329	1848	1318	1278	1344	870
	Rank	7	2	8	6	4	3	5	1
F42	Min	124.36218	- 124.36218	124.36218	124.36218	124.36218	124.36218	124.36218	124.36218
	Mean	124.36218	124.36218	124.36218	124.36218	124.36218	124.3712	124.36218	124.36218
	Max	124.36218	124.36218	124.36218	124.36218	124.36218	124.39681	124.36218	124.36218
	Std. Dev.	0	0	2.138E-07	0	0	0.0085421	0	0
	NFEs	31454	5960	150000	13560	11813	150000	5584	4836
	Rank	6	3	7	5	4	8	2	1
F43	Min	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675
	Mean	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675
	Max	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736675	-0.6736672	-0.6736675	-0.6736675
	Std. Dev.	4.441E-16	4.441E-16	4.831E-10	4.441E-16	4.441E-16	5.653E-08	4.441E-16	4.441E-16
	NFEs	14804	3202	136135	3084	26362	19897	4228	2970
	Rank	5	3	7	2	6	8	4	1
F44	Min	0	0	, 7.862E-12	0	0	8 8.482E-12	4 0	0
	Mean	0	0	7.455E-09	0	0	1.658E-08	0	0
	Max	0	0	4.886E-08	0	0	1.038E-08	0	0
	Std. Dev.	0	0	4.886E-08	0	0	3.156E-08	0	0
	NFEs	25674	18732	150000	41412	9245	150000	6420	13671
	111 L3	2001T	10/34	120000	71714	1475	120000	0420	150/1

	Rank	5	4	7	6	2	8	1	3
F45	Min	-176.54179	-176.54179	-176.54179	-176.54179	-176.54179	-176.54179	-176.54179	-176.54179
	Mean	-176.54179	-176.54179	-174.72635	-176.54179	-176.54179	-176.54179	-176.54179	-176.54179
	Max	-176.54179	-176.54179	-116.83371	-176.54179	-176.54179	-176.54177	-176.54179	-176.54179
	Std. Dev.	1.705E-13	1.705E-13	9.343702	2.128E-10	1.705E-13	3.017E-06	1.705E-13	1.705E-13
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	<u>3</u>	<u>3</u>	8	6	<u>3</u>	7	<u>3</u>	<u>3</u>
F46	Min	-176.13757	-176.13757	-176.13757	-176.13757	-176.13757	-176.13757	-176.13757	-176.13757
	Mean	-176.13757	-176.13757	-173.59257	-176.13757	-176.13757	-176.13757	-176.13757	-176.13757
	Max	-176.13757	-176.13757	-144.32503	-176.13757	-176.13757	-176.13757	-176.13757	-176.13757
	Std. Dev.	2.842E-14	2.842E-14	8.6305269	2.842E-14	2.842E-14	2.842E-14	2.842E-14	2.842E-14
	NFEs	26452	5046	147178	9300	4660	16289	4212	3157
	Rank	7	4	8	5	3	6	2	1
F47	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	ů	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	16980	3914	1005	4736	6662	2258	2680	2490
	Rank	8	5	1005	6	7	2258	4	3
F48	Min	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223
1 10	Mean	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223
	Max	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223	-1.913223
	Std. Dev.	-1.913223 2.22E-15	-1.913223 2.22E-15	-1.913223 2.829E-10	-1.913223 2.22E-15	-1.913223 2.22E-15	-1.913223 1.957E-11	-1.913223 2.22E-15	-1.913223 2.22E-15
	NFEs	2.22E-13 18484	2.22E-13 3100	2.829E-10 150000	6880	6804	1.937E-11 101021	2.22E-13 3552	2.22E-13 2568
			2	8	4	5	7	3332	
F49	Rank	6							1
1 49	Min	-19.966682	-19.966682	-19.966682	-19.966682	-19.966682	-19.966682	-19.966682	-19.966682
	Mean	-19.966682	-19.966682	-19.966652	-19.966682	-19.966682	-19.966669	-19.966682	-19.966682
	Max	-19.966682	-19.966682	-19.966591	-19.966682	-19.966682	-19.966602	-19.966682	-19.966682
	Std. Dev.	3.553E-15	3.553E-15	1.874E-05	3.553E-15	3.553E-15	1.457E-05	3.553E-15	3.553E-15
	NFEs	26880	3892	149999	7892	7125	140851	3684	2905
F50	Rank	6	3	8	5	4	7	2	1
1'50	Min	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013
	Mean	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1.785274	-1.8013	-1.8013
	Max	-1.8013	-1.8013	-1.8013	-1.8013	-1.8013	-1	-1.8013	-1.8013
	Std. Dev.	1.11E-15	1.11E-15	1.11E-15	1.11E-15	1.11E-15	0.112182	1.11E-15	1.11E-15
	NFEs	7936	1638	135842	2960	2040	8409	1884	1266
E51	Rank	6	2	7	5	4	8	3	1
F51	Min	-0.1846624	-0.184667	-0.1844876	-0.184667	-0.1846668	-0.1846612	-0.184667	-0.184667
	Mean	-0.1831272	-0.1845897	-0.1598381	-0.1845954	-0.1611116	-0.1806574	-0.184667	-0.1838598
	Max	-0.1582024	-0.1825711	0.0256501	-0.1843795	-0.1241744	-0.0851269	-0.184667	-0.1567508
	Std. Dev.	0.0038977	0.0003239	0.0538382	8.638E-05	0.018844	0.0148976	1.388E-16	0.0042178
	NFEs	150000	122858	150000	130176	150000	150000	65808	91111
E52	Rank	5	3	8	2	7	6	1	4
F52	Min	-0.1994109	-0.1994115	-0.1988528	-0.1994115	-0.1994113	-0.1994074	-0.1994115	-0.1994115
	Mean	-0.1991867	-0.1993538	-0.1719333	-0.1993642	-0.169666	-0.1958576	-0.1994115	-0.1991969
	Max	-0.1899437	-0.1980454	-0.0894558	-0.1990303	-0.1251173	-0.1269463	-0.1994115	-0.1909232
	Std. Dev.	0.0013214	0.0001976	0.043053	8.513E-05	0.0167652	0.0109034	0	0.001207
	NFEs	150000	134358	150000	121444	150000	150000	59564	110475
D.62	Rank	5	3	7	2	8	6	1	4
F53	Min	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295
	Mean	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295
	Max	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295	-1.0198295
	Std. Dev.	8.882E-16	8.882E-16	7.111E-12	8.882E-16	3.994E-12	8.882E-16	8.882E-16	8.882E-16

		10050		105056	4550	1 40000	10000	0.77.6	2250
	NFEs	12278	2444	137976	4572	148832	10823	2776	2270
F54	Rank	6	2	7	4	8	5	3	1
1.24	Min	-2.2839498	-2.2839498	-2.2839498	-2.2839498	-2.2839498	-2.2839498	-2.2839498	-2.2839498
	Mean	-2.2839498	-2.2839498	-2.2503807	-2.2839498	-2.2839498	-2.2671652	-2.2839498	-2.2839498
	Max	-2.2839498	-2.2839498	-1.8643355	-2.2839498	-2.2839498	-1.8643355	-2.2839498	-2.2839498
	Std. Dev.	2.22E-15	2.22E-15	0.1138385	2.22E-15	2.22E-15	0.0822273	2.22E-15	2.22E-15
	NFEs	31624	4982	150000	10240	8584	148429	4176	3422
F55	Rank	6	3	8	5	4	7	2	1
155	Min	0	0	2.028E-12	0	0	0	0	0
	Mean	0	0	8.007E-08	0	0	0.0006043	0	0
	Max	0	0	9.386E-07	0	0	0.0301555	0	0
	Std. Dev.	0	0	1.938E-07	0	0	0.0042216	0	0
	NFEs	15354	2772	150000	5656	7777	147370	3200	2304
E5 (Rank	6	2	7	4	5	8	3	1
F56	Min	0	0	0	0	0	0	0	0
	Mean	0	0	9.677E-13	2.121E-11	0	0	8.104E-13	0
	Max	0	0	3.573E-11	4.871E-10	0	0	3.4E-11	0
	Std. Dev.	0	0	5.016E-12	7.483E-11	0	0	4.828E-12	0
	NFEs	19594	37430	81881	101172	11289	21003	81868	16574
	Rank	3	5	7	8	1	4	6	2
F57	Min	0	0	1.005E-11	0	0	0	0	0
	Mean	0	0	9.056E-10	8.241E-11	0	3.62E-10	0	0
	Max	0	0	7.56E-09	3.949E-09	0	9.272E-09	0	0
	Std. Dev.	0	0	1.323E-09	5.526E-10	0	1.629E-09	0	0
	NFEs	36050	12382	150000	67532	9201	120367	28144	10049
	Rank	5	3	8	6	1	7	4	2
F58	Min	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348
	Mean	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348
	Max	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348	-0.9635348
	Std. Dev.	9.992E-16	9.992E-16	7.059E-10	9.992E-16	9.992E-16	6.252E-10	9.992E-16	9.992E-16
	NFEs	24098	5952	150000	17336	8536	113327	15500	6805
5.50	Rank	6	1	8	5	3	7	4	2
F59	Min	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
	Mean	0.9	0.9	0.9	0.9	0.9	0.92	0.9	0.9
	Max	0.9	0.9	0.9	0.9	0.9	1	0.9	0.9
	Std. Dev.	1.011E-11	8.882E-16	8.882E-16	8.882E-16	8.882E-16	0.04	8.882E-16	8.882E-16
	NFEs	92474	14770	2356	11092	9459	34517	5964	5687
E(0	Rank	7	6	1	5	4	8	3	2
F60	Min	0	0	3.828E-11	0	0	0	0	0
	Mean	0	0	5.233E-09	0	0	5.607E-10	0	0
	Max	0	0	4.221E-08	0	0	7.723E-09	0	0
	Std. Dev.	0	0	7.891E-09	0	0	1.463E-09	0	0
	NFEs	33662	8252	150000	17388	15439	128800	8308	6909
	Rank	6	2	8	5	4	7	3	1
F61	Min	0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
	Mean	0.9	0.9	0.9	0.9	0.9	0.918	0.9	0.9
	Max	0.9	0.9	0.9	0.9	0.9	1	0.9	0.9
	Std. Dev.	8.882E-16	8.882E-16	8.882E-16	8.882E-16	8.882E-16	0.0384187	8.882E-16	8.882E-16
	NFEs	88092	14722	2982	11492	10029	32644	6232	5578
	Rank	7	6	1	5	4	8	3	2
F62	Min	0	0	2.074E-11	0	0	0	0	0
	Mean	0	0	0.0164414	0	0.0008978	0.0121225	0.0190374	0.002596
	Max	0	0	0.0432668	0	0.0432668	0.0433387	0.0432668	0.0432668

	Std. Dev.	0	0	0.0210011	0	0.0060549	0.0194392	0.0214771	0.0102753
	NFEs	56016	12138	150000	19304	40397	133769	70424	14696
	Rank	3	1	7	2	4	6	8	5
F63	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	1.301E-07	0	0
	Max	0	0	0	0	0	3.136E-06	0	0
	Std. Dev.	0	0	0	0	0	4.815E-07	0	0
	NFEs	43402	38192	27979	35076	15122	140430	8392	16058
	Rank	7	6	4	5	2	8	1	3
F64	Min	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242
	Mean	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242
	Max	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242	-3873.7242
	Std. Dev.	0	0	4.039E-09	0	0	5.404E-08	0	0
	NFEs	22814	3920	150000	8412	10542	150000	4232	3120
	Rank	6	2	7	4	5	8	3	1
F65	Min	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2	-2.2
	Mean	-2.2	-2.2	-2.1999996	-2.2	-2.2	-2.1990468	-2.1995859	-2.2
	Max	-2.2	-2.2	-2.1999975	-2.2	-2.2	-2.1940843	-2.1940847	-2.2
	Std. Dev.	1.332E-15	1.332E-15	5.462E-07	1.332E-15	1.332E-15	0.0017155	0.0011845	1.332E-15
	NFEs	80638	17008	150000	32848	37427	150000	27352	8508
	Rank	5	2	6	3	4	8	7	1
F66	Min	-2	-2	-2	-2	-2	-2	-2	-2
	Mean	-2	-2	-2	-2	-2	-2	-2	-2
	Max	-2	-2	-2	-2	-2	-2	-2	-2
	Std. Dev.	0	0	- 1.742E-09	0	0	- 7.938E-10	0	0
	NFEs	41076	7618	150000	12212	14200	148476	6580	4947
	Rank	6	3	8	4	5	7	2	1
F67	Min	34.040243	34.040243	34.040243	34.040243	34.040243	34.040243	34.040243	34.040243
	Mean	35.638635	62.811268	63.610463	34.040243	34.040243	34.040243	34.040243	54.819317
	Max	74	74	74	34.040243	34.040243	34.040245	34.040243	74
	Std. Dev.	7.8304808	17.941886	17.527717	3.553E-14	3.553E-14	3.593E-07	3.553E-14	19.963888
	NFEs	68526	112818	150000	20244	15282	149600	6816	81795
	Rank	5	7	8	3	2	4	1	6
F68	Min	0	0	0	0	0	0	0	0
100	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	28920	4344	1249	5292	15459	7783	3648	2716
	Rank	8	4	1249	5	7	6	3	2/10
F69	Min	0	ч 0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	26190	4060	1156	4912	12776	6596	3452	2511
	Rank	8	4000	1	5	7	6	3	2
F70	Min	0	4 0	1 0	0	0	0	0	2
1,0	Mean	0 1.644E-09	0 2.644E-14	1.173E-08	0	4.625E-13	1.71E-06	6.959E-12	0
									0
	Max Std. Dov	1.609E-08 3.057E-09	1.322E-12	2.34E-07 3.892E-08	0	1.832E-11 2.58E-12	7.056E-05	2.197E-10	0
	Std. Dev.		1.851E-13		0		9.902E-06	3.488E-11	
	NFEs	146998	48544	44511	16508	78064	137246 °	65368	12335
F71	Rank	6	3	7	2	4	8	5	1
1 / 1	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0

	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	41838	6822	940	7224	7953	3770	3256	3564
	Rank	41858	5	940	6	7955	4	2	3
F72	Min	0	0	1 0	0	0	4 0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	48132	7754	960	8248	8204	5404	3340	3848
	Rank	8	5	1	7	6	4	2	3
F73	Min	0.0015669	0.0015669	0.0015669	0.0015669	0.0015669	0.0015669	2 0.0015669	0.0015669
	Mean	0.0015669	0.0015669	0.0015669	0.0015669	0.0015669	0.0015679	0.0015669	0.0015669
	Max	0.0015669	0.0015669	0.0015669	0.0015669	0.0015669	0.0015898	0.0015669	0.0015669
	Std. Dev.	1.952E-18	1.952E-18	4.163E-09	1.952E-18	1.952E-18	3.889E-06	1.952E-18	1.952E-18
	NFEs	119666	20724	150000	38172	19133	150000	17032	12404
	Rank	6	4	7	5	3	8	2	1
F74	Min	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579	0.292579
	Mean	0.292579	0.292579	0.292579	0.292579	0.292579	0.2925795	0.292579	0.292579
	Max	0.292579	0.292579	0.292579	0.292579	0.292579	0.2925856	0.292579	0.292579
	Std. Dev.	0	0	0	0	0	1.394E-06	0	0
	NFEs	36136	12506	8049	16556	10562	42041	15116	6697
	Rank	7	4	2	6	3	8	5	1
F75	Min	0	0	2.704E-06	0	0	0.0010856	0	0
	Mean	0	0	3.779E-05	0	0	0.0140747	0	0
	Max	0	0	8.591E-05	0	0	0.0729492	0	0
	Std. Dev.	0	0	2.321E-05	0	0	0.0131482	0	0
	NFEs	58196	8994	150000	23516	65491	150000	8556	6733
	Rank	5	3	7	4	6	8	2	1
F76	Min	-3456	-3456	-3456	-3456	-3456	-3456	-3456	-3456
	Mean	-3456	-3248.64	-3041.28	-3456	-3456	-2419.2	-3456	-3456
	Max	-3456	0	0	-3456	-3456	0	-3456	-3456
	Std. Dev.	6.163E-11	820.75453	1123.0671	0	0	1583.7382	0	0
	NFEs	80314	15336	150000	12112	20461	150000	6324	4550
	Rank	5	6	7	3	4	8	2	1
F77	Min	-26.920336	-26.920336	-26.920336	-26.920336	-26.920336	-26.920336	-26.920336	-26.920336
	Mean	-26.920336	-26.920336	-26.920335	-26.920336	-26.920336	-26.920335	-26.920336	-26.920336
	Max	-26.920336	-26.920336	-26.920334	-26.920336	-26.920336	-26.920334	-26.920336	-26.920336
	Std. Dev.	1.421E-14	1.421E-14	3.287E-07	1.421E-14	1.421E-14	4.601E-07	1.421E-14	1.421E-14
	NFEs	33114	6410	150000	19104	15166	146164	5936	6052
	Rank	6	3	7	5	4	8	1	2
F78	Min	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085
	Mean	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085
	Max	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085	-19.2085
	Std. Dev.	1.421E-14	1.421E-14						
	NFEs	8362	3586	146624	8688	5988	5447	6400	3502
570	Rank	6	2	8	7	4	3	5	1
F79	Min	-24.156816	-24.156816	-24.156816	-24.156816	-24.156816	-24.156816	-24.156816	-24.156816
	Mean	-24.156816	-24.156816	-24.156815	-24.156816	-24.156816	-24.156814	-24.156816	-24.156816
	Max	-24.156816	-24.156816	-24.156811	-24.156816	-24.156816	-24.156795	-24.156816	-24.156816
	Std. Dev.	3.553E-15	3.553E-15	7.262E-07	3.553E-15	3.553E-15	3.543E-06	3.553E-15	3.553E-15
	NFEs	13144	3920	149997	8892	8845	117083	5688	4311
F80	Rank	6	10.9722	7	5	4	8	3	2
F 8U	Min	-10.8723	-10.8723	-10.8723	-10.8723	-10.8723	-10.8723	-10.8723	-10.8723

