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ABSTRACT A midcourse maneuver controller is obtained using deep reinforcement learning to maintain
the survivability of a ballistic missile. First, the midcourse is abstracted as a Markov decision process (MDP)
with an unknown system state equation. Then, a controller formed by the Dueling Double Deep Q (D3Q)
neural network is used to approximate the state-action value function of the MDP. In order to make the
controller’s intelligence improved by deep reinforcement learning, the state space, action space, and instant
reward function of the MDP are customized. The controller uses a real-time situation as input and outputs
the ignition states of pulse motors. Offline training shows that deep reinforcement learning can achieve
the optimal strategy’s convergence after approximately 65 hours. Online tests demonstrate the controller’s
ability to avoid an interceptor intelligently and to account for an entry error. In scenarios with multiple
random factors, the controller achieved a penetration probability of 100% and a mean re-entry error of less
than 5000 m.

INDEX TERMS Deep reinforcement learning, ballistic missile, midcourse penetration, neural network.

I. INTRODUCTION
Ballistic missiles have a long flight time in midcourse and
a fixed trajectory. Therefore, various countries regard mid-
course interception as the core strategy for missile defense
systems [1]–[3]. Improving the midcourse penetration capa-
bility of a ballistic missile is meaningful for maintaining its
strategic deterrence. Under the premise of ensuring strike
accuracy, using multi-pulse maneuvers to maximize penetra-
tion capability has become a research topic of interest [4].

Early research on midcourse penetration strategies
involved procedural maneuvers. In [5] and [6], the lateral
procedural maneuver in a horizontal plane was studied. The
ballistic missile starts the ignition program of the lateral pulse
motors at the expected time to realize the orbital maneu-
ver. There are many options for this procedural maneuver,
such as a sinusoidal maneuver, square wave maneuver, and
snake maneuver. A midcourse penetration strategy was pro-
posed in [7] using an axial impulse maneuver and provided
a precise trajectory design method. This penetration strategy
does not require lateral pulse motors. In order to eliminate
re-entry errors caused by the midcourse maneuver, remaining
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pulse motors were used to regress a preset ballistic[8]. Pro-
cedural maneuver penetration only needs to inject a pulse
ignition program into the onboard computer before launch,
which does not occupy computing resources and is easy to
implement. A penetration strategy around the detection zone
has emerged with the advancement of planning technology
and information fusion technology. The concept is to design a
trajectory before launch that can evade the enemy’s detection
zone. Developing a solution to this ballistic problem is a
complex nonlinear programming problem involving multiple
constraints and multiple stages. Based on the assumption that
the earth is flattening, infinitely high cylindrical and semi
ellipsoidal detection zones were established in [9]. Then,
the trajectory was optimized based on the constraints of
waypoint and detection zone. Based on the multi-interval
pseudospectrum method, a method is proposed in [10] for
adaptively adjusting the interval density with curvature and
error criteria. The adaptive pseudo-spectrum method was
developed for the multi-interval pseudo-spectrum. A rapid
trajectory optimization algorithm was also proposed for the
whole course under the condition of multiple constraints
and multiple detection zones. Many studies were carried out
based on differential game theory to determine how active
evasion interceptors can penetrate key areas of enemy air
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defenses. Research on evasion maneuvers for a warhead
with continuous orbital maneuver capability was conducted
by [11] using differential games. The guidance law in [12]
was constructed using the state-dependent Riccati equation
(SDRE) based on the accurate model of a penetration space-
craft and an interceptor. This approach obtained superior
combat effectiveness when compared with classic differential
game theory.