	Mean	-10.8723	-10.8723	-10.864377	-10.8723	-10.8723	-10.866753	-10.871904	-10.8723
	Max	-10.8723	-10.8723	-10.852493	-10.8723	-10.8723	-10.852493	-10.852493	-10.8723
	Std. Dev.	2.256E-08	1.776E-15	0.0097036	1.776E-15	1.776E-15	0.0088932	0.002773	1.776E-15
	NFEs	31372	16016	74128	15932	24334	56601	22812	8143
	Rank	5	3	8	2	4	7	6	1
F81	Min	0	0	1.447E-05	0	0	1.366E-05	0	0
	Mean	3.907E-13	0	0.5408279	0.02	0.1288341	0.5009171	0.02	0.04
	Max	7.025E-12	0	2.0014812	1	1	2.0001589	1	1
	Std. Dev.	1.231E-12	0	0.6987698	0.14	0.3275727	0.5736846	0.14	0.1959592
	NFEs	128398	24870	150000	37748	84916	150000	20892	15591
	Rank	2	1	8	4	6	7	3	5
F82	Min	-4.8168141	-4.8168141	-4.8168141	-4.8168141	-4.8168141	-4.8168141	-4.8168141	-4.8168141
	Mean	-4.8168141	-4.8168141	-4.8168141	-4.8168141	-4.8168141	-4.8168141	-4.8168141	-4.8168141
	Max	-4.8168141	-4.8168141	-4.816814	- 4.8168141	-4.8168141	-4.816814	-4.8168141	- 4.8168141
	Std. Dev.	2.665E-15	2.665E-15	4.35E-09	2.665E-15	2.665E-15	7.258E-09	2.665E-15	2.665E-15
	NFEs	17856	3064	149857	6548	6525	145161	3440	2439
	Rank	6	2	8	5	4	7	3	1
F83	Min	-3	-3	-3	-3	-3	-3	-3	-3
	Mean	-3	-3	-3	-3	-3	-3	-3	-3
	Max	-3	-3	-3	-3	-3	-3	-3	-3
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	50204	6412	1698	7412	40795	22996	5104	3886
	Rank	8	4	1	5	7	6	3	2
F84	Min	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5
	Mean	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5
	Max	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5	-1.5
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	53750	6068	1640	7012	37349	22754	4944	3709
	Rank	8	4	1	5	7	6	3	2
F85	Min	-8.5536	-8.5536	-8.5536	-8.5536	-8.5536	-8.5536	-8.5536	-8.5536
	Mean	-8.5536	-8.5536	-8.1178459	-8.5536	-8.3987104	-8.5536	-8.5536	-8.5536
	Max	-8.5536	-8.5536	-7.6457789	-8.5536	-7.645779	-8.5536	-8.5536	-8.5536
	Std. Dev.	5.329E-15	5.329E-15	0.4535472	5.329E-15	0.3266286	5.329E-15	5.329E-15	5.329E-15
	NFEs	370	280	72045	1404	150000	52	2096	184
	Rank	4	3	8	5	7	1	6	2
F86	Min	-400	-400	-400	-400	-400	-400	-400	-400
	Mean	-400	-400	-400	-400	-400	-400	-400	-400
	Max	-400	-400	-400	-400	-400	-400	-400	-400
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	28970	4260	987	4824	9981	5288	3088	2370
	Rank	8	4	1	5	7	6	3	2
F87	Min	0	0	3.631E-10	0	0	4.738E-07	0	0
	Mean	0	0	7.953E-08	0	0	0.0034701	0	0
	Max	0	0	4.438E-07	0	0	0.0473144	0	0
	Std. Dev.	0	0	1.044E-07	0	0	0.0081101	0	0
	NFEs	66566	10828	150000	21688	22006	150000	11524	8705
	Rank	6	2	7	4	5	8	3	1
F88	Min	0	0	3.652E-12	0	0	0	0	0
	Mean	0	0	7.362E-09	0	0	0.0001918	0	0
	Max	0	0	3.548E-07	0	0	0.0049598	0	0
	Std. Dev.	0	0	4.963E-08	0	0	0.0008982	0	0
	NFEs	49796	9550	150000	18756	17138	145990	6448	7363
	Rank	6	3	7	5	4	8	1	2
		Ũ	5		2	•	5	•	-

F89	Min	19.10588	19.10588	19.10588	19.10588	19.10588	19.10588	19.10588	19.10588
	Mean	19.10588	19.10588	19.10588	19.10588	19.10588	19.105888	19.10588	19.10588
	Max	19.10588	19.10588	19.10588	19.10588	19.10588	19.105911	19.10588	19.10588
	Std. Dev.	1.776E-14	1.776E-14	8.976E-08	1.776E-14	1.776E-14	7.121E-06	1.776E-14	1.776E-14
	NFEs	31054	4822	150000	10812	15750	150000	5168	3924
	Rank	6	2	7	4	5	8	3	1
F90	Min	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912
	Mean	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912
	Max	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912	-0.0037912
	Std. Dev.	5.204E-18	5.204E-18	2.198E-12	5.204E-18	5.204E-18	3.866E-12	5.204E-18	5.204E-18
	NFEs	21796	3086	100753	5724	7320	75356	3292	2620
	Rank	6	2	8	4	5	7	3	1
F91	Min	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861
	Mean	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861
	Max	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861	-0.3523861
	Std. Dev.	1.11E-16	1.11E-16	7.643E-10	1.11E-16	1.11E-16	1.938E-09	1.11E-16	1.11E-16
	NFEs	19846	3312	147156	6996	7571	144596	3564	2688
E02	Rank	6	2	8	4	5	7	3	1
F92	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	26578	3928	1134	4748	13437	8340	3392	2475
	Rank	8	4	1	5	7	6	3	2
F93	Min	0	0	2.08E-11	0	0	0	0	0
	Mean	0	0	2.442E-09	0	0	2.048E-10	0	0
	Max	0	0	1.587E-08	0	0	1.751E-09	0	0
	Std. Dev.	0	0	2.763E-09	0	0	3.68E-10	0	0
	NFEs	33568	6128	150000	12612	12997	145741	6064	5707
	Rank	6	3	8	4	5	7	2	1
F94	Min	0	0	2.943E-09	0	0	2.318E-06	0	0
	Mean	0	0	1.149E-06	0	0	0.0021615	0	0
	Max	0	0	6.691E-06	0	0	0.0052874	0	0
	Std. Dev.	0	0	1.53E-06	0	0	0.0019613	0	0
	NFEs	46658	30950	150000	63284	15117	150000	8848	18301
	Rank	5	4	7	6	2	8	1	3
F95	Min	-3.8627821	-3.8627821	-3.8627821	-3.8627821	-3.8627821	-3.8627821	-3.8627821	-3.8627821
190		-3.8627821	-3.8627821	-3.8621739	-3.8627821	-3.8627821	-3.8618207	-3.8627821	-3.8627821
	Mean Max	-3.8627821	-3.8627821	-3.8549006	-3.8627821	-3.8627821	-3.8549006		-3.8627821
								-3.8627821	-3.8027821 1.776E-15
	Std. Dev.	1.776E-15	1.776E-15	0.002065	1.776E-15	1.776E-15	0.002457	1.776E-15	
	NFEs	30044	4204	150000	8728	11137	150000	4692	3652
FOC	Rank	6	2	7	4	5	8	3	1
F96	Min	0	0	4.168E-07	0	0	4.239E-07	0	0
	Mean	1.41E-10	0	0.0001882	0	0	0.1517517	0	0
	Max	2.963E-09	0	0.0023812	0	0	4.3443723	0	0
	Std. Dev.	4.444E-10	0	0.0004696	0	0	0.6985163	0	0
	NFEs	147144	44958	150000	60744	33463	150000	12644	18769
	Rank	6	4	7	5	3	8	1	2
F97	Min	4.355E-05	4.355E-05	4.355E-05	4.355E-05	4.355E-05	4.382E-05	4.355E-05	4.355E-05
	Mean	4.355E-05	4.355E-05	0.0009741	4.355E-05	5.359E-05	0.0001719	4.355E-05	4.355E-05
	Max	4.355E-05	4.355E-05	0.0414904	4.355E-05	0.0005452	0.0005297	4.355E-05	4.355E-05
	Std. Dev.	3.065E-13	0	0.0057921	0	7.023E-05	0.0001737	0	0
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000

F98	Rank Min	5 0	<u>2.5</u> 0	8 0	<u>2.5</u> 0	6 0	7 0	<u>2.5</u> 0	<u>2.5</u> 0
190	Mean	6.949E-10	0	3.185E-07	0 1.005E-10	0	9.541E-08	0 3.462E-12	0
	Max	1.83E-08	0	1.165E-07	3.629E-09	0	3.674E-06	7.927E-11	0
	Std. Dev.	2.663E-09	0	1.703E-05	5.19E-10	0	5.18E-07	1.533E-11	0
	NFEs	143928	0 21726	148842	76788	9614	144338	52840	15058
	Rank	6	3	8	5	1	144338 7	4	2
F99			3 0	8 0	3 0				
177	Min	0				2.516E-11	0	0	0
	Mean	0	0	0	0	2.774E-10	0	0	0
	Max	0	0	0	0	1.89E-09	0	0	0
	Std. Dev.	0	0	0	0	3.024E-10	0	0	0
	NFEs	756	102	93	200	150000	50	200	223
F100	Rank	7	3	2	<u>4.5</u>	8	1	<u>4.5</u>	6
F100	Min	0	0	1.746E-09	0	0	2.182E-07	0	0
	Mean	0	0	0.00201	0	0	0.0129575	0	0
	Max	0	0	0.0502493	0	0	0.0502502	0	0
	Std. Dev.	0	0	0.0098468	0	0	0.0165943	0	0
	NFEs	95876	25818	150000	40884	29000	150000	11248	18383
F101	Rank	6	3	7	5	4	8	1	2
F101	Min	0	0	3.838E-07	0	0	0.0002693	0	0
	Mean	0	2.202E-14	0.1842373	4.175E-07	0	0.2352578	0	1.545E-05
	Max	0	1.101E-12	1.5636004	2.087E-05	0	0.6552792	0	0.0003919
	Std. Dev.	0	1.542E-13	0.4830306	2.922E-06	0	0.1756013	0	6.704E-05
	NFEs	128322	122636	150000	37772	34425	150000	15456	56745
	Rank	3	4	7	5	2	8	1	6
F102	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	36892	4250	960	4516	7623	7304	2876	1804
	Rank	8	4	1	5	7	6	3	2
F103	Min	0.2603179	0	0.0064825	0	0	86.693424	0	0
	Mean	16.358201	12.012354	81580.845	44.49227	2.588E-08	79093.175	465.20708	0.8435968
	Max	150.78081	407.87854	105345.48	234.46873	1.293E-06	105345.48	6762.6477	13.862673
	Std. Dev.	30.906902	57.708083	40732.214	65.569756	1.81E-07	40853.907	1616.6412	2.7441455
	NFEs	150000	143252	150000	149320	107882	150000	100688	113855
	Rank	4	3	8	5	1	7	6	2
F104	Min	2.701E-12	2.701E-12	2.701E-12	2.701E-12	2.701E-12	2.701E-12	2.701E-12	2.701E-12
	Mean	1.716E-11	7.285E-11	3.39E-11	1.185E-10	2.229E-10	3.726E-10	1.805E-10	1.086E-10
	Max	9.94E-11	9.922E-10	9.922E-10	9.922E-10	2.358E-09	2.358E-09	1.362E-09	9.922E-10
	Std. Dev.	1.951E-11	2.333E-10	1.373E-10	2.883E-10	5.865E-10	5.245E-10	3.444E-10	2.505E-10
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	1	3	2	5	7	8	6	4
F105	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	4434	1098	657	1648	6069	304	828	5838
	Rank	6	4	2	5	8	1	3	7
F106	Min	-10.1532	-10.1532	-10.153199	-10.1532	-10.1532	-10.153199	-10.1532	-10.1532
	Mean	-10.1532	-10.1532	-9.4431196	-9.8473196	-10.1532	-10.002717	-9.5450854	-10.1532
	Max	-10.1532	-10.1532	-5.0551975	-5.0551977	-10.1532	-2.6304716	-5.0551977	-10.1532
	Std. Dev.	7.105E-15	7.105E-15	1.7599232	1.2107084	7.105E-15	1.0531779	1.6467981	7.105E-15

	NFEs	77870	22102	150000	37972	22932	150000	30292	7459
	Rank	4	2	8	6	3	5	7	1
F107	Min	-10.402915	-10.402915	-10.402915	-10.402915	-10.402915	-10.402915	-10.402915	-10.402915
	Mean	-10.402915	-10.402915	-10.190299	-10.29661	-10.402915	-10.402873	-9.9793419	-10.402915
	Max	-10.402915	-10.402915	-5.0876715	-5.0876717	-10.402915	-10.402125	-5.0876717	-10.402915
	Std. Dev.	5.329E-15	5.329E-15	1.0415695	0.7441341	5.329E-15	0.0001191	1.4364192	5.329E-15
	NFEs	80350	13878	150000	24776	23282	150000	21036	7023
F100	Rank	4	2	7	6	3	5	8	1
F108	Min	-10.5364	-10.5364	-10.5364	-10.5364	-10.5364	-10.5364	-10.5364	-10.5364
	Mean	-10.5364	-10.206254	-10.5364	-10.428242	-10.5364	-9.9317057	-9.8662776	-10.5364
	Max	-10.5364	-4.8841871	-10.5364	-5.1284809	-10.5364	-4.0698729	-4.0698765	-10.5364
	Std. Dev.	8.882E-15	1.3070118	8.882E-15	0.7571087	8.882E-15	1.8211867	1.8198388	8.882E-15
	NFEs	35940	20494	149884	12796	8409	83600	32980	4484
E100	Rank	3	6	4	5	2	7	8	1
F109	Min	-3.3068672	-3.3068686	-3.3068686	-3.3068686	-3.3068686	-3.3068686	-3.3068686	-3.3068686
	Mean	-3.2970609	-3.3068686	-3.2550216	-3.3068686	-3.2711527	-3.2563615	-3.2780488	-3.3048941
	Max	-3.207018	-3.3068686	-2.9666655	-3.3068686	-3.0626257	-2.6573747	-3.1440794	-3.2081391
	Std. Dev.	0.0240554	8.882E-16	0.0985573	8.882E-16	0.0698027	0.0979282	0.0533764	0.0138221
	NFEs	149166	35806	150000	56712	66700	139115	49932	14877
E110	Rank	4	1	8	2	6	7	5	3
F110	Min	5.115E-05	1.598E-05	4.045E-05	2.082E-06	0	3.838E-06	0	7.067E-07
	Mean	0.0026199	0.0083008	0.0077553	0.0024698	0.012187	0.0121042	0.0102809	0.0038272
	Max	0.0140359	0.0149663	0.0149807	0.0149663	0.0149663	0.0476792	0.0149663	0.0149663
	Std. Dev.	0.0023744	0.0072632	0.0072428	0.005457	0.0057409	0.0101903	0.0068473	0.0062968
	NFEs	150000	150000	150000	150000	133522	150000	117292	150000
F111	Rank	2	5	4	1	8	7	6	3
1,111	Min	42.164407	3.974E-05	0.0009148	4.991E-06	0.3209882	80.983671	0	0
	Mean	598.79506	4417.048	8675.3161	1029.235	1748.4954	13442.301	361.27732	398.73038
	Max	2204.6217	19362.011	19362.011	10214.729	6956.3497	19362.011	10224.97	10130.734
	Std. Dev.	512.36805	7956.5275	9193.5243	3034.2007	1709.5249	7544.7671	1426.7577	1908.714
	NFEs	150000	150000	150000	150000	150000	150000	111876	148058
F112	Rank	3	6 520 87144	7	4	5	8	1	2
1 1 1 2	Min	-529.87143	-529.87144	-529.86968	-529.87144	-529.86989	-529.87144	-529.87144	-529.87144
	Mean Max	-529.87085 -529.8691	-529.87114 -529.8707	-527.89535 -520.3871	-529.87108 -529.8707	-512.66945	-529.13324	-529.85507	-529.87104 -529.8707
	Std. Dev.	0.0005467	0.0003643	-320.3871 3.4400941	0.0003715	-446.93334 19.385721	-524.00383 1.2894678	-529.24315 0.0907534	0.0003706
	NFEs	139882	80128	150000	89252	150000	150000	76972	90343
	Rank	4	1	7	2	8	6	5	3
F113	Min	-4.687658	-4.687658	-4.6876568	-4.687658	-4.687658	-4.6458845	-4.687658	-4.687658
	Mean	-4.687658	-4.6077644	-4.4148795	-4.687658	-4.5842454	-4.0404167	-4.5478749	-4.687658
	Max	-4.687658	-4.4958932	-3.5991932	-4.687658	-4.2902581	-3.4939167	-3.8863548	-4.687658
	Std. Dev.	0	0.0761941	0.3285071	4.007050 0	0.1052625	0.4055095	0.1795503	0
	NFEs	81596	117106	150000	26600	114468	150000	121616	9040
	Rank	3	4	7	20000	5	8	6	1
F114	Min	0.0003839	2.771E-05	4.292E-06	2.193E-06	0	1.086E-05	0	3.045E-10
	Mean	0.0034586	0.0020774	0.0044443	0.0010558	0.0006769	0.0206963	0.0026959	0.0018163
	Max	0.0056693	0.0056557	0.005896	0.0056556	0.0056556	0.1102845	0.0056556	0.0056556
	Std. Dev.	0.001594	0.0021301	0.0021812	0.0018131	0.0018278	0.029856	0.0028049	0.0026193
	NFEs	150000	150000	150000	150000	136723	150000	118740	150000
	Rank	6	4	7	2	1	8	5	3
F115	Min	-3.322368	-3.322368	-3.322368	-3.322368	-3.322368	-3.3223678	-3.322368	-3.322368
	Mean	-3.3223679	-3.3117481	-3.257755	-3.262765	-3.3104474	-3.2511253	-3.2651491	-3.322368
	Max	-3.322367	-3.2031619	-3.1327097	-3.2031619	-3.2031619	-3.0160036	-3.2031619	-3.322368
	11111	2.222301	2.2021017	2.122/07/	2.2021017	2.2021017	2.0100000	2.2021017	2.522500

	Std. Dev.	2.025E-07	0.0326691	0.069844	0.059603	0.0357618	0.074235	0.0595553	1.776E-15
	NFEs	86886	53104	150000	83248	39674	150000	79188	9638
	Rank	2	3	7	6	4	8	5	1
F116	Min	-50	-50	-50	-50	-50	-50	-50	-50
	Mean	-50	-50	-49.580238	-50	-50	-49.999999	-50	-50
	Max	-50	-50	-29.012004	-50	-50	-49.999994	-50	-50
	Std. Dev.	0	0	2.9383191	0	0	1.411E-06	0	2.238E-13
	NFEs	73834	11676	150000	19168	56335	150000	11572	59064
	Rank	6	2	8	3	4	7	1	5
F117	Min	0.002288	0.0022882	0.0028762	0.0022898	0.002288	0.0100084	0.002288	0.002288
	Mean	0.002288	0.0026544	0.0122945	0.0025009	0.002288	0.7841654	0.002288	0.0022973
	Max	0.002288	0.0048063	0.0312614	0.0070757	0.002288	5.1189542	0.002288	0.0024832
	Std. Dev.	1.301E-18	0.0004371	0.0068479	0.0006676	1.301E-18	1.0881658	1.301E-18	2.863E-05
	NFEs	88430	150000	150000	150000	30677	150000	16220	143462
	Rank	3	6	7	5	2	8	1	4
F118	Min	-45.778468	-45.778468	-45.778463	-45.778468	-45.778468	-45.778465	-45.778468	-45.778468
	Mean	-45.778468	-45.778468	-45.778445	-45.778468	-45.778468	-45.778421	-45.778468	-45.778468
	Max	-45.778468	-45.778468	-45.77842	-45.778468	-45.778468	-45.778308	-45.778468	-45.778468
	Std. Dev.	2.132E-14	2.132E-14	1.122E-05	2.132E-14	2.132E-14	3.606E-05	2.132E-14	2.132E-14
	NFEs	55386	8538	150000	10400	39123	150000	8120	11288
	Rank	6	2	7	3	5	8	1	4
F119	Min	-9.5216433	-9.6552406	-9.3023913	-9.66015	-9.5723648	-9.2014058	-9.6183889	-9.66015
	Mean	-9.1090113	-9.2383322	-7.8862967	-9.6190973	-8.8163225	-6.7258291	-8.8788574	-9.66015
	Max	-8.5331766	-8.2936156	-5.677456	-9.4481007	-7.4330183	-4.6924066	-7.0346415	-9.66015
	Std. Dev.	0.1935088	0.2780998	0.7464533	0.0546907	0.5197141	0.9818745	0.5315257	8.882E-15
	NFEs	150000	150000	150000	144792	150000	150000	150000	41845
	Rank	4	3	7	2	6	8	5	1
F120	Min	-200	-200	-200	-200	-200	-200	-200	-200
	Mean	-200	-200	-178.16979	-200	-200	-200	-200	-200
	Max	-200	-200	-50.991525	-200	-200	-200	-200	-200
	Std. Dev.	0	0	39.045048	0	0	0	0	0
	NFEs	33354	6516	97933	4860	18190	3752	4164	32324
	Rank	7	4	8	3	5	1	2	6

both exploration and exploitation features depending on the location of the solution and the current iteration number.

- Conversation mood models the discussion among users, and this operator changes the views of users about an issue (X_k) in a better direction using the $sign(f_i f_j)$. Therefore, this mood exploits the search space around the *k*-th user.
- In the Disputation mood, the cumulative effect of individuals is considered. In addition, AF is an advantageous coefficient that randomly expands the step size $(M AF \times X_i)$ of movements. To study exploration and exploitation, the algorithm is analyzed in three conditions: initial, middle, and final iterations. In the first case, exploration is the most possible scenario. In the second one, if AF = 2, the algorithm explores the search space, and if AF = 1, exploitation is the dominant form of search. Also, at the final stage, due to the vicinity of the agents, M converges to X_i . In this

situation, if AF = 1, the exploitation is the most probable mode, else if AF = 2, the algorithm explores the search space between agents and origin. Therefore, the disputation mood provides both exploitation and exploration in different stages of the iterations.

• Innovation modifies the solutions using a trial mutation operator according to the new idea (n_{new}^d) . Due to the high randomness of the new idea, the present solution (X_i) is transformed into a completely different point in the search space (X_i^{new}) . Therefore, this mood works as an explorative operator and is a very effective approach for local optima avoidance.

The point worth mentioning is that the right balance between exploration and exploitation is a challenging task. This subject is provided by randomness in selecting the decision moods in this algorithm. Fig. 10 shows that how random selection of these operators led to the global optimum converging in dealing with F_{121} .

TABLE 15. Comparative results of algorithms for n-dimension functions.

		Methods									
No.	Statistics	CS	TLBO	GWO	SOS	CSA	WOA	CGO	SNS		
F121	Min	2.5048585	0	0	0	0.0001546	0	0	0		
	Mean	6.8287435	0.0746851	0	0	3.1587468	0	0	0		
	Max	13.377361	3.7342562	0	0	5.4122706	0	0	0		
	Std. Dev.	2.6266095	0.5227959	0	0	0.88528	0	0	0		
	NFEs	150000	18918	10537	19860	150000	37550	18148	8554		
	Rank	8	6	2	4	7	5	3	1		
F122	Min	3.6621256	0	0	0	0.0019468	0	0	0		
	Mean	5.4183604	0	3.832E-07	0	0.0731469	0.3483722	0	0		
	Max	7.2910447	0	9.419E-06	0	1.0803344	17.41861	0	0		
	Std. Dev.	0.8871063	0	1.616E-06	0	0.1739759	2.4386055	0	0		
	NFEs	150000	15166	20586	19432	150000	38204	18004	8068		
	Rank	8	2			6	7	3	1		
F123	Min		2 0	<u>5</u> 0	<u>5</u> 0		0	3 0			
1125		8.162E-09				1.494E-08			0		
	Mean	2.783E-08	0	0	0	1.593E-07	0	0	0		
	Max	7.79E-08	0	0	0	1.051E-06	0	0	0		
	Std. Dev.	1.69E-08	0	0	0	2.173E-07	0	0	0		
	NFEs	150000	7724	5633	9888	150000	20202	9304	4380		
E104	Rank	7	3	2	5	8	6	4	1		
F124	Min	2.236E-12	0	0	0	0	0	0	0		
	Mean	4.206E-11	0	0	0	0	0	0	0		
	Max	2.036E-10	0	0	0	0	0	0	0		
	Std. Dev.	3.687E-11	0	0	0	0	0	0	0		
	NFEs	150000	5950	4361	7656	116899	11603	7280	3267		
	Rank	8	3	2	5	7	6	4	1		
F125	Min	-2.7094506	-3	-3	-3	-3	-3	-3	-3		
	Mean	-2.5681796	-2.9547569	-3	-3	-2.8593801	-3	-3	-3		
	Max	-2.4814892	-2.7778015	-3	-3	-2.5873465	-3	-3	-3		
	Std. Dev.	0.0457589	0.0684276	0	0	0.0933584	0	0	0		
	NFEs	150000	68250	8061	14244	150000	23982	10372	4421		
	Rank	8	6	2	4	7	5	3	1		
F126	Min	0	0	0	0	0	0	0	0		
	Mean	0	0	0	0	0	0	0	0		
	Max	0	0	0	0	0	0	0	0		
	Std. Dev.	0	0	0	0	0	0	0	0		
	NFEs	102576	2616	2449	3388	43363	3611	3068	1259		
	Rank	8	3	2	5	7	6	4	1		
F127	Min	-0.9864462	-0.9999995	-0.9999987	-0.966005	-1	-0.9997129	-1	-0.996049		
	Mean	-0.9795079	-0.9323065	-0.9235051	-0.9467371	-0.9476279	-0.8837872	-0.8751535	-0.994016		
	Max	-0.9722801	-0.6824931	-0.8333252	-0.9147244	-0.8666668	-0.7989027	-0.5776261	-0.991564		
	Std. Dev.	0.0031058	0.080116	0.0404916	0.0104466	0.0360735	0.0522927	0.1667154	0.00101		
	NFEs	150000	150000	150000	150000	150000	150000	141712	150000		
	Rank	2	5	6	4	3	7	8	130000		
F128	Min	-0.9956164	-1	-0.9999822	-0.977221	-0.99999999	, -0.9999981	-1	-0.997965		
1120											
	Mean	-0.9934403	-0.99993	-0.9187277	-0.9558076	-0.945119	-0.9332987	-0.9535726	-0.996113		
	Max	-0.990737	-0.9970576	-0.8416045	-0.9212125	-0.866756	-0.674613	-0.5960661	-0.994523		
	Std. Dev.	0.001254	0.0004129	0.0431744	0.0122543	0.0321861	0.0698722	0.1132852	0.000750		
	NFEs	150000	137344	150000	150000	150000	150000	127316	150000		
E120	Rank	3	1	8	4	6	7	5	2		
F129	Min	0.6667536	0.6666667	0.6666667	0.6666667	0.6666811	0.6666667	0.6666667	0.666666		
	Mean	0.6697147	0.6666667	0.6666671	0.6666667	0.7277258	0.6666712	0.6666667	0.666666		
	Max	0.6877307	0.6666667	0.6666874	0.6666667	1.3447683	0.6667466	0.6666667	0.666666		

	Std. Dev. NFEs	0.003796 150000	1.399E-15 150000	2.894E-06 150000	2.018E-15 150000	0.1265789 150000	1.181E-05 150000	3.605E-15 150000	1.734E-12 150000
	Rank	7	2	5	1	8	6	3	4
F130	Min	-1	-1	-1	-1	-1	-1	-1	-1
	Mean	-1	-1	-1	-1	-1	-1	-1	-1
	Max	-1	-1	-1	-1	-1	-1	-1	-1
	Std. Dev.	1.353E-10	0	0	0	1.493E-12	0	0	0
	NFEs	150000	6890	5019	8920	149190	16487	8428	3798
	Rank	8	3	2	5	7	6	4	1
F131	Min	9.762E-06	0	0	0	1.381E-07	0	0	0
	Mean	0.0005598	1.623E-12	0.0005462	0	0.0123858	0.0002443	0	0
	Max	0.0057166	8.114E-11	0.0149079	0	0.0663026	0.0122151	0	0
	Std. Dev.	0.0009266	1.136E-11	0.0026875	0	0.0172719	0.0017101	0	0
	NFEs	150000	14402	12397	11348	150000	30305	10380	4891
	Rank	7	4	6	3	8	5	2	1
F132	Min	0	0	0	0	0	0	0	0
	Mean	1.13E-11	0	0	0	0	0	0	0
	Max	2.011E-10	0	0	0	0	0	0	0
	Std. Dev.	2.859E-11	0	0	0	0	0	0	0
	NFEs	149604	5058	4248	6548	106382	10518	6116	2751
	Rank	8	3	4248	5	7	6	4	1
F133	Min	24.963929	1.3723977	2.6366919	0.0803232	, 8.8575699	1.2272761	3.9596454	0
1100	Mean	24.903929 74.586736	5.6669742	9.0506619	0.5316387	29.462289	11.078062	11.505615	3.929E-10
	Max	157.9981	13.52541	23.763893	2.6302882	55.797938	48.570009	19.59357	1.964E-08
	Std. Dev.	27.106377	2.6841914	4.2904415	0.4594513	10.980962	10.949711	3.5442929	2.749E-08
	NFEs	150000	150000	150000	150000	150000	150000	150000	122139
		8	3		2	7	5		
F134	Rank Min	° 2	2	4 2.0093591	2	, 603.45497	2	6 2	1 2
1151	Mean	2.0000048	2	3.6154215	2	9470382.4	2	2	2
	Max		2		2		2	2	2
		2.0001172		9.1142518		188217730	2	2	
	Std. Dev.	1.788E-05	0	2.8725462	0	32131011			0
	NFEs	148552	34590	150000	14548	150000	129	200	53105
F135	Rank Min	6	4	7	3	8	1	2 2	5 2
1155		2	2	2.0116692	2 2	1575.3435	2 2	2	2
	Mean	2.0000056	2	15.913947		30189258	2	2	
	Max	2.0000802	2	463.12848	2	1.009E+09		2	2 0
	Std. Dev. NFEs	1.387E-05	0	64.999144	0	142182139	0	200	53776
		149644	35970	150000	14800	150000	131		
F136	Rank	6 0	4 0	7 0	3 0	8 0	1 0	2 0	5 0
1150	Min	0					0		0
	Mean		0	1.692E-12	2.667E-10	0		2.373E-11	
	Max	0	0	1.999E-11	2.68E-09	0	0	1.102E-09	0
	Std. Dev.	0	0	4.213E-12	5.713E-10	0	0	1.543E-10	0
	NFEs	27150	42960	140226	132976	15877	22664	88476	26315
F137	Rank	4	5	6	8	1	2	7	3
1137	Min	0	0	0	0	0	0	0	0
	Mean	5.752E-09	0	0	1.581E-07	0	0	0	0
	Max	2.435E-07	0	0	7.565E-06	0	0	0	0
	Std. Dev.	3.442E-08	0	0	1.059E-06	0	0	0	0
	NFEs	34716	602	149766	23736	52038	173	264	8593
E120	Rank	7	3	6	8	5	1	2	4
F138	Min	0	0	0	2.352E-12	1.028E-10	0	0	0
	Mean	2.251E-09	1.387E-07	1.771E-07	2.466E-07	1.303E-08	6.084E-09	0	2.674E-09