By investigating the above literature, we can summarize
some problems restricting the implementation of midcourse
penetration: (1) It’s easy to oppose a semantic strategy
defined artificially. With the advancement of interception
guidance [13], [14], the procedural maneuvers studied in [5]
and [6] may be recognized by interceptors, and it can-
not guarantee effectiveness when fighting against advanced
interceptors. (2) Insufficient adaptability in the battlefield.
In light of the wide distribution of potential re-entry points,
the circumvention methods studied in [9]and [10] cannot
ensure the planned circumvention trajectory will meet energy
constraints. In addition, there may not be a trajectory that can
evade all detection zones in the enemy’s key air defense area.
Moreover, it may be impossible to know enemy detection
zones clearly before launch because of limited intelligence
capability. (3) The calculation is complex and challeng-
ing to apply in engineering. Most active evasion methods
come from game theory [11], [12]. However, the differential
game theory is time-consuming and performs poorly in real-
time. Moreover, the model error can be introduced during
linearization [15], and onboard computers cannot achieve
high-frequency corrections. From the above presentation,
the existing midcourse penetration methods derived from
traditional methods, such as multiconstraint programming
algorithms or differential game theory, present significant
obstacles in engineering applications. Recent new technology
offers a solution to these limitations.

Since it is a model-free algorithm, reinforcement learning
(RL) is effective for solving decision-making problems. It has
gained a lot of traction in the control field since it is entirely
based on data and does not require any model knowledge.
Due to the limitations of traditional reinforcement learning,
early research cannot handle high-dimensional and continu-
ous battlefield state information [17]. In recent years, deep
neural networks (DNNs) have demonstrated the ability to
approximate an arbitrary function [18] and have unparalleled
advantages in the feature extraction of high-dimensional data.
Deep reinforcement learning (DRL), which combines the
advantages of DNNs and RL, is a method close to general
artificial intelligence, and its strategies can exceed human
empirical cognition [19], [20]. After training, a DNN can
quickly output control commands in milliseconds [21] and
has good generalization ability to unknown environments.
Therefore, DRL has a promising application in ballistic mis-
sile penetration.

The main contributions of this paper are as follows:
(1) To the best of our knowledge, this is the first study

to explore the application of DRL in the field of

midcourse maneuver control, and the effectiveness of
this technology is proven by simulation, which may
inspire the research community.

(2) An RL implementation scheme is designed to fit the
nature of midcourse penetration.

In the second section, the Markov decision process (MDP)
with an unknown system model is used to describe the mid-
course penetration. In the third section, a particular controller
named the Dueling Double Deep Q (D3Q) neural network
and the implementation of RL to train the controller are
introduced. A thorough analysis of the D3Q training process
is presented in the fourth section, along with many online
tests. Finally, the conclusion is presented in Section 5.

II. PROBLEM FORMULATION
This paper aims to seek a controller that can actively evade an
interceptor. Neither the ballistic missile nor the interceptor
have a fixed initial flight state. Under the restriction of the
ignition number, pulse motors are used to evade the intercep-
tor as much as possible. During evasion, ignitions should be
conserved in order to minimize the re-entry errors at the next
stage.

This paper makes the following assumptions:
(1) Only one interceptor is used against a ballistic missile

in the vertical plane. This situation has not been solved
well in the existing literature. We hope to be fair to both
sides in terms of quantity. Otherwise, either side can
win by quantity advantage, which will lead to meaning-
less research on penetration. Therefore, as a common
practice, this paper only focuses on this situation.

(2) The interceptor always performs head-on interception.
Head-on interception is the most common interception
approach, which means that the velocity component of
the interceptor and the target have opposite directions
in line of sight during the rendezvous. Benefiting from
this, the interceptor can intercept a high-speed target at
low speed [22], [23].

(3) On the missile, pulse motors are attached to each side,
and the reaction force always passes through the mass
center. This installation scheme is utilized on the latest
ballistic missiles serviced in the army [24].

(4) The missile’s body axis and its velocity are coincident.
Since this paper is studying penetration through orbital
maneuvers, we ignore the attitude to simplify themodel
and require that the reaction force be perpendicular to
the velocity direction vector.