	Max	2.078E-08	3.328E-06	2.772E-06	1.879E-06	1.233E-07	1.191E-07	0	3.665E-08
	Std. Dev.	3.837E-09	4.924E-07	4.423E-07	4.227E-07	2.356E-08	1.812E-08	0	7.179E-09
	NFEs	148544	143226	149983	150000	150000	143212	53896	123604
	Rank	2	6	7	8	5	4	1	3
F139	Min	714.16445	0	0	0	8.2728704	0	0	0
	Mean	1551.7937	0	0	0	510.95862	0	0	0
	Max	2221.5937	0	0	0	1429.6684	0	0	0
	Std. Dev.	375.28206	0	0	0	382.41572	0	0	0
	NFEs	150000	10678	8419	13572	150000	28976	12188	5623
	Rank	8	3	2	5	7	6	4	1
F140	Min	0	0	0	0	0	4.902E-12	0	0
	Mean	0	5.786E-11	9.515E-11	0 1.449E-10	0	7.581E-07	0	1.391E-12
	Max	0	4.31E-10	8.554E-10	7.937E-10	0	1.833E-06	0	7.085E-12
	Std. Dev.	0	7.807E-11	1.595E-10	1.706E-10	0	6.709E-07	0	1.85E-12
	NFEs	28890	147876	139287	148532	17268	150000	7896	122495
	Rank	3	5	6	7	2	8	1	4
F141	Min	1.904E-06	0	0	0	0.0087553	8 0	0	0
	Mean	5.177E-06	0	0	0	0.0945922	0	0	0
	Max	9.856E-06	0	0	0	0.2030205	0	0	0
	Std. Dev.	9.836E-06	0	0	0	0.0483201	0	0	0
	NFEs	150000	9288	15213	11716	150000	27144	10844	4965
	Rank	7	3	5	4	8	6	2	1
F142	Min	0	0	0	4 0	3.676E-12	0	0	0
	Mean	0	0	0	0	1.512E-10	0	0	0
	Max	0	0	0	0	6.752E-10	0	0	0
	Std. Dev.	0	0	0	0	0.752E-10 1.462E-10	0	0	0
	NFEs	58536	2814	1808	3384	150000	5867	3232	1662
	Rank	7	3	2	5	8	6	4	1002
F143	Min	57.220652	0	0	0	8.9546315	0	0	0
11.0	Mean	73.375657	10.443284	0	0	20.874231	0	0	0
	Max	97.351438	26.863884	0	0	55.717622	0	0	0
	Std. Dev.	97.551458 9.0611894	6.17497	0	0	10.167064	0	0	0
	NFEs	150000	142554	10123	18400	150000	28167	14292	5494
	Rank	8	6	2	4	7	5	3	1
F144	Min	16.95717	0	183.25553	4 0	0.0125266	1.2962162	0	0
	Mean	34.174575	0	890.87138	0	0.6154346	12.171256	0	0 2.094E-11
	Max	84.140641	0	2167.0844	0	8.7294869	68.360402	0	4.259E-10
	Std. Dev.	12.072643	0	440.99023	0	1.4947032	12.619465	0	4.239E-10 7.746E-11
	NFEs	150000	77586	150000	49880	150000	150000	51792	140122
	Rank	7	2	8	3	5	6	1	4
F145	Min	0.0106111	0.0001297	1.549E-05	0.0001235	0.0039062	3.221E-06	4.503E-05	- 5.048E-06
	Mean	0.0217699	0.0003332	0.0001276	0.0003297	0.0106483	0.0002277	0.0001988	5.972E-05
	Max	0.0355818	0.0003332	0.0004841	0.0006491	0.0235451	0.002277	0.0001988	0.0001924
	Std. Dev.	0.0059137	0.0001279	9.185E-05	0.0001251	0.0037311	0.0003388	0.0001063	4.109E-05
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	8	6	2	5	7	4	3	150000
F146	Min	7.5802419	0	0.0253261	0	5.462842	4 1.1154376	0	2.08E-12
11.0	Mean	12.04304	5.994E-09	8.7260936	5.019E-08	25.284379	5.0408749	0 2.504E-14	4.127E-06
	Max	12.04304	3.994E-09 2.898E-07	8.7200930 20.635174	2.51E-06	23.284379 52.787886	3.0408749 10.211546	2.304E-14 1.252E-12	4.127E-06 0.0002008
	Std. Dev.	2.0026695	2.898E-07 4.057E-08	5.2768589	2.51E-00 3.513E-07	12.008273	2.7391101	1.252E-12 1.753E-13	2.81E-05
	NFEs	150000	4.037E-08 133768	150000	98036	12.008273	150000	121216	2.81E-03 150000
	Rank	7	2	6	3	8	5	121210	4
F147	Min	18.526352	2 14.091366	6 24.261918	3 11.217654	8 24.379185	3 24.748804	0.0115592	4 24.12554
× 1 T/	171111	10.320332	14.091300	27.201910	11.21/034	27.3/9103	∠+./40004	0.0115592	27.12334

	Mean	24.838249	18.070716	26.123981	15.032426	45.257047	25.415142	0.4391816	24.935924
	Max	28.399297	20.887799	27.898814	17.331699	152.59015	26.053881	3.49736	25.92998
	Std. Dev.	1.8644743	1.1495879	0.7382112	1.2484045	33.987686	0.3034958	0.7505453	0.3283699
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	4	3	7	2	8	6	1	5
F148	Min	0.5999739	0.0998733	0.0998733	0.0998733	0.3998733	0	0	0.0998733
	Mean	0.8757759	0.1018733	0.1058733	0.0998733	0.5118782	0.123886	0.0099873	0.0998733
	Max	1.2001072	0.1998733	0.1998733	0.0998733	0.6998733	0.2998733	0.0998734	0.0998733
	Std. Dev.	0.1224258	0.014	0.0237487	2.602E-10	0.0738637	0.0649681	0.029962	2.072E-10
	NFEs	150000	150000	150000	150000	150000	138720	97404	150000
	Rank	8	4	5	3	7	6	1	2
F149	Min	0.0005756	0	0	0	1.903E-06	0	0	0
	Mean	0.0012113	0	0	0	7.014E-06	0	0	0
	Max	0.0026968	0	0	0	1.889E-05	0	0	0
	Std. Dev.	0.0005259	0	0	0	3.901E-06	0	0	0
	NFEs	150000	11298	8322	14384	150000	50470	12612	5939
	Rank	8	3	2	5	7	6	4	1
F150	Min	4.642E-10	0	0	0	0	0	0	0
	Mean	1.796E-07	0	0	0	1.242E-13	0	0	0
	Max	5.262E-06	0	0	0	3.185E-12	0	0	0
	Std. Dev.	7.512E-07	0	0	0	6.086E-13	0	0	0
	NFEs	150000	5926	5090	7768	129731	14920	7212	3245
	Rank	8	3	2	5	7	6	4	1
F151	Min	2.831E-12	0	0	0	0	0	0	0
	Mean	4.172E-11	0	0	0	0	0	0	0
	Max	2.258E-10	0	0	0	0	0	0	0
	Std. Dev.	4.17E-11	0	0	0	0	0	0	0
	NFEs	150000	5968	4363	7704	117817	11572	7184	3257
	Rank	8	3	2	5	7	6	4	1
F152	Min	49.758983	0	0	0	0.0399548	0.051491	0	0
	Mean	89.187706	0	0	0	0.2086749	697.86545	0	0
	Max	144.50595	0	0	0	0.6984432	5790.9078	0	0
	Std. Dev.	24.490645	0	0	0	0.1505049	1187.6595	0	0
	NFEs	150000	39354	22199	35748	150000	150000	15488	13203
	Rank	7	5	3	4	6	8	2	1
F153	Min	4.381E-07	6.864E-09	8.678E-06	0	2.399E-07	0.0002841	0	1.772E-05
	Mean	1.647E-06	4.581E-07	4.6719387	0	4.267E-06	4.3038792	0	6.185E-05
	Max	4.7E-06	1.103E-05	7.894836	0	3.814E-05	24.314188	0	0.0001795
	Std. Dev.	9.06E-07	1.546E-06	2.0914225	0	7.997E-06	6.7708444	0	3.456E-05
	NFEs	150000	150000	150000	96276	150000	150000	83600	150000
F1.5.4	Rank	4	3	8	2	5	7	1	6
F154	Min	0.0167398	0	0	0	1.6064746	0	0	0
	Mean	0.0375221	0	0	0	9.783841	0	0	0
	Max	0.0713853	0	0	0	26.234636	0	0	0
	Std. Dev.	0.0104621	0	0	0	6.2470217	0	0	0
	NFEs	150000	16646	10350	21464	150000	36925	19660	9189
E166	Rank	7	3	2	5	8	6	4	1
F155	Min	1.0618729	0	0	0	0.1053016	7.54E-11	0	0
	Mean	2.0829171	0	0	0	0.8450623	13.817992	0	0
	Max	3.5026403	0	0	0	2.9484023	85.950023	0	0
	Std. Dev.	0.5098974	0	0	0	0.6218968	23.47234	0	0
	NFEs	150000	19206	18910	25336	150000	150000	22192	9733
	Rank	7	3	2	5	6	8	4	1

F156	Min	319.84279	0	0	0	5.8456756	0	0	0
	Mean	6.626E+09	0	0	0	127.70072	0	0	0
	Max	2.688E+11	0	0	0	243.33086	0	0	0
	Std. Dev.	3.821E+10	0	0	0	76.290843	0	0	0
	NFEs	150000	17406	10650	22732	150000	37158	19824	9253
	Rank	8	3	2	5	7	6	4	1
F157	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0
	NFEs	110790	2832	2924	3752	47408	4895	3284	1381
	Rank	8	2	3	5	7	6	4	1
F158	Min	-315.90328	-324.17992	-269.43389	-414.78045	-281.79119	-418.9828	-327.9229	-418.9828
	Mean	-300.11098	-278.5916	-202.98453	-378.28866	-237.95215	-401.84379	-280.87092	-418.50626
	Max	-283.92668	-231.44499	-147.3126	-327.71978	-199.64106	-287.37765	-169.18646	-403.12477
	Std. Dev.	7.8121935	21.806682	23.757037	21.615634	23.54223	32.614617	31.914307	2.4595447
	NFEs	150000	150000	150000	150000	150000	148666	150000	144783
	Rank	4	6	8	3	7	2	5	1
F159	Min	-186.7309	-186.7309	-186.7309	-186.7309	-186.7309	-186.7309	-186.7309	-186.7309
	Mean	-186.7309	-186.7309	-186.7309	-186.73088	-186.7309	-186.7309	-186.7309	-186.7309
	Max	-186.7309	-186.7309	-186.73087	-186.73036	-186.7309	-186.7309	-186.7309	-186.7309
	Std. Dev.	1.421E-13	1.421E-13	3.546E-06	8.521E-05	1.421E-13	6.379E-07	1.421E-13	1.421E-13
	NFEs	20080	13684	149413	67572	7756	25760	37156	9176
	Rank	4	3	7	8	1	6	5	2
F160	Min	-29.6759	-29.6759	-29.6759	-29.6759	-29.6759	-29.6759	-29.6759	-29.6759
1100	Mean	-29.6759	-29.6759	-29.675779	-29.675899	-29.6759	-29.6759	-29.6759	-29.6759
	Max	-29.6759	-29.6759	-29.669873	-29.67586	-29.6759	-29.675895	-29.6759	-29.6759
	Std. Dev.	-29.0759 2.487E-14	-29.0759 2.487E-14	0.0008437	-29.07580 5.614E-06	-29.0759 2.487E-14	-29.075895 7.238E-07	-29.0759 2.487E-14	-29.0759 2.487E-14
	NFEs	2.487E-14 25198	2.487E-14 9814	149990	39376	8162	53814	2.487E-14 22400	2.487 <u>D-14</u> 7900
		5	3	8	39370 7	2	6	4	1
F161	Rank Min								
1101		-25.741771	-25.741771	-25.741771	-25.741771	-25.741771	-25.741771	-25.741771	-25.741771
	Mean	-25.741771	-25.741771	-25.393526	-25.741771	-25.741771	-25.741771	-25.741771	-25.741771
	Max	-25.741771	-25.741771	-21.388717	-25.74177	-25.741771	-25.741769	-25.741771	-25.741771
	Std. Dev.	7.105E-15	7.105E-15	1.1809538	9.951E-08	7.105E-15	3.519E-07	7.105E-15	7.105E-15
	NFEs	65730	17340	150000	61280	14551	149858	26092	11184
F162	Rank	6	3	8	5	2	7	4	1
F102	Min	10.364853	4.0835874	0.0912746	4.214E-07	3.2110559	0	0	1.550952
	Mean	11.079985	7.5605654	1.8677395	4.1173798	5.5610738	0.7345805	0.9037443	2.3512339
	Max	11.665728	8.8770934	5.3423701	6.5439024	7.9989358	5.9992573	8.2086689	2.8012958
	Std. Dev.	0.3066065	0.8353413	1.3152401	1.5001401	1.0898252	1.7739015	2.3149062	0.238256
	NFEs	150000	150000	150000	150000	150000	57312	107356	150000
F1(2	Rank	8	7	3	5	6	1	2	4
F163	Min	1.62E-06	0	0	0	6.999E-09	0	0	0
	Mean	5.496E-06	0	0	0	4.328E-08	0	0	0
	Max	1.398E-05	0	0	0	1.065E-07	0	0	0
	Std. Dev.	2.724E-06	0	0	0	2.341E-08	0	0	0
	NFEs	150000	9252	6711	12032	150000	28644	11112	5136
	Rank	8	3	2	5	7	6	4	1
F164	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0.1	0	0	0
	Max	0	0	0	0	2	0	0	0
	Std. Dev.	0	0	0	0	0.4123106	0	0	0
	NFEs	84046	2328	1604	2924	90522	2337	2724	1153

	Deals	7	2	2	6	o	4	E	1
F165	Rank Min	7 1.877E-06	3 0	2 4.08E-07	6 0	8 4.955E-09	4 4.215E-05	5 0	1 0
1105	Mean	5.137E-06	0	4.08E-07 0.2643818	0	4.933E-09 3.614E-08	4.213E-03 0.0001256	0	1.11E-13
	Max	1.004E-05	0	0.7515219	0	9.205E-08	0.0004333	0	2.416E-12
	Std. Dev.	2.224E-06	0	0.2192734	0	1.965E-08	6.254E-05	0	4.615E-13
	NFEs	150000	64436	150000	37180	150000	150000	40780	122964
	Rank	6	3	8	1	5	7	2	4
F166	Min	0	0	0	0	0	0	0	0
	Mean	0	0	ů	ů	0	ů	ů	ů 0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	ů 0	0	0	0	0
	NFEs	60004	2214	1709	2820	22160	3395	2724	1148
	Rank	8	3	2	5	7	6	4	1
F167	Min	-155	-155	-155	-155	-101	-155	-155	-155
	Mean	-154.34	-154.38	-146.28	-154.32	-75.82	-155	-134.08	-154.2
	Max	-152	-144	-122	-151	-59	-155	-105	-151
	Std. Dev.	0.8151074	1.6234531	6.3562253	0.8818163	9.5638695	0	12.367441	0.9165151
	NFEs	132770	58260	149836	89664	150000	142	138768	105675
	Rank	3	2	6	4	8	1	7	5
F168	Min	33.642812	0	0	0	18.117263	0	0	0
	Mean	41.719893	0	0	0	24.930286	0	0	0
	Max	49.994433	0	0	0	29.591488	0	0	0
	Std. Dev.	4.2837502	0	0	0	2.7641032	0	0	0
	NFEs	150000	33332	19221	42324	150000	45694	37504	17258
	Rank	8	6	2	4	7	5	3	1
F169	Min	1.428E-07	0	0	0	6.16E-05	0	0	0
	Mean	7.119E-07	0	0	0	0.0132389	0	0	0
	Max	3.6E-06	0	0	0	0.1184532	0	0	0
	Std. Dev.	5.121E-07	0	0	0	0.0214838	0	0	0
	NFEs	150000	8784	6368	11400	150000	26861	10404	4895
	Rank	7	3	2	5	8	6	4	1
F170	Min	-1144.3311	-1104.3014	-1076.0277	-1174.985	-1061.8912	-1174.9838	-1104.3014	-1174.985
	Mean	-1091.4401	-1031.9214	-961.03549	-1174.985	-1012.13	-1174.6884	-1037.2933	-1174.985
	Max	-1060.8122	-934.66075	-773.6504	-1174.985	-920.52403	-1160.6465	-962.93419	-1174.985
	Std. Dev.	15.334159	35.385877	55.431632	0	37.427898	2.00608	29.896403	0
	NFEs	150000	150000	150000	78108	150000	150000	150000	93923
	Rank	4	6	8	1	7	3	5	2
F171	Min	0	0	0	0	216.57404	0	0	0
	Mean	1233.3595	0	0	0	1266.4692	0	0	0
	Max	5963.5903	0	0	0	2429.471	0	0	0
	Std. Dev.	1433.9371	0	0	0	446.05259	0	0	0
	NFEs	142194	1852	5125	788	150000	128	312	5172
	Rank	7	4	5	3	8	1	2	6
F172	Min	71.949683	11.46719	20.488475	22.739549	89.757421	16.014251	23.142133	6.4348873
	Mean	99.815878	23.626506	23.482331	24.333896	149.36768	23.850369	24.873246	11.490353
	Max	119.10462	45.481233	27.433447	25.155054	217.15848	25.31413	25.155054	15.090448
	Std. Dev.	10.267658	7.443784	1.1530007	0.710696	33.48754	1.6132274	0.5233595	1.8543199
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
E172	Rank	7	3	2	5	8	4	6	1
F173	Min	0	0	0	0	0	0	0	0
	Mean	0	0	0	0	0	0	0	0
	Max	0	0	0	0	0	0	0	0
	Std. Dev.	0	0	0	0	0	0	0	0

B. INTERACTIVE FORCES ANALYSIS

The effective forces between the agent of a swarm can be classified into two categories: the aggregation and the congregation [50]. In aggregation, the nonsocial or an external force control the agents and has two modes: passive and active.

Passive aggregation is a passive grouping by involuntary processes, like dense of planktons in the water, in which the forces of water flow transport the planktons passively. Also, active aggregation is a grouping by attractive resources, such as food [51]. The congregation is the grouping by the social or

	NFEs	32514	7004	1101	6544	9700	4395	3432	3444
	Rank	8	6	1	5	7	4	2	3
F174	Min	2.8947126	0	0	0	5.3315469	0	0	0
	Mean	4.9259417	0	0	0	10.175872	0	0	0
	Max	6.6516057	0	0	0	15.287907	0	0	0
	Std. Dev.	0.8596602	0	0	0	2.0501896	0	0	0
	NFEs	150000	15818	9861	20176	150000	36735	18020	8305
	Rank	7	3	2	5	8	6	4	1
F175	Min	454.44163	382.24799	378.16554	285.83292	562.77178	85.045173	385.86228	81.241393
	Mean	524.24823	401.49993	393.97949	334.29377	655.25655	334.56602	404.70789	233.85636
	Max	572.63484	406.32201	407.09676	365.38291	749.79498	389.49804	406.32201	337.23726
	Std. Dev.	27.542317	6.7736337	6.889988	15.843004	48.127237	87.753119	4.6951036	66.040435
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	7	5	4	2	8	3	6	1
F176	Min	7.383E-05	0	0	0	3.336E-06	0	0	0
	Mean	0.0018742	0	0	0	0.0003463	1.286E-08	0	0
	Max	0.0077134	0	0	0	0.0035676	6.325E-07	0	0
	Std. Dev.	0.001761	0	0	0	0.0007079	8.853E-08	0	0
	NFEs	150000	27798	4511	16704	150000	51540	11340	7884
	Rank	8	5	1	4	7	6	3	2
F177	Min	1.136E-11	2.774E-11	4.588E-12	1.793E-11	3.512E-12	3.512E-12	0	3.805E-12
	Mean	1.742E-11	2.989E-11	7.463E-10	2.277E-11	3.662E-12	3.607E-12	1.332E-11	4.731E-12
	Max	2.082E-11	3.098E-11	1.069E-08	3.133E-11	4.273E-12	6.355E-12	1.878E-11	5.418E-12
	Std. Dev.	2.134E-12	8.122E-13	1.925E-09	2.85E-12	1.845E-13	4.113E-13	7.5E-12	4.008E-13
	NFEs	150000	150000	150000	150000	150000	150000	120024	150000
	Rank	5	7	8	6	2	1	4	3
F178	Min	4.34E-232	4.34E-232	6.43E-201	4.34E-232	4.54E-114	-1	-1	4.34E-232
	Mean	4.34E-232	4.34E-232	7.94E-149	4.34E-232	7.19E-70	-0.98	-1	4.34E-232
	Max	4.34E-232	4.34E-232	3.97E-147	4.34E-232	3.137E-68	4.34E-232	-1	4.34E-232
	Std. Dev.	0	0	5.56E-148	0	4.393E-69	0.14	0	0
	NFEs	150000	150000	150000	150000	150000	34638	1740	150000
	Rank	<u>4</u>	<u>4</u>	7	<u>4</u>	8	2	1	6
F179	Min	2.983E-12	2.807E-12	2.807E-12	4.539E-12	2.807E-12	-1	-1	2.89E-12
	Mean	3.061E-12	2.952E-12	5.966E-12	6.19E-12	2.862E-12	-0.06	-1	2.941E-12
	Max	3.158E-12	9.136E-12	1.936E-11	9.559E-12	5.565E-12	4.481E-11	-1	2.996E-12
	Std. Dev.	4.489E-14	8.855E-13	4.618E-12	9.972E-13	3.861E-13	0.2374868	0	2.474E-14
	NFEs	150000	150000	150000	150000	150000	142572	65152	150000
	Rank	6	5	7	8	3	2	1	4
F180	Min	8.6378582	0	0	0	2.5883177	188.03508	0	0
	Mean	13.359538	0	0	0	6.3506408	398.77988	0	0
	Max	19.713932	0	0	0	11.903133	658.59376	0	ů 0
	Std. Dev.	2.6657201	0	0	0	2.4237925	94.042677	0	0
	NFEs	150000	61766	15907	55040	150000	150000	16820	23739
	Rank	7	5	13907	4	6	8	2	3
	IXAIIK	/	3	1	4	0	0	2	3

internal forces of the swarm itself. Also, the congregation can be classified into the passive and social congregation, as well. The passive state is the congregation of an individual in which there is no display of social behavior. On the other hand, social congregations usually can be seen in a group where the members are related. The active transform of information is needed in social congregations. For instance, ants use pheromone or their tentacles to transfer information about the location of resources, [51].

According to the above definitions, Imitation is an active aggregation. In this mood, the external force is applied due to the fame of the randomly selected user. Also, the Conversation is a passive congregation mood that models the force of randomly selected user and issue (a group of agents). The

TABLE 16. Comparative results of algorithms for CEC 2014 functions.

		Methods							
No.	Statistics	CS	TLBO	GWO	SOS	CSA	WOA	CGO	SNS
F181	Min	2600258.9	127114.05	6626641.4	166497.7	975392.26	20935421	31182.064	386957.63
	Mean	4807196.6	492333.98	60713036	1539131.6	5183041.7	50564683	257500.52	1524316.8
	Max	7365714.7	1861347.7	157276933	8527512.1	14933231	98261066	2404907.7	5032978.9
	Std. Dev.	1214059.7	370142.01	32036881	1632382	3273342.5	19459057	399456.25	777527.6
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	5	2	8	4	6	7	1	3
F182	Min	1036.9548	0.1780523	172332046	0.0071334	99.147244	8656447.6	1.258E-07	183.20936
	Mean	2601.8889	93.30378	1.866E+09	10.751549	9627.8188	44822808	0.0847138	6030.1227
	Max	7087.2117	757.33138	8.399E+09	55.447227	32593.69	333607286	2.2166058	24955.632
	Std. Dev.	1139.4956	124.01398	2.04E+09	12.008356	7877.3887	49033284	0.3121587	5839.8267
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	4	3	8	2	6	7	130000	5
F183	Min	6.2023392	150.01744	12374.052	73.477641	1421.8517	, 18919.918	0.0005793	6.0574837
1 105									
	Mean	12.708216	1843.8181	28954.483	1119.9374	6746.801	57033.523	4.7625491	425.89586
	Max	25.767876	5602.0748	51101.264	9074.688	13854.202	154267.28	32.733931	3322.1328
	Std. Dev.	3.7682469	1235.1842	7962.3291	1801.9531	2468.233	37877.235	7.124706	646.95215
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
E104	Rank	2	5	7	4	6	8	1	3
F184	Min	86.263281	0.1941828	132.42582	9.745195	35.742165	100.75215	0.1550106	9.596E-05
	Mean	122.89267	81.044047	214.54033	98.706145	147.10416	230.4115	77.571627	81.344564
	Max	160.15885	147.5595	479.32055	161.72959	246.1771	502.63786	147.3047	144.42256
	Std. Dev.	16.47974	36.523366	61.773655	34.830656	46.551857	68.211985	38.686801	45.600178
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	5	2	7	4	6	8	1	3
F185	Min	20.794739	20.860386	20.182846	20.348028	19.996559	20.142437	20.008147	20.288286
	Mean	20.904412	20.95125	20.669572	20.554643	19.999921	20.494725	20.534132	20.418965
	Max	20.992458	21.038373	21.05939	20.680675	20.003103	20.940398	21.051508	20.498994
	Std. Dev.	0.0475648	0.0443533	0.3392471	0.0806574	0.0009057	0.1731967	0.2973643	0.0451424
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	7	8	6	5	1	3	4	2
F186	Min	24.064244	10.328033	7.6709236	6.129631	22.056672	28.086746	14.596083	7.0181747
	Mean	26.896413	16.028939	14.154756	10.270133	27.46087	34.985135	21.414571	12.932457
	Max	29.290912	24.159879	24.635365	17.05491	34.803418	42.196982	28.278165	17.850027
	Std. Dev.	1.2199741	2.7168935	3.269511	2.5019151	2.8990249	3.5799388	3.4772571	2.2696872
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	6	4	3	1	7	8	5	2
F187	Min	0.0013155	0	3.8080858	0	0.0009433	1.1031269	0	1.141E-08
	Mean	0.0123934	0.0258615	17.973454	0.0147985	0.0158855	1.2707681	0.0305696	0.0231779
	Max	0.0375224	0.1271122	92.711831	0.0637242	0.0742881	1.5421925	0.2765931	0.1154913
	Std. Dev.	0.0089177	0.0282089	15.337209	0.0148683	0.0138858	0.1001357	0.0446897	0.0262991
	NFEs	150000	149660	150000	133408	150000	150000	144108	150000
	Rank	150000	5	8	2	3	7	6	4
F188	Min		3 31.83867	° 57.726474	25.604298	5 98.500501	/ 110.7061		4 7.5381921
1 100		57.394119						38.803353	
	Mean	87.419996	67.856067	88.102074	49.53517	127.57317	187.7875	72.33551	11.923918
	Max	108.6691	100.49049	135.35983	79.195672	165.16238	284.70296	122.37933	15.497126
	Std. Dev.	13.072016	13.983273	15.822886	11.513105	16.837091	39.575324	19.143772	1.7807586
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
E100	Rank	5	3	6	2	7	8	4	1
F189	Min	110.15216	34.823549	51.919174	32.035043	93.525834	143.2212	35.818501	43.778118
	Mean	151.87078	79.091007	102.01911	74.536762	135.59244	234.32222	80.680712	72.928259
	Max	194.41654	119.39494	173.28349	154.40945	182.07614	438.11973	115.41474	125.37586

TABLE 16. (Continued.) Comparative results of algorithms for CEC 2014 functions.

	Std Day	20 227662	10 222452	22 710776	25 652020	22 157711	55 742706	10 052165	15 707514
	Std. Dev. NFEs	20.327663	18.233453	23.710776 150000	25.652039 150000	22.457744	55.742796	19.953165	15.707514
	Rank	150000 7	150000 3	5	2	150000 6	150000 8	150000 4	150000 1
F190	Min	1327.002	5 797.02039	1312.7728	2 518.0897	0 2047.5487	° 2681.3991	4 824.55385	1 58.929789
1150	Mean	2318.183	1877.9989	2467.2284	1204.0868	3485.3489	4324.8443	2624.35385	118.82742
			3687.6589		1204.0808				
	Max	2742.9061		3683.8783		5130.5377	5927.7828	6684.3054	191.58319
	Std. Dev.	259.62361	568.46406	595.02286	302.27095	662.66982	786.96157	897.97584	30.015787
	NFEs	150000	150000	150000 5	150000	150000 7	150000 8	150000	150000
F191	Rank Min	4 3156.3482	3		2			6 2201.2359	1 2483.46
1 1 7 1			4809.8937	1936.5743	1486.1182	2275.6319	3459.2127	5781.6555	
	Mean	3719.8317	6533.9156	2811.4655	2888.6105	3661.2045	5202.1327		3128.3933
	Max	4333.8106	7158.9713	4308.8872	4742.9149	5249.9207	7069.3502	7858.5489	3664.885
	Std. Dev.	220.7974	534.00751	521.57884	787.03814	649.67652	897.73303	1924.9283	292.83981
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
F192	Rank	5	8	1	2	4	6	7	3
1192	Min	0.761136	1.9213096	0.0531202	0.2818776	0.2371738	0.9384875	0.5846934	0.3605171
	Mean	0.9679607	2.6604794	0.2337986	0.637809	0.7278787	1.6949866	2.427538	0.6533173
	Max	1.2246143	3.173921	3.195929	1.0549766	1.3640302	3.1111901	3.4435143	0.8344222
	Std. Dev.	0.1110939	0.3213543	0.4320611	0.1773695	0.250144	0.4528671	0.7216531	0.0799091
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
F193	Rank	5	8	1	2	4	6	7	3
F195	Min	0.2450026	0.2092979	0.2336327	0.2397965	0.2308912	0.2980532	0.3791783	0.1878727
	Mean	0.3345103	0.4816183	0.4197374	0.4216321	0.4388445	0.5254393	0.5086751	0.3294443
	Max	0.4305312	0.6840553	0.5634873	0.6370764	0.6488417	0.8267965	0.768816	0.4511288
	Std. Dev.	0.042457	0.1048913	0.0744108	0.1014417	0.1043328	0.1135838	0.0903874	0.0613075
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
E104	Rank	2	6	3	4	5	8	7	1
F194	Min	0.1886713	0.1477577	0.1502058	0.1770092	0.1784796	0.1771045	0.2010149	0.1835066
	Mean	0.2591317	0.2727648	0.9658218	0.363775	0.2892377	0.2763847	0.3322933	0.2547528
	Max	0.3260599	0.4138755	9.7412407	1.0507229	0.8774463	0.3818544	0.9150452	0.3762075
	Std. Dev.	0.0271249	0.0471009	1.9174913	0.2059871	0.0967794	0.0471873	0.1267048	0.0396226
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
F195	Rank	2	3	8	7	5	4	6	1
1195	Min	8.4957334	6.3147419	5.9865139	11.307717	6.8255117	32.87386	5.9199387	4.2701801
	Mean	11.873753	16.177876	32.313227	17.510222	18.495917	76.702713	15.79893	10.193497
	Max	14.510779	34.959257	203.71748	23.673328	38.241199	124.19105	42.84122	21.779354
	Std. Dev.	1.4508609	6.1733077	39.565592	3.1378489	5.7305848	23.219037	8.0776251	4.0463355
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
F196	Rank	2	4	7	5	6	8	3	1
F190	Min	12.029807	10.792485	9.3262485	9.3694357	10.137084	11.307022	9.5576132	9.6721444
	Mean	12.526694	11.837307	10.82882	10.85493	11.962493	12.625768	11.423993	10.542229
	Max	13.006887	12.527982	12.595965	11.890163	12.848879	13.655784	12.732646	11.031944
	Std. Dev.	0.1928388	0.4100823	0.6887685	0.5153542	0.5821658	0.4696495	0.6728067	0.3331719
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
E107	Rank	7	5	2	3	6	8	4	1
F197	Min	32779.353	16208.604	58178.076	8262.2388	5480.4344	978383.87	2289.5888	19429.738
	Mean	104444.11	180216.42	1914100.5	204864.84	54158.994	8001736.2	7175.7755	122144.41
	Max	213732.17	957203.11	8579714.3	755141.66	197376.4	19264665	26462.846	436790.24
	Std. Dev.	46621.974	161561.65	2117925.9	201720.37	42923.238	4763628.5	5370.1992	87641.482
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
E109	Rank	3	5	7	6	2	8	1	4
F198	Min	135.52011	82.338612	397.21291	41.775599	216.17124	822.18229	50.578765	38.766251
	Mean	213.19491	2963.0405	12334392	4335.7877	486.26084	6166.6666	5195.0142	1263.2583

Algorithm 2 The procedure of time complexity assessment for the SNS algorithm.