A. ANALYSIS OF THE MIDCOURSE PENETRATION
Fig. (1) shows the movement of a ballistic missile M and
an interceptor I in Earth-centered Earth-fixed (ECEF) coor-
dinates. The coordinates and velocity of the spacecraft are
known, as well as the position of the expected re-entry
point T. Both M and I use pulse motors to perform orbital
maneuvers. The reaction forces with amplitude fixed as ‖F‖
perpendicular to the lower and upper sides of the body are
defined as Fd and Fu, respectively. λS is the angle between
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FIGURE 1. Penetration in ECEF coordinates.

the velocity direction of M and the sightline of M and T. The
ballistic inclinations of M and I are denoted by θM and θI,
respectively. The flight velocities are denoted by VM and VI,
respectively.

The midcourse penetration can be divided into four stages:
Stage ¬ : A ballistic missile changes orbit using lateral [4] or
axial [7] pulse motors to evade the interceptor. Due to the lim-
itation of the detection range, the interceptor glides towards
the preset interception point without any control during this
stage. Stage ­: The ballistic missile enters the interceptor’s
lock range. The interceptor began to correct its orbit based
on the guidance information [26]. There are two situations
in Stage ®: The interceptor destroys the ballistic missile or
is evaded. Stage ¯: The ballistic missile uses the remaining
pulse motors to optimize the re-entry error. The complete
process of midcourse penetration is shown in Fig. (1).

From the above analysis, it can be seen that whether the
ballistic missile can evade the interceptor in stage ® depends
on the orbital maneuvers adopted in stages¬ and­. Stages¬
and­ also determine the difficulty of orbit correction in stage
¯. Therefore, the maneuver control of the ballistic missile
in penetration belongs to a typical sequential decision prob-
lem [27], and the MDP can model this kind of problem [28].

Most of the time, ballistic missiles and interceptors are
in an inertial sliding motion after entering space. Under the
control of multiple pulses, they follow the same vertical plane
motion [25]:
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ẏ
v̇x
v̇y
θ̇

 =



vx
vy

−
µx

(x2 + y2)
3
2

−
µy

(x2 + y2)
3
2
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where (x, y) is the coordinate vector of an spacecraft in ECEF
coordinates. (Vx ,Vy) is the velocity vector of the spacecraft;
µ is the Earth’s gravitational constant. The control input u ∈
{−1, 0, 1} represents the ignition control of the orbital pulse
motor. When u = 1, the orbital pulse engine mounted on the
upper side is ignited and generates force Fu, which decreases
Vx and increases Vy. When u = −1, Vx is increased and Vy is

decreased by Fd. Obviously, Fu = −Fd and ‖Fu‖ = ‖Fd‖ =

‖F‖. When u = 0, neither side’s motors fire.

B. MARKOV DECISION PROCESS WITH SYSTEM
EQUATION UNKNOWN
The ballistic missile determines when and how to per-
formmaneuvers based on multidimensional information. The
deterministic MDP with continuous state and discrete action
can be defined by a five-tuple 〈S,A,T ,R, γ 〉 [29]. Among
them, S is a multidimensional continuous state space. A is a
set of available actions. T is a state transition function: S ×
A → S, which describes the deterministic state transition.
That is, after an action a ∈ A is taken in the state s ∈ S,
the state changes from s ∈ S to s′ ∈ S. R is an instant
reward function: S × A × S → R represents an instant
reward obtained from the state transition. γ ∈ [0, 1] is a
constant discount factor used to balance the importance of
instant reward and forward cumulative reward.

For the time-discrete MDP, the controller forms a com-
mand sequence τ = {a0, a1, · · · , an} based on the current
state st at each time point. The controller starts from state s0.
After a command at is issued, the system obtains a new state
according to T and simultaneously obtains an instant reward
rt by R. The cumulative reward obtained by the controller
under the command sequence τ is:

G(s0, τ ) =
∞∑
t=0

γ trt (2)

The optimal controller outputs the optimal command
sequence τ ∗ = argmax

τ
{G(s0, τ )} according to the initial

state s0, and this sequence is the optimal strategy.
Assuming that the time-discrete MDP starts from st , its

cumulative reward is as shown in Eq. (2). Then, its maximum
cumulative reward is [30], [31]:

G∗(st ) = max
at

{
R(st , at , st+1)+ γG∗(st+1)

}
(3)

However, there is a confrontation between the ballistic
missile and the interceptor, which forms a system with an
unknown state equation. An analytical method based on
Eq. (3) cannot be used to calculate the optimal control
because the movement of the interceptor is controlled by its
guidance law which is unknown for the ballistic missile.

The expected value function of the cumulative reward
based on state si and the expected value function of (si, ai)
are introduced as shown below:

V π (st ) = E

[
∞∑
k=0

γ krt+k |st , π

]
(4)

Qπ (st , at ) = E

[
∞∑
k=0

γ krt+k |st , at , π

]
(5)

V π (st ) indicates the expected cumulative reward that con-
troller π can obtain in the current state st .Qπ (st , at ) indicates
the expected cumulative reward under controller π after exe-
cuting at in state st .
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Theorem 1: Optimal Control of MDP based on expected
value function [19]

The cumulative reward of an MDP is defined as Eq. (2).
The expected value function of the cumulative reward based
on the state-action pair Qπ (st , at ) of a controller π (st ) is
known. Updating π (st ) through the iteration rule shown in the
following equation can approximate the maximum expected
value of the cumulative reward:

π ′(st ) = argmax
at

Qπ (st , at ) (6)

III. SOLUTION OF THE CONTROLLER
Section 2 converts the midcourse maneuver control of a
ballistic missile to an MDP with an unknown state equa-
tion. It is crucial to estimate Qπ (st , at ) accurately in order
to obtain an optimal MDP controller. The controller needs
to process as much data as possible and then choose the
next action. The input space of the controller has high
dimensionality and continuous characteristics, and its action
space has discrete characteristics. In recent years, deep
Q networks (DQNs) have been widely used to approxi-
mate Qπ (st , at ) of high-dimensional state systems [32]–[34].
To achieve better strategy stability and faster learning speed,
this section combines duel and double network concepts to
improve the structure of a traditional DQN. Finally, D3Q and
its reinforcement learning algorithm are obtained.

A. REINFORCEMENT LEARNING DESIGN
To approximate the value function Qπ (st , at ) through rein-
forcement learning, the state space, action space and instant
reward function of reinforcement learning are designed as
follows.

As mentioned in Section 2.a, the mainstream orbital
maneuver for ballistic missiles and interceptors is intermittent
ignition using pulsemotors, whichmost of the time during the
flight satisfies Eq.(1). Therefore, the controller can predict the
future flight state (coordinate, velocity) based on the current
coordinate and velocity. The state space of the controller is
S = SM × SI, where SM ∈ R4 and SI ∈ R4 are the state
space of the ballistic missile and the interceptor, respectively.
The dimension of S is reduced by substituting it with the
relative state space SMI ∈ R4, thereby speeding up learning.
When the evasion is successful, the controller needs to mask
the interceptor information, so a scalar is used to indicate
the evasion state SB = {0, 1}. Element 0 indicates that the
evasion has not yet been completed, and element 1 indicates
that the evasion has been completed. It is necessary for the
controller to know how many pulse motors are available
in order to determine the remaining maneuverability. It is
also necessary to know the relative position to the expected
re-entry point SMT ∈ R2 and the real-time velocity of the
missile SM_v ∈ R2.
Finally, the state space in this paper is designed as a

10-dimensional space S = SMI × SB × SP × SMT × SM_V ,
and each element is(

sMI_x , sMI_y, sMI_Vx , sMI_Vy , sB, sp, sMT_x , sMT_y,

sM_Vx , sMT_Vy
)
.