1 $\alpha = CPU$ time x = 0.553 for i = 1 to 1000000 4 $x \leftarrow x + x$ $x \leftarrow x/2$ 5 $x \leftarrow x \times x$ 6 7 $x \leftarrow sqrt(x)$ $x \leftarrow log(x)$ 8 9 $x \leftarrow exp(x)$ $x \leftarrow x/(x+2)$ 10 11 end for 12 $T_0 = CPU time - \alpha$ 13 $X = (x_1, x_2, x_3, \dots, x_D)$ initialized randomly 14 $\alpha \leftarrow CPU$ time 15 for i = 1 to 200000 $F_{18}(X)$ is evaluated 16 17 end for 18 $T_1 = CPU time - \alpha$ 19 $\alpha \leftarrow CPU$ time **20** for i = 1 to 5 21 t = 0**22 while** $t \le 200000 \, do \, do$ Initialize network $X = (X_1, \ldots, X_N)$ randomly 23 $F \leftarrow$ Evaluate the Initial network 24 for i = 1 to N 25 Mood = select from [1], [4] randomly 26 if Mood = 1 then 27 $X_i^{new} \leftarrow \text{Imitation Mood using Eq. (1)}$ 28 else if Mood = 2 then 29 $X_i^{new} \leftarrow \text{Conversation Mood using Eq. (2)}$ 30 else if Mood = 3 then 31 $X_i^{new} \leftarrow \text{Disputation Mood using Eq. (3)}$ 32 else 33 $X_i^{new} \leftarrow$ Innovation Mood using Eq. (4) 34 end if 35 $F_{new} \leftarrow F_{18}$ evaluated using X_i^{new} 36 $t \leftarrow t + 1$ 37 if $F_{new} \leq F_i$ then 38 $X_i \leftarrow X_i^{new}$ 39 $F_i \leftarrow F_{new}$ 40 end if end for 41 end while 42 43 end for 44 $\hat{T}_2 = (CPU \ time - \alpha)/5$ 45 Complexity = $(\hat{T}_2 - T_1)/T_0$

Disputation mood can be considered as a social congregation because of the effects of a group of users. The last mood, Innovation, is considered as the passive aggregation since the new idea of users, placed in a random location, and users have no authority in controlling it. Therefore, the used operators in the SNS algorithm contain all types of interactive forces. This future causes a good performance of the proposed SNS.

C. CONVERGENCE BEHAVIOR ANALYSIS

One idea to analyze the behavior of algorithms in solving problems is using the convergence curves. According to convergence plots, it is possible to understand how algorithms converge towards the optimal solution in a certain number of iterations. In this study to survey on the convergence ability of the SNS, 18 functions are selected from the fixed and n-dimensional problems. The chosen benchmarks have different properties (the properties of these functions are listed in the third column of Tables 12 and 13). The first nine functions are unimodal, and the rest of them are multimodal.

The convergence curve of the different algorithms in solving unimodal functions plotted in Fig. 11. The convergence plots confirm that the SNS has a better performance compared to other methods in solving F_6 , F_{75} , F_{124} , F_{142} , F_{155} , F_{157} , and F_{167} (seven out of the nine problem). Also, in dealing with F_{44} and F_{169} the SNS performed as second algorithm. Another point is that the curves of the SNS method has a steep slope, and it means that the SNS has an appropriate convergence rate, and this shows that the SNS can exploit the search space of the problems in a very convenient manner. Besides, the convergence curve of metaheuristic algorithms in solving multimodal problems is plotted in Fig. 12. For multimodal functions, the SNS method converges to the global optimum without trapping in local optima and has a very convenient rate in solving F_{56} , F_{98} , F_{119} , F_{160} , F_{170} , F_{174} , and F_{175} compared to the other methods (for solving F_{163} and F_{176} , the SNS performed as second best). This behavior can indicate that the SNS algorithm manage exploration and exploitation abilities very well.

D. GLOBAL SEARCH ANALYSIS

The search algorithms have three main steps during their process: Global searching, the Converting stage, and Local searching [26]. Fig. 13 shows the idealized schema of this process by drawing the standard deviation of objectives versus iterations. In the Global search stage, the standard deviation of objectives increases due to exploring the whole search space. After finding a desirable area of search space, in the next state, the Converting, the search procedure continuously diverts from the Global search to the Local search. After Converting, the algorithms search around the best solutions to find the global optimum.

Multimodal test functions are selected to validate the global search ability of the algorithms. These problems have multiple local optima, and the algorithm should escape from them to find the global solution. In solving these types of problems, the algorithm falls into a local optimum and tries to escape from it, and then the standard deviation will increase. This process is an essential part of the global search procedure, and the algorithms cannot experience it in solving the unimodal test functions, since they have no local optima. In other words, they cannot show the global search phase

Methods CS TLBO GWO SOS CSA WOA CGO SNS Statistics No. Max 296.31325 25603.976 79367449 21305.349 5840.7964 31942.604 25641.459 11824.925 31.889057 2045.3799 Std. Dev. 4244.5514 22708290 4451.3819 780.84342 5083.8642 6781.5706 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 Rank 1 4 8 5 2 7 6 3 F199 3.3198438 Min 12.180952 7.5434131 11.566702 5.9765171 13.33414 20.215473 7.2270689 Mean 14.742372 19.623024 34.610349 14.865832 31.434825 63.094756 17.369731 10.759063 Max 18.032078 73.272793 93.780131 78.318326 141.63259 173.56506 85,979474 67.96348 Std. Dev. 1.2458011 21.791181 22.403728 17.84489227.921834 44.301273 19.032208 16.066981 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 2 5 7 3 1 Rank 6 8 4 F200 Min 764.75922 469.20896 1137.4173 219.3109 254.59061 6815.7613 162.52548 119.78288 Mean 1972.0019 1605.4061 16868.847 3061.6217 1074.1731 38361.037 690.69479 575.13475 5177.7515 4402.3375 56496.187 10977.758 6148.5302 2688.25 1828.0752 Max 163566.81 Std. Dev. 891.919 939.80138 10835.527 2645.1519 1001.2769 29827.548 444.53647 409.02657 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 7 5 4 6 3 8 2 1 Rank F201 Min 1663.4441 11477.049 50623.462 4252.9512 3497.8038 88280.309 630.38153 1841.0272 Mean 2272.5263 89857.479 935064.1 76781.707 19108.621 2367785.1 4140.6435 11925.135 Max 3214.2057 253574.66 6500790.2 680862.35 38605 095 12470424 16313.419 51460.678 Std. Dev. 337.73911 62617.338 1734125.9 109112.81 10140.681 2707599.2 3557.838 9866.6404 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 7 6 5 4 2 3 Rank 8 F202 Min 118.3804 60.182679 154.92187 32.571032 175.11766 417.43059 22.872713 23.890313 Mean 338.02141 290.49258 384.72606 335.31008 581.60793 823.84521 397.10538 285.24655 524.27952 667.74086 632.9812 744.33229 978.09451 1248.0105 761.57956 490.73549 Max Std. Dev. 78.891243 139.2909 141.61963 168.31939 173.62173 198.75762 180.82091 109.31283 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 2 5 7 Rank 4 3 8 6 1 F203 Min 315.24411 315.2441 323.418 315.2441 315.9902 327.65676 200315.2441 Mean 315.24415 315.2441 334.92552 315.2441 318.59256 342.23804 200 315.2441 367.4783 200 Max 315.2442 315.2441 315.2441 322.35783 373.11449 315.2441 Std. Dev. 2.117E-05 1.833E-11 10.153819 7.819E-13 1.5378801 9.6858074 0 1.128E-07 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 4 Rank 5 3 7 2 6 8 1 F204 Min 227.68271 200.00776 200.0011 200.0037 201.87911 200.60786 200 200.00066 230.10221 200.0115 200.00267 200.00694 216.852 207.27742 200 200.00106 Mean 200 Max 240.3347 200.01621 200.00681 200.01016 230.78372 223.87904 200.00156 Std. Dev. 1.9125689 0.0020055 0.0011428 0.0015151 10.235717 5.1571001 0 0.0002263 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 Rank 8 5 3 4 7 6 1 2 F205 Min 206.24849 200 200 200 200.00016 200 200 200 Mean 209.23468 200.43367 211.19772 200 206.18463 220.61665 200 200 Max 212.79122 210.05311 217.12677 200 212.10389 256.42397 200 200 Std. Dev. 1.4101378 1.785119 3.5855397 0 3.8956161 16.098439 0 0 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 Rank 6 4 7 2 5 8 2 2 F206 Min 100.27311 100.26908 100.25621 100.29333 100.24382 100.16944 100.24255 100.16119 Mean 100.37007 118.40283 134.3587 100.44371 100.42357 108.41838 100.42561 108.27816 100.70693 Max 100.49647 200.06811 200.1645 100.73186 200.00625 100.68028 200 0.0481061 38.241825 47.148333 0.0986802 0.1051141 27.006694 27.047374 Std. Dev. 0.1226214 NFEs 150000 150000 150000 150000 150000 150000 150000 150000 Rank 7 8 4 2 6 3 5 1 F207 410.87844 200 401.18862 Min 409.54333 401.54881 400.87743 401.41231 425.82718

TABLE 16. (Continued.) Comparative results of algorithms for CEC 2014 functions.

.

TABLE 16. (Continued.) Comparative results of algorithms for CEC 2014 functions.

	Mean	420.12363	591.00138	652.22442	515.39337	435.55023	1016.0143	207.77724	578.94972
	Max	458.89783	909.52955	844.77066	855.81668	1097.46	1484.5616	371.00377	920.88869
	Std. Dev.	8.0253374	189.99752	121.92766	138.68042	131.31538	392.62001	33.14176	138.76385
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	2	6	7	4	3	8	1	5
F208	Min	930.36727	900.98402	832.20553	819.03303	1948.9284	200	200	796.67671
	Mean	1028.2682	1205.3703	1088.8457	1086.9211	3626.4242	2266.6747	200	981.85828
	Max	1249.2279	1975.8051	1767.7647	1909.6611	5338.9017	3758.368	200	1634.2092
	Std. Dev.	54.331007	240.01697	238.48914	232.60483	738.49498	639.51409	0	133.19412
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	3	6	5	4	8	7	1	2
F209	Min	1490.7806	941.62895	5248.222	806.79932	1326.1706	5326.0425	200	888.4349
	Mean	2428.988	2856899.6	196076.54	1377162.9	3743697	6598546.4	511.90293	1886354.7
	Max	4277.6927	12862266	2090426.7	8664467.7	147653702	13936240	2565.3175	8923023.5
	Std. Dev.	635.5683	4624362.9	430167.71	3152178.1	21281854	5074481.9	666.40843	3549856.4
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	2	6	3	4	7	8	1	5
F210	Min	5308.3669	924.48713	10093.628	1397.3095	3873.183	18261.957	200	801.68029
	Mean	11531.081	3780.731	52893.842	4581.797	11108.458	102900.82	3407.5847	3229.1917
	Max	25404.619	17990.422	202764.56	29305.637	37647.897	275860.58	7798.1451	27944.088
	Std. Dev.	4179.2343	3210.2542	39885.12	4861.1658	5672.7472	59604.316	2007.7713	3667.3354
	NFEs	150000	150000	150000	150000	150000	150000	150000	150000
	Rank	6	3	7	4	5	8	2	1

TABLE 17. Statistical results of algorithms for 10-dimension CEC 2017 problems.

					Metahe	uristics				
	EBOwithCM	1AR	LSHADE	-cnEpSin	MM_	OED	PP	SO	SN	1S
No	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
F211	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.39E+02	1.99E+02	3.69E+02	4.93E+02
F212	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
F213	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.20E+00	9.27E-01	2.54E+00	1.16E+00
F214	0.00E+00	0.00E+00	1.69E+00	7.53E-01	1.11E+00	7.28E-01	1.81E+01	5.05E+00	7.25E+00	2.49E+00
F215	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.26E-01	3.05E-01	4.83E-04	1.04E-03
F216	1.06E+01	1.73E-01	1.20E+01	4.80E-01	1.15E+01	6.64E-01	1.69E+01	2.19E+00	1.70E+01	2.30E+00
F217	0.00E+00	0.00E+00	1.80E+00	7.71E-01	1.11E+00	9.58E-01	9.95E+00	2.35E+00	6.79E+00	2.39E+00
F218	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.27E-03	2.11E-02
F219	3.72E+01	5.34E+01	4.30E+01	5.57E+01	1.79E+01	3.60E+01	5.03E+02	1.53E+02	1.87E+02	1.10E+02
F220	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.69E+01	5.26E+00	4.69E+00	3.28E+00
F221	9.02E+01	7.36E+01	1.01E+02	7.30E+01	1.02E+02	5.90E+01	4.55E+03	2.49E+03	8.12E+03	5.63E+03
F222	2.17E+00	2.50E+00	3.66E+00	2.66E+00	4.19E+00	2.63E+00	1.39E+03	1.32E+03	6.08E+02	8.64E+02
F223	6.05E-02	2.34E-01	7.80E-02	2.70E-01	8.80E-02	2.71E-01	3.73E+01	1.16E+01	3.63E+00	2.10E+00
F224	1.09E-01	1.73E-01	3.24E-01	2.16E-01	6.71E-02	1.18E-01	5.33E+01	2.25E+01	3.01E+00	1.51E+00
F225	4.17E-01	1.96E-01	5.37E-01	2.93E-01	2.53E-01	1.99E-01	8.30E+01	7.18E+01	2.49E+01	3.80E+01
F226	1.47E-01	2.01E-01	3.07E-01	3.81E-01	5.63E-02	1.12E-01	2.46E+01	7.35E+00	9.33E+00	8.38E+00
F227	7.00E-01	2.74E+00	3.86E+00	7.63E+00	9.69E-01	3.85E+00	8.78E+02	7.07E+02	1.83E+03	2.38E+03
F228	1.50E-02	1.86E-02	4.47E-02	2.09E-01	3.80E-03	7.41E-03	2.25E+01	1.54E+01	1.58E+00	1.02E+00
F229	1.47E-01	1.56E-01	2.57E-01	2.31E-01	6.73E-02	1.55E-01	2.78E+01	8.87E+00	1.20E+00	1.33E+00
F230	1.14E+02	3.48E+01	1.46E+02	5.17E+01	1.04E+02	1.97E+01	1.04E+02	2.13E+01	1.29E+02	4.70E+01

(standard deviation increment). The algorithms in solving unimodal problems only traverse the last two phases (Converting stage, and Local searching). To analyze the globality of the proposed SNS, nine problems, including F_{45} , F_{74} , F_{107} , F_{119} , F_{121} , F_{128} , F_{138} , F_{143} , and F_{158} , are considered. The Fig. 14 shows the standard

TABLE 17. (Continued.) Statistical results of algorithms for 10-dimension CEC 2017 problems.