As explained in Section 2, pulse motors are installed on
the side of a spacecraft. In the early stage, as the missile and
the interceptor are far apart from each other, relative position
changes slowly. Therefore, there is no need for the controller
to output commands with high frequency. The action space is
A = {−1, 0, 1}. Element 0 means either side of the missile
does not ignite at the current, element 1 means motors on the
lower side of the missile produce a force Fu, and element
2 means motors on the upper side are ignited to produce a
force Fd. |Fu| and |Fd|are constants but have opposite direc-
tions, and the directions are perpendicular to the missile’s
body axis. At each control moment, the controller selects
an alternative command in A to control the ignition state
according to input state s ∈ S. Actions at each time point
constitute a time sequence. Action space has only three ele-
ments and looks simplistic, while penetration strategy space
has a great deal of variety. The penetration strategy space is
L = ×Ai=1...k if the controller needs to make k decisions.
If, for example, 1 Hz is the control frequency and 200 s is
the time span of midcourse penetration, then L contains 3100

alternative strategies.
The state space is sparse. Therefore, the value function

Qπ (st , at ) will converge more quickly in reinforcement learn-
ing.

The instant reward function is a crucial component of the
trial-and-error approach as it guides the controller in learning
the optimal strategy [33], [36]. Diverse instant reward func-
tions indicate different behavioral tendencies. The instant
reward function affects the quality of the strategy learned by
reinforcement learning.

According to the goal of this paper, the instant reward
function plays two roles: (1) rewards the evasion. (2) rewards
the acceptable re-entry error. An ideal instant reward function
is:

R(st ) = R1(st )+ R2(st ) (7)

R1(st ) =

{
rc1 fr1 (st ) = 0
0 else

(8)

R2(st ) =

{
rc2 fr1 (st ) = 0, fr2 (st ) = 0
0 else

(9)

where rc1 , rc2 ∈ R+. fr1 (·) is the criterion for a successful
evading. fr2 (·) is the condition of acceptable re-entry error.
This reward function only makes rewards based on the instan-
taneous state and does not guide the movement (state trajec-
tory). Therefore, the instant reward function biases only a few
specific states that satisfy fr1 (·) and fr2 (·) without disturbing
other movements. From a theoretical view, the controller can
explore the entire strategy space L through reinforcement
learning.

However, during the random exploration process, the con-
troller enters fr1 (·) and fr2 (·) is almost impossible. Moreover,
since the reward for a few instantaneous states is too sparse,
reinforcement learning requires massive state trajectories.
Therefore, powerful computer resources are needed. To solve
this problem, it is necessary to change the instant reward
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FIGURE 2. The instant reward function used in this paper with λth = 0.35,
c1 = 7, c2 = 1, c3 = 0.85, c4 = 2, c5 = 0.01.

function based on the instantaneous states to a function based
on the process.
R(st ) is redesigned as follows:

R(st ) = f (λS, l) =


c4 · (c3 − c1 · λ2S) ·

1
c5 · l + c2

,

|λS| < λth
0, |λS| ≥ λth

(10)

In the above equation, the angle between the velocity of
the ballistic missile and the sight-line (missile to expected
reentry point) forms λS (as shown in Fig. (1)). λS determines
the re-entry error. l is the slant distance between the missile
and the expected re-entry point. c1 ∼ c5 ∈ R+ are constants.
λth is a threshold. The instant reward function used in this
paper is shown in Fig. (2).

As shown in Fig. (2), when distance l is significant, the
reward is not sensitive to l, which can relax the penetration
strategy in penetration stage¬ ­ because any strategy obtains
a close reward. However, varying strategies in stage ¬ ­
will lead to a vast difference in stage ¯, which helps guide
the controller to evade an interceptor successfully. When l is
small, λS greatly affects the cumulative reward, which pro-
vide guidance to the controller in obtaining a better re-entry
point error.

B. STRUCTURE OF THE CONTROLLER
The deep neural network structure used in this paper is shown
in Fig. (3). The traditional DQN structure lacks a description
of the relative potential value of each alternative action, so the
output strategy is unstable when facing complex problems,
and the training takes a long time. To address this problem,
a dueling architecture is introduced [37]. Suppose the param-
eter set of the deep neural network is φ, and Qπ (st , at ;φ) is
defined as two parts:

Qπ (st , at ;φ) = V π (st ;φ)+ Aπ (st , at ;φ)
−

∑
a′
Aπ (st , a′;φ)

/
|A| (11)

FIGURE 3. The structure and loss function of D3Q.

where V π (st ;φ) is the expected value function of the cumu-
lative reward mentioned in Section 2.b. Aπ (st , at ;φ) is an
advantage function used to characterize the potential of each
alternative action. By the definition, E [Qπ (st , at ;φ)] =
V π (st ;φ), so the last term in Eq. (11) can guarantee stability.

By introducing a target network, we are able to reduce the
volatility caused by un-converged parameters. Suppose the
parameter set of the target DQN is φ−, and the parameter set
of the execution DQN is φ. The target DQN Qπ

−

(st , at ;φ−)
and the instant reward r(st , at , st+1) form the target value.
The execution DQN is used to approximate the target value.
That is, only the execution network parameters φ are updated
for each training. After a certain amount of training, override
φ is override with φ−, as shown in Fig. (3). The princi-
ple of D3Q is to reduce the correlation between the target
value and the selected action, avoiding overestimation of the
state-action value.

C. TRAINING ALGORITHM
Much progress towards artificial intelligence has been made
using supervised learning systems that are trained to replicate
the decisions of human experts. However, expert data sets
are often expensive, unreliable or simply unavailable, which
is not a problem for reinforcement learning. The purpose of
reinforcement learning is that D3Q interacts with the envi-
ronment (simulation program of midcourse penetration) to
obtain a memory pool and is trained based on the memory
pool.
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The approximate goal of D3Q is the nonlinear mapping:
st → Qπ (st , at ). Let Q̂π (st , at ) be the real value. The rt is
the instant reward under (st , at ). According to the definition
of Eq. (5), the approximation value of D3Q in the current state
is:

ỹt = rt + λmax
a
{Q̂π (st+1, a)} (12)

D3Q introduces the concept of execution networks and tar-
get networks. Q̂π (st , at ) is replaced by Qπ

−

(st , at ;φ−), and
the action in the next state st+1 is selected by the execution
network Qπ (st+1, a;φ), so the target value (approximation
value) of D3Q is rewritten as:

ỹt = rt + λQπ
−

(st+1, argmax
a

{
Qπ (st+1, a;φ)

}
;φ−)

(13)

During the training process, the difference between the
output of D3Q and the target value ỹt is evaluated through
the loss function L(φ) as follows:

L(φ) =
(
max
a

{
Qπ (st , a;φ)

}
− ỹt

)2
(14)

To slow down the overfitting, the regularization term 0(φ)
needs to be considered in the loss function. 0(φ) is the sum
of the modulus of all parameters in D3Q. Eq. (14) is then
modified as:

L(φ) =
(
max
a

{
Qπ (st , a;φ)

}
− ỹt

)2
+ w0(φ) (15)

where w is a constant weight and w ∈ R+.
Use L(φ) and the gradient descent method to adjust the

parameters of the execution network controlled by a learning
rate α:

φnew = φold + α∇φL(φold) (16)

Due to the complexity of the midcourse penetration prob-
lem, it is difficult to obtain an accurate loss function through
one pair of state-action rewards. Therefore, a batch gradient
descent with sample size Nb is used to calculate the loss
function:

L̄(φold) =
1
Nb

Nb∑
n=1

(
max
a

(
Qπ (sn,t , a;φold)

)
− ỹn,t

)2
+w0(φ) (17)

The reinforcement learning of D3Q is shown in
Algorithm 1.