F231	9.85E+01	1.09E+01	1.00E+02	6.80E-02	1.00E+02	6.81E-02	9.67E+01	1.66E+01	9.48E+01	2.08E+01
F232	3.00E+02	7.00E-01	3.02E+02	1.64E+00	2.98E+02	2.81E+01	3.42E+02	1.03E+01	3.05E+02	2.68E+00
F233	1.66E+02	9.87E+01	3.16E+02	5.45E+01	1.04E+02	1.95E+01	2.27E+02	1.34E+02	2.70E+02	1.01E+02
F234	4.12E+02	2.10E+01	4.26E+02	2.24E+01	4.14E+02	2.17E+01	4.04E+02	1.44E+01	4.23E+02	2.22E+01
F235	2.65E+02	4.70E+01	3.00E+02	0.00E+00	2.94E+02	2.35E+01	2.67E+02	7.58E+01	2.90E+02	6.50E+01
F236	3.92E+02	2.37E+00	3.90E+02	1.96E+00	3.90E+02	1.21E-01	4.27E+02	1.33E+01	3.92E+02	2.43E+00
F237	3.07E+02	7.11E+01	3.85E+02	1.19E+02	3.37E+02	1.01E+02	2.94E+02	4.16E+01	3.47E+02	1.08E+02
F238	2.31E+02	3.73E+00	2.28E+02	1.72E+00	2.36E+02	4.15E+00	2.78E+02	1.34E+01	2.50E+02	9.02E+00
F239	4.07E+02	1.76E+01	1.76E+04	8.61E+04	5.69E+04	2.31E+05	2.99E+03	8.90E+02	4.94E+03	1.03E+04

TABLE 18. Statistical results of algorithms for 30-dimension CEC 2017 problems.

					Metahe	uristics				
	EBOwit	hCMAR	LSHADE	E-cnEpSin	MM_	OED	PP	SO	SI	NS
No	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std
F240	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.48E+02	6.00E+02	2.68E+03	3.39E+03
F241	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.13E+00	4.79E-01	2.16E+01	3.56E+01
F242	5.65E+01	1.10E+01	4.23E+01	3.07E+00	1.17E+01	2.35E+01	4.39E+01	3.16E+01	7.10E+01	3.21E+01
F243	2.78E+00	1.73E+00	1.23E+01	2.34E+00	4.23E+00	3.34E+00	1.12E+02	1.32E+01	6.32E+01	1.54E+01
F244	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.68E-09	1.90E-08	2.03E+01	4.11E+00	2.76E-03	2.58E-03
F245	3.35E+01	8.29E-01	4.33E+01	2.17E+00	3.44E+01	1.64E+00	1.35E+02	1.62E+01	9.49E+01	1.37E+01
F246	2.02E+00	1.30E+00	1.29E+01	2.86E+00	4.57E+00	2.33E+00	8.10E+01	1.03E+01	6.15E+01	1.30E+01
F247	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.36E+03	2.79E+02	6.06E+01	7.11E+01
F248	1.41E+03	2.13E+02	1.39E+03	2.10E+02	2.05E+03	6.42E+02	3.13E+03	3.43E+02	2.80E+03	2.97E+02
F249	4.49E+00	8.68E+00	1.35E+01	1.94E+01	1.23E+01	1.58E+01	8.43E+01	1.82E+01	5.92E+01	2.39E+01
F250	4.63E+02	2.60E+02	3.72E+02	2.01E+02	1.05E+03	3.62E+02	2.77E+04	8.47E+03	2.75E+04	1.08E+04
F251	1.49E+01	6.19E+00	1.73E+01	1.02E+01	1.79E+01	6.26E+00	3.21E+03	2.85E+03	9.98E+03	8.21E+03
F252	2.19E+01	3.80E+00	2.16E+01	2.26E+00	2.31E+01	4.81E+00	2.32E+03	1.51E+03	1.32E+03	1.35E+03
F253	3.69E+00	2.13E+00	3.24E+00	1.98E+00	5.42E+00	2.68E+00	2.13E+03	1.61E+03	9.47E+02	9.30E+02
F254	4.26E+01	5.64E+01	2.29E+01	3.07E+01	1.34E+02	1.70E+02	8.46E+02	1.51E+02	3.88E+02	1.79E+02
F255	2.98E+01	7.42E+00	2.86E+01	5.56E+00	4.67E+01	1.12E+01	3.31E+02	1.12E+02	6.78E+01	5.16E+01
F256	2.21E+01	1.08E+00	2.11E+01	7.52E-01	2.33E+01	2.26E+00	6.99E+04	3.03E+04	6.00E+04	4.06E+04
F257	8.04E+00	2.26E+00	5.83E+00	1.92E+00	7.15E+00	1.29E+00	1.71E+03	1.67E+03	3.47E+03	2.14E+03
F258	3.57E+01	7.42E+00	3.03E+01	7.35E+00	4.55E+01	2.96E+01	3.48E+02	9.07E+01	1.10E+02	5.06E+01
F259	1.99E+02	2.00E+01	2.12E+02	2.56E+00	1.31E+02	4.82E+01	3.05E+02	3.27E+01	2.48E+02	1.46E+01
F260	1.00E+02	0.00E+00	1.00E+02	1.00E-13	1.00E+02	0.00E+00	1.00E+02	5.00E-07	1.01E+02	1.48E+00
F261	3.51E+02	3.48E+00	3.56E+02	3.73E+00	3.57E+02	6.08E+00	6.81E+02	3.75E+01	4.13E+02	1.57E+01
F262	4.18E+02	4.50E+01	4.28E+02	2.95E+00	3.94E+02	8.37E+01	7.39E+02	4.53E+01	5.04E+02	2.14E+01
F263	3.87E+02	7.49E-01	3.87E+02	8.90E-03	3.87E+02	2.81E-02	3.85E+02	1.75E+00	3.95E+02	1.34E+01
F264	5.37E+02	3.03E+02	9.49E+02	4.60E+01	9.43E+02	2.21E+02	2.04E+03	1.71E+03	1.31E+03	1.13E+03
F265	5.02E+02	3.99E+00	5.04E+02	6.70E+00	5.08E+02	4.99E+00	7.08E+02	5.37E+01	5.25E+02	1.14E+01
F266	3.08E+02	2.85E+01	3.15E+02	3.86E+01	3.29E+02	4.95E+01	3.27E+02	3.13E+01	3.63E+02	4.68E+01
F267	4.33E+02	1.12E+01	4.35E+02	7.36E+00	4.39E+02	1.49E+01	7.80E+02	1.20E+02	4.96E+02	7.76E+01
F268	1.99E+03	4.17E+01	1.98E+03	4.17E+01	2.00E+03	6.56E+01	3.32E+03	3.86E+02	3.62E+03	1.04E+03

deviation graph of these problems. These plots reveals that the algorithm reaches a peak (Global search) and after that falls rapidly (Converting stage). At the final step, the slop of diagrams decreased, and the standard deviations converge to a constant value (Local search).

In some cases (F_{119} , F_{143} , and F_{158}), the SNS repeats the global search process many times. Each time, the SNS

explores the search space and finds a new region. Then the standard deviation is increased, and after that, the global search converts to the local search. Later during the local search process, the explorative operators find a new region again. This process is repeated many times until the last time; in which the domain of the global optimum is found and exploited.

TABLE 19. Statistical results of algorithms for 50-dimension CEC 2017 prob	ems.
--	------

	Metaheuristics										
	EBOwit	hCMAR	LSHADE	e-cnEpSin	MM	OED	PP	SO	Sì	NS	
No	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	
F269	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.89E+02	2.93E+02	7.12E+02	7.19E+02	
F270	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.65E+02	1.84E+02	2.22E+04	4.73E+03	
F271	4.29E+01	3.29E+01	5.14E+01	4.43E+01	3.75E+01	4.94E+01	9.13E+01	3.58E+01	9.12E+01	3.96E+01	
F272	7.58E+00	2.40E+00	2.52E+01	6.44E+00	1.12E+01	3.66E+00	2.01E+02	1.36E+01	1.63E+02	2.44E+01	
F273	8.54E-08	1.13E-07	9.16E-07	1.08E-06	7.44E-08	1.05E-07	3.18E+01	3.87E+00	3.18E-03	2.30E-03	
F274	5.79E+01	1.51E+00	7.66E+01	6.06E+00	5.89E+01	1.91E+00	2.78E+02	3.39E+01	2.15E+02	4.47E+01	
F275	7.91E+00	2.44E+00	2.63E+01	6.59E+00	1.03E+01	4.22E+00	1.99E+02	1.50E+01	1.69E+02	2.77E+01	
F276	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.76E-03	1.24E-02	6.06E+03	7.20E+02	1.27E+02	9.81E+01	
F277	3.11E+03	3.97E+02	3.20E+03	3.40E+02	3.82E+03	1.11E+03	5.20E+03	5.46E+02	5.92E+03	3.05E+02	
F278	2.64E+01	3.33E+00	2.14E+01	2.09E+00	4.04E+01	8.62E+00	1.27E+02	1.44E+01	9.15E+01	3.06E+01	
F279	1.94E+03	8.26E+02	1.48E+03	3.65E+02	2.14E+03	5.00E+02	5.52E+05	2.01E+05	3.42E+05	1.66E+05	
F280	4.14E+01	2.45E+01	6.94E+01	3.45E+01	4.64E+01	2.52E+01	8.47E+02	5.58E+02	2.29E+03	3.60E+03	
F281	3.12E+01	3.48E+00	2.65E+01	2.49E+00	3.71E+01	5.02E+00	1.95E+04	9.90E+03	5.36E+03	3.99E+03	
F282	2.94E+01	5.15E+00	2.56E+01	4.06E+00	4.09E+01	9.07E+00	1.19E+03	7.72E+02	1.07E+04	5.30E+03	
F283	3.46E+02	1.44E+02	2.75E+02	9.97E+01	6.77E+02	3.62E+02	1.24E+03	2.26E+02	9.89E+02	3.27E+02	
F284	2.75E+02	8.55E+01	2.07E+02	7.31E+01	4.81E+02	2.06E+02	1.03E+03	1.52E+02	7.23E+02	2.16E+02	
F285	3.20E+01	5.93E+00	2.43E+01	2.12E+00	3.86E+01	9.66E+00	2.09E+05	8.59E+04	5.72E+04	3.07E+04	
F286	2.45E+01	3.90E+00	1.74E+01	2.47E+00	4.12E+01	1.60E+01	8.67E+03	3.87E+03	1.23E+04	5.02E+03	
F287	1.47E+02	7.37E+01	1.14E+02	3.55E+01	3.02E+02	2.28E+02	7.70E+02	1.90E+02	3.69E+02	1.74E+02	
F288	2.11E+02	4.02E+00	2.27E+02	7.06E+00	2.12E+02	4.14E+00	4.33E+02	2.12E+01	3.30E+02	2.26E+01	
F289	3.65E+02	9.15E+02	1.60E+03	1.67E+03	6.80E+02	1.39E+03	5.97E+03	9.79E+02	6.35E+02	1.84E+03	
F290	4.34E+02	8.08E+00	4.39E+02	6.90E+00	4.45E+02	8.19E+00	1.06E+03	7.02E+01	5.55E+02	2.75E+01	
F291	5.06E+02	3.81E+00	5.13E+02	5.59E+00	5.17E+02	4.05E+00	1.08E+03	7.00E+01	6.50E+02	4.01E+01	
F292	4.89E+02	2.44E+01	4.80E+02	1.08E+00	4.82E+02	4.06E+00	5.41E+02	2.74E+01	5.75E+02	3.11E+01	
F293	7.06E+02	4.02E+02	1.20E+03	1.19E+02	1.24E+03	7.17E+01	5.45E+03	2.57E+03	3.94E+02	4.69E+02	
F294	5.22E+02	7.68E+00	5.25E+02	9.21E+00	5.40E+02	2.21E+01	1.46E+03	1.68E+02	6.84E+02	8.13E+01	
F295	4.67E+02	1.78E+01	4.59E+02	1.19E+01	4.82E+02	2.44E+01	4.89E+02	1.78E+01	5.15E+02	2.06E+01	
F296	3.47E+02	1.95E+01	3.53E+02	9.78E+00	3.62E+02	2.55E+01	1.52E+03	2.07E+02	5.38E+02	9.98E+01	
F297	6.18E+05	3.58E+04	6.58E+05	7.24E+04	6.63E+05	7.72E+04	7.81E+05	4.77E+04	8.14E+05	6.14E+04	

E. COMPUTATIONAL COST AND COMPLEXITY ANALYSIS

To review the complexities and to analyze the basic operations of any algorithm, the complexity analysis is performed. In computational complexity theory, the Big O notation is used to indicate the relationship between the number of data and computational resources needed to solve a problem using an algorithm. This symbol is usually used to check the time or memory required to solve a problem with a large number of inputs.

The complexity of the SNS is examined on two levels: initialization level and popularity level (main loop). In the first level of the SNS, at first, a random population of solutions are generated and then evaluated. The complexity of the random solutions is given by O(NP*D), where NP is the number of users and D is the dimension of the problem. Also, the complexity of evaluation is calculated as O(NP)*O(F(x)) in which F(x) is the objective function. Besides, the popularity level is an iterative loop that iterated MaxIter times, and in each iteration, a new solution is generated for each user as a new view and then evaluated. The computational complexity of this level is determined as O(MaxIter*Np*D). Also, the computational complexity of function evaluations during the iterations is defined as O(MaxIter*Np)*O(F(x)).

V. CONCLUSION

The social network search (SNS) is a new metaheuristic algorithm for solving Global optimization problems. This algorithm introduces four novel optimization operators namely, Imitation, Conversation, Disputation, and Innovation. These operators (moods) model the real-world behaviors of users in social networks in expressing their opinions. In the present study, the SNS algorithm employed for solving 120 Fixed-dimensional functions, 60 N-dimensional functions, 30 CEC 2014. From the comparative study, the SNS has shown its potential to handle various optimization problems, and its performance is much better than other algorithms in terms of the selected performance metrics. Also, to have a valid judgement about the efficiency of the SNS algorithm, four nonparametric statistical analysis methods are conducted. The results show that the SNS algorithm ranks first in most cases. This is partly because there are no parameters to be fine-tuned in the SNS. To further evaluate the proposed algorithm, its ability compared with advanced algorithms in solving CEC 2017 problems. The gained results

TABLE 20. Statistical results of algorithms for 100-dimension CEC 2017 problems.