Because training samples are drawn from the memory
pool, the quality of the memory pool determines the learn-
ing speed and the convergence of strategy. The traditional
generation method of the memory pool is that the controller
uses probability ε to perform random actions to explore new
strategies and uses probability (1− ε) to obtain deterministic
actions from the neural network. Memory pools are tradi-
tionally created by randomly action with a probability ε and
using it to experiment new strategies, while a probability
(1− ε) is used to produce deterministic actions calculated

Algorithm 1 Reinforcement Learning of D3Q
1t: Kinematics integral step size;
γ : Reward discount factor;
α: Initial learning rate;
n: Target Q network update period;
ε: Random exploration probability;
Tc: D3Q control period;
w: Regular term weight;
N : Capacity of sample pool D;
Nb: Capacity of batch temporary storage area C ;
φ: The initial parameters of the execution network Q;
φ−: The initial parameters of the target network Q−.
Start:
for Episode = 1,M do

Randomly initialize state of the ballistic missile sM0 ,
state of the interceptor sI0 , and expected re-entry
point sT .;
for t = 1: 1T :T do

if t is the time of control then
Select an action ai from A with the
probability of ε ;
or;
Select an action ai which is the current
optimal action ai = arg max

a
{Qπ (si, a;φ)}

end
The ballistic missile moves according to the
received command ai, and the interceptor moves
under the control of its own guidance law to get
a new situation st+1 and an instant reward ri.;
If the sample pool D is full then delete oldest
sample;
If sp > 0 then store the quaternion
{st , at , st+1, rt } as a sample in D;
Randomly sample Nb samples from D and put
them into C ;
Calculate the target value of the sample in C by
Eq. (13), and calculate the batch loss function by
Eq.(17). ;
Perform batch gradient descent on each
parameter in D3Q according to Eq. (16);
Every n parameter iterations, update the
parameters of the target network Q θ → θ−

end
update the ε

end

from the neural network. Each time the controller completes
an interaction with the environment, the result is obtained
from this interaction. When new data enter after the memory
pool has filled, the earliest status-action-reward pairs are
removed from the memory pool. As the research background
of this paper is a ballistic missile flying in the midcourse,
the execution times of its action (ignition of pulse motors)
are limited. Thus, most of the time, the ballistic missile is in
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an inactive state. When the number of ignitions is exhausted,
the arbitrary output of D3Q has no effect on the final cumu-
lative reward. Therefore, the learning goal of D3Q is to
approach Qπ (st , at ;φ) when the remaining pulse ignition
times greater than 0. Therefore, unlike the traditional mem-
ory pool generation method, the memory pool only contains
the state-action reward pairs whose remaining pulse ignition
times are greater than 0.

In view of the MDP abstracting from the midcourse pene-
tration, an approximator ofQπ (st , at ;φ) is constructed based
on the D3Q network proposed in Section 3.b. The scheme
designed in Section 3.a is used for reinforcement learning.
The parameters of the D3Q network are updated iteratively
through the algorithm proposed in Section 3.c. Finally, the
midcourse maneuver controller can be achieved.

IV. TRAINING AND TESTING
Section 3 introduces how to solve the maneuver controller
established in Section 2. This section verifies the effective-
ness of deep reinforcement learning in solving the midcourse
penetration problem through numerical simulation. An anal-
ysis of the deep reinforcement learning process of D3Q
is presented, and its convergence is demonstrated. Besides,
many tests are performed.

A. SETTING
The scenario is set to a space with a distance of 800 km in
the horizontal direction and 100 km in the vertical direction.
In this space, the ballistic missile only remains a war-
head part. The warhead in the simulation scenario refers to
’Minuteman-3’. The parameters of the interceptor refer to
the lightweight exoatmospheric projectile-kinetic kill vehi-
cle [38], as shown in Table 1.