		Metaheuristics									
	EBOwithCMAR		LSHADE-cnEpSin		MM_OED		PPSO		SNS		
No	Mean	Std	Mean	Std	Mean	Std	Mean	Std	Mean	Std	
F298	1.33E-09	7.44E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.08E+04	3.27E+03	3.99E+03	2.59E+03	
F299	2.99E-07	6.97E-07	0.00E+00	0.00E+00	1.37E-06	9.69E-06	7.25E+04	6.53E+03	1.62E+05	1.46E+04	
F300	1.93E+02	3.06E+01	1.98E+02	8.30E+00	1.63E+02	8.12E+01	2.40E+02	3.09E+01	2.52E+02	5.20E+01	
F301	2.87E+01	5.22E+00	5.59E+01	9.91E+00	3.54E+01	1.30E+01	5.20E+02	2.28E+01	5.07E+02	5.93E+01	
F302	1.63E-05	7.06E-06	6.02E-05	2.18E-05	2.19E-03	2.55E-03	4.01E+01	2.32E+00	4.84E-03	2.42E-03	
F303	1.22E+02	4.42E+00	1.62E+02	7.91E+00	1.22E+02	5.68E+00	7.38E+02	8.81E+01	5.97E+02	1.25E+02	
F304	2.97E+01	7.40E+00	5.35E+01	5.39E+00	3.43E+01	1.10E+01	5.82E+02	3.04E+01	4.57E+02	6.87E+01	
F305	1.76E-03	1.24E-02	0.00E+00	0.00E+00	8.06E-01	5.21E-01	1.48E+04	8.04E+02	7.46E+03	6.66E+03	
F306	9.91E+03	1.89E+03	1.03E+04	5.21E+02	7.47E+03	1.81E+03	1.14E+04	8.85E+02	1.53E+04	5.31E+02	
F307	6.56E+01	1.98E+01	4.92E+01	3.02E+01	2.02E+02	4.83E+01	8.96E+02	7.02E+01	2.66E+02	4.77E+01	
F308	4.19E+03	7.82E+02	4.62E+03	6.48E+02	4.17E+03	6.98E+02	4.12E+06	7.28E+05	1.31E+06	4.97E+05	
F309	2.45E+02	8.75E+01	1.25E+02	3.65E+01	2.88E+02	6.51E+01	1.53E+03	7.17E+02	4.26E+03	3.18E+03	
F310	1.38E+02	2.93E+01	4.97E+01	8.17E+00	2.37E+02	2.97E+01	3.14E+05	8.85E+04	8.90E+04	2.96E+04	
F311	1.65E+02	3.83E+01	8.99E+01	2.83E+01	2.65E+02	6.01E+01	4.69E+02	1.57E+02	1.22E+03	1.14E+03	
F312	1.41E+03	3.73E+02	1.22E+03	2.36E+02	1.15E+03	6.64E+02	3.18E+03	3.22E+02	3.18E+03	6.13E+02	
F313	1.21E+03	2.54E+02	9.32E+02	1.74E+02	1.43E+03	5.50E+02	2.63E+03	3.31E+02	2.30E+03	4.39E+02	
F314	2.37E+02	5.88E+01	7.79E+01	1.99E+01	2.33E+02	3.81E+01	6.89E+05	1.74E+05	3.93E+05	1.18E+05	
F315	1.15E+02	1.86E+01	5.55E+01	6.05E+00	1.86E+02	3.33E+01	5.42E+02	3.30E+02	1.51E+03	1.70E+03	
F316	1.36E+03	3.06E+02	1.08E+03	2.16E+02	1.31E+03	6.68E+02	2.35E+03	2.55E+02	1.64E+03	4.43E+02	
F317	2.60E+02	1.05E+01	2.77E+02	6.94E+00	2.64E+02	1.24E+01	1.06E+03	5.47E+01	5.96E+02	5.82E+01	
F318	1.02E+04	2.67E+03	1.04E+04	5.30E+02	5.73E+03	2.44E+03	1.37E+04	8.85E+02	1.04E+04	8.31E+03	
F319	5.77E+02	1.30E+01	5.98E+02	7.69E+00	5.81E+02	1.63E+01	2.07E+03	8.08E+01	7.81E+02	4.80E+01	
F320	9.19E+02	1.31E+01	9.17E+02	1.34E+01	9.25E+02	1.36E+01	1.89E+03	1.02E+02	1.32E+03	8.17E+01	
F321	7.16E+02	3.67E+01	6.84E+02	4.34E+01	7.29E+02	4.23E+01	7.59E+02	3.34E+01	8.32E+02	4.47E+01	
F322	2.77E+03	1.07E+03	3.11E+03	1.22E+02	3.25E+03	1.25E+02	1.56E+04	5.14E+03	1.47E+04	4.72E+03	
F323	5.88E+02	1.51E+01	5.89E+02	1.31E+01	6.36E+02	2.40E+01	1.34E+03	9.73E+01	9.02E+02	6.70E+01	
F324	5.10E+02	5.95E+01	5.15E+02	2.20E+01	5.16E+02	4.24E+01	5.86E+02	1.48E+01	5.78E+02	3.00E+01	
F325	1.28E+03	2.40E+02	1.12E+03	1.49E+02	1.67E+03	4.25E+02	3.73E+03	2.96E+02	2.65E+03	5.84E+02	
F326	2.40E+03	1.50E+02	2.36E+03	1.44E+02	2.48E+03	1.92E+02	7.17E+03	1.16E+03	8.47E+03	3.67E+03	

demonstrate that the SNS can achieve very competitive performance. In addition, the mechanisms of decision moods were analyzed in terms of search style in the space of the problem (exploration and exploitation). Then the type of forces that each of these moods creates among users were investigated. Also, the globality and convergence capabilities of the proposed SNS are examined and discussed. As further studies, the ability of this algorithm should be examined in dealing with other complex real-world optimization problems in different branches of science. Also, different editions can be employed to improve the performance of the SNS algorithm by developing novel moods of social network users or modifying the current ones.

APPENDIX A: DETAILS OF BENCHMARK FUNCTIONS

The details of the benchmark functions are presented in Tables 11, 12, and 13 for fixed-dimensional, n-dimensional, and CEC 2014 problems, respectively.

APPENDIX B: NUMERICAL RESULTS OF ALGORITHM FOR BENCHMARK FUNCTIONS

The results of metaheuristic algorithms in dealing with benchmark problems are presented in this appendix.

Tables 14, 15, and 16 compare the output of the SNS and other algorithms for fixed-dimensional, n-dimensional, and CEC 2014 problems, respectively.

APPENDIX C: THE RESULTS OF ALGORITHMS IN SOLVING CEC 2017 PROBLEMS

The results of the SNS and other state-of-the-art algorithms in dealing with state-of-the-art problem in CEC 2017 special session are provided, here. Tables 17, 18, 19, and 20 present the outputs of the algorithms for 10-, 30-, 50-, and 100-dimensional, problems, respectively.

CODE AVAILABILITY

The MATLAB implementation of SNS is accessible at: https://www.mathworks.com/matlabcentral/fileexchange/94370-social-network-search-for-global-optimization.

REFERENCES

- S. Talatahari and M. Azizi, *Chaos Game Optimization: A Novel Metaheuristic Algorithm.* Amsterdam, The Netherlands: Springer, 2020, Art. no. 0123456789.
- [2] A. Kaveh and S. Talatahari, "A novel heuristic optimization method: Charged system search," *Acta Mechanica*, vol. 213, nos. 3–4, pp. 267–289, Sep. 2010.

- [3] H. Eskandar, A. Sadollah, A. Bahreininejad, and M. Hamdi, "Water cycle algorithm—A novel Metaheuristic optimization method for solving constrained engineering optimization problems," *Comput. Struct.*, vols. 110–111, pp. 151–166, Nov. 2012.
- [4] J. Del Ser, E. Osaba, D. Molina, X.-S. Yang, S. Salcedo-Sanz, D. Camacho, S. Das, P. N. Suganthan, C. A. C. Coello, and F. Herrera, "Bio-inspired computation: Where we stand and what's next," *Swarm Evol. Comput.*, vol. 48, pp. 220–250, Aug. 2019.
- [5] X. S. Yang, "Optimization and metaheuristic algorithms in engineering," in *Metaheuristics in Water, Geotechnical and Transport Engineering.* India: Elsevier, 2013, pp. 1–23, doi: 10.1016/B978-0-12-398296-4. 00001-5.
- [6] L. J. Fogel, A. J. Owens, and M. J. Walsh, "Intelligent decision making through a simulation of evolution," *Behav. Sci.*, vol. 11, no. 4, pp. 253–272, 1966.
- [7] I. Rechenberg, *Evolutionsstrategien*. Berlin, Germany: Springer, 1978, pp. 83–114, doi: 10.1007/978-3-642-81283-5_8.
- [8] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis With Applications to Biology, Control, and Artificial Intelligence. Ann Arbor, MI, USA: Univ. Michigan Press, 1975. [Online]. Available: https://books.google.com/ books?id=JE5RAAAAMAAJ&source=gbs_book_other_versions
- [9] J. Kennedy and R. Eberhart, "Particle swarm optimization," in *Proc. Int. Conf. Neural Netw. (ICNN)*, vol. 4, no. 2, 1995, pp. 1942–1948.
- [10] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," *IEEE Comput. Intell. Mag.*, vol. 1, no. 4, pp. 28–39, Nov. 2006, doi: 10.1109/MCI.2006.329691.
- [11] D. Karaboga and B. Basturk, "Artificial Bee Colony (ABC) optimization algorithm for solving constrained optimization problems," in *Foundations of Fuzzy Logic and Soft Computing* (Lecture Notes in Computer Science), vol. 4529. Berlin, Germany: Springer, 2007, pp. 789–798, doi: 10.1007/978-3-540-72950-1_77.
- [12] X.-S. Yang, "Firefly algorithm, stochastic test functions and design optimization," *Int. J. Bio-Inspired Comput.*, vol. 2, no. 2, pp. 78–84, 2010.
- [13] R. V. Rao, V. J. Savsani, and D. P. Vakharia, "Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems," *Comput.-Aided Des.*, vol. 43, no. 3, pp. 303–315, Mar. 2011.
- [14] X.-S. Yang and S. Deb, "Engineering optimisation by cuckoo search," Int. J. Math. Model. Numer. Optim., vol. 1, no. 4, pp. 330–343, 2010.
- [15] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, "Optimization by simulated annealing," *Science*, vol. 220, no. 4598, pp. 671–680, 1983.
- [16] J. Koza, "Genetic programming as a means for programming computers by natural selection," *Statist. Comput.*, vol. 4, no. 2, pp. 87–112, Jun. 1994.
- [17] R. Storn and K. Price, "Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces," J. Global Optim., vol. 11, no. 4, pp. 341–359, 1997.
- [18] O. K. Erol and I. Eksin, "A new optimization method: Big bang-big crunch," Adv. Eng. Softw., vol. 37, no. 2, pp. 106–111, 2006.
- [19] E. Atashpaz-Gargari and C. Lucas, "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition," in *Proc. IEEE Congr. Evol. Comput.*, Sep. 2007, pp. 4661–4667.
- [20] D. Simon, "Biogeography-based optimization," *IEEE Trans. Evol. Com*put., vol. 12, no. 6, pp. 702–713, Dec. 2008.
- [21] E. Rashedi, H. Nezamabadi-Pour, and S. Saryazdi, "GSA: A gravitational search algorithm," *Inf. Sci.*, vol. 179, no. 13, pp. 2232–2248, Jun. 2009.
- [22] X.-S. Yang, "A new metaheuristic bat-inspired algorithm," Nature Inspired Cooperat. Strategies Optim., vol. 284, pp. 65–74, Apr. 2010.
- [23] X. S. Yang and S. Deb, "Eagle strategy using Lévy walk and firefly algorithms for stochastic optimization," *Stud. Comput. Intell.*, vol. 284, pp. 101–111, Apr. 2010.
- [24] A. H. Gandomi and A. H. Alavi, "Krill herd: A new bio-inspired optimization algorithm," *Commun. Nonlinear Sci. Numer. Simul.*, vol. 17, no. 12, pp. 4831–4845, Dec. 2012.
- [25] X. S. Yang, "Flower pollination algorithm for global optimization," in Unconventional Computation and Natural Computation (Lecture Notes in Computer Science), vol. 7445. Berlin, Germany: Springer, 2012, pp. 240–249, doi: 10.1007/978-3-642-32894-7_27.
- [26] A. H. Gandomi, "Interior search algorithm (ISA): A novel approach for global optimization," *ISA Trans.*, vol. 53, no. 4, pp. 1168–1183, Jul. 2014.
- [27] S. Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey wolf optimizer," Adv. Eng. Softw., vol. 69, pp. 46–61, Mar. 2014.
- [28] M.-Y. Cheng and D. Prayogo, "Symbiotic organisms search: A new Metaheuristic optimization algorithm," *Comput. Struct.*, vol. 139, pp. 98–112, Jul. 2014.

- [29] A. Kaveh and V. R. Mahdavi, "Colliding bodies optimization: A novel meta-heuristic method," *Comput. Struct.*, vol. 139, pp. 18–27, Jul. 2014.
- [30] S. Mirjalili, "The ant lion optimizer," Adv. Eng. Softw., vol. 83, pp. 80–98, May 2015.
- [31] A. Askarzadeh, "A novel Metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm," *Comput. Struct.*, vol. 169, pp. 1–12, Jun. 2016.
- [32] S. Mirjalili and A. Lewis, "The whale optimization algorithm," Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016.
- [33] S. Saremi, S. Mirjalili, and A. Lewis, "Grasshopper optimisation algorithm: Theory and application," *Adv. Eng. Softw.*, vol. 105, pp. 30–47, Mar. 2017.
- [34] R. Sheikholeslami and S. Talatahari, "Developed swarm optimizer: A new method for sizing optimization of water distribution systems," *J. Comput. Civil Eng.*, vol. 30, no. 5, Sep. 2016, Art. no. 04016005.
- [35] A. Kaveh, S. Talatahari, and N. Khodadadi, *Stochastic Paint Optimizer: Theory and Application in Civil Engineering*. London, U.K.: Springer, 2020. Art. no. 0123456789.
- [36] S. Talatahari and M. Azizi, "Optimization of constrained mathematical and engineering design problems using chaos game optimization," *Comput. Ind. Eng.*, vol. 145, Jul. 2020, Art. no. 106560.
- [37] M. A. Tawhid and A. M. Ibrahim, Hybrid Binary Particle Swarm Optimization and Flower Pollination Algorithm Based on Rough Set Approach for Feature Selection Problem, vol. 855. Cham, Switzerland: Springer, 2020, doi: 10.1007/978-3-030-28553-1_12.
- [38] J. J. Liang, B. Y. Qu, and P. N. Suganthan, Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Singapore: Nanyang Technol. Univ., 2014.
- [39] N. H. Awad, M. Z. Ali, P. N. Suganthan, J. J. Liang, and B. Y. Qu, Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization. Singapore: Nanyang Technol. Univ., 2017.
- [40] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," *IEEE Trans. Evol. Comput.*, vol. 1, no. 1, pp. 67–82, Apr. 1997.
- [41] J. Derrac, S. García, D. Molina, and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms," *Swarm Evol. Comput.*, vol. 1, no. 1, pp. 3–18, Mar. 2011.
- [42] S. W. Scheff, "Nonparametric statistics," in *Fundamental Statistical Principles for the Neurobiologist*. Amsterdam, The Netherlands: Elsevier, 2016, pp. 157–182.
- [43] M. Friedman, "The use of ranks to avoid the assumption of normality implicit in the analysis of variance," J. Amer. Stat. Assoc., vol. 32, no. 200, pp. 675–701, Dec. 1937.
- [44] S. García, A. Fernández, J. Luengo, and F. Herrera, "Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power," *Inf. Sci.*, vol. 180, no. 10, pp. 2044–2064, May 2010.
- [45] D. Quade, "Using weighted rankings in the analysis of complete blocks with additive block effects," J. Amer. Stat. Assoc., vol. 74, no. 367, pp. 680–683, Sep. 1979.
- [46] A. Kumar, R. K. Misra, and D. Singh, "Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase," in *Proc. IEEE Congr. Evol. Comput. (CEC)*, Jun. 2017, pp. 1835–1842.
- [47] N. H. Awad, M. Z. Ali, and P. N. Suganthan, "Ensemble sinusoidal differential covariance matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark problems," in *Proc. IEEE Congr. Evol. Comput. (CEC)*, Jun. 2017, pp. 372–379.
- [48] K. M. Sallam, S. M. Elsayed, R. A. Sarker, and D. L. Essam, "Multimethod based orthogonal experimental design algorithm for solving CEC2017 competition problems," in *Proc. IEEE Congr. Evol. Comput.* (CEC), Jun. 2017, pp. 1350–1357.
- [49] A. Tangherloni, L. Rundo, and M. S. Nobile, "Proactive particles in swarm optimization: A settings-free algorithm for real-parameter single objective optimization problems," in *Proc. IEEE Congr. Evol. Comput. (CEC)*, Jun. 2017, pp. 1940–1946.
- [50] W. M. Hamner and J. K. Parrish, Animal Groups in Three Dimensions. Cambridge, U.K.: Cambridge Univ. Press, 1997.
- [51] S. He, Q. H. Wu, J. Y. Wen, J. R. Saunders, and R. C. Paton, "A particle swarm optimizer with passive congregation," *Biosystems*, vol. 78, nos. 1–3, pp. 135–147, Dec. 2004.