The coordinates of spacecraft are defined in the ECEF. The
nominal initial flight state (coordinate, velocity) of the ballis-
tic missile is [0 km, 6600 km, 6 km/s, 0 km/s]. The nominal
initial coordinate of the interceptor is [800 km, 6470 km].
The nominal expected re-entry point position is [800 km,
6525 km]. To prevent D3Q from overfitting the scenario
and lacking generalization ability, random fluctuations are
added to the nominal initial flight state when the scenario
is initialized during the training. These random fluctuations
follow uniform distributions U (·).
As mentioned in [35], Upon entering space, the inter-

ceptor is in an inertial flight state, and its sliding direction
is determined by the preset interception point. This paper
adopts the method of curing the speed in the x direction and
adjusting the speed in the y direction to aim at the preset
intercept point. When the slant distance of the interceptor
and the ballistic missile reaches the threshold (200 km in this
paper), the sensors on the interceptor can provide guidance
information, and the interceptor uses the lateral pulse to cor-
rect the terminal interception error. Since the simple design
of the terminal guidance law (proportional guidance law)in
this paper (proportional guidance law), the kill radius of the
interceptor is expanded to 80 m.

TABLE 1. Spacecraft parameters.

TABLE 2. Training hyperparameters.

The parameters of the instant reward are shown in Fig. (2).
The training hyperparameters are shown in Table 2. The
D3Q adopts a multilayer fully connected layer competition
architecture. The number of neurons in each layer is shown
in Fig. (3)b. The activation function of the fully connected
layer is Leaky-ReLU (the negative slope is 0.1), and the
activation function of the output layer is linear.

B. TRAINING ANALYSIS
The CPU of the training platform is an AMD Ryzen5
3600@4.2 GHz. The RAM is 8 GB × 2 DDR4@3733 MHz.
A GPU is not selected for the parameter iteration because
the D3Q is straightforward and computation is concentrated
on the calculation of spacecraft models. Spacecraft models
are written in C++ and packaged as a dynamic link library
(DLL). The D3Q and training is implemented by Python.
Interaction between the D3Q and the virtual scenario is real-
ized by calling the DLL. Through 65 h 17 m of reinforcement
learning, 20815 episodes are completed, and D3Q performs
2.525 million iterations. In Fig. (4)∼Fig. (6), the training
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FIGURE 4. Cumulative reward and moving average of each episode in
training.

FIGURE 5. Moving average penetration probability of each episode in
training.

process is shown, and in Table 3, the training statistics are
presented.

It can be seen in Fig. (4) that the training of D3Q can be
divided into three stages: the exploration stage (shown by the
green dashed circle), the optimization stage of active evasion
(shown by the red dashed circle), and the optimization stage
of re-entry error (shown by the blue dashed circle). The cumu-
lative rewards in this stage (less than 20) are low since D3Q
has no intelligence and moves randomly in the exploration
phase. As the trial evolves, D3Q chooses some behaviors
that will expand the cumulative reward, swiftly acquiring
the intelligence to evade the interceptor. The accumulative
reward increases significantly in this stage, demonstrating
D3Q can learn excellent strategies quickly and effectively.
The cumulative reward of most episodes has a clear advan-
tage over the exploration stage, indicating that this stage has
learned to evade the interceptor and then collects a multistep
instant reward after evasion. Because D3Q has not yet fully
adapted to the random scenario and there is a 10% probability
of random action (ε = 0.1), the cumulative rewards of a
few episodes are still less than 20. In the optimization stage
of re-entry error, the cumulative reward gradually increases.
According to the moving average curve of each window size,
the cumulative reward exhibits smooth convergence, which is
a result of the convergence of the D3Q and the reinforcement
learning algorithm.

In Fig. (5), it can be seen that D3Q cannot evade the
interceptor at all in the exploration stage (shown by the green
dashed circle), but through trial and study in the scenario,
some excellent strategies are obtained by an extremely low
probability. D3Q learns evasion very quickly after learning

FIGURE 6. Re-entry error and moving average of each episode in training.

TABLE 3. Reinforcement learning statistics.

these strategies(shown by the blue dashed circle). From the
moving average curve of penetration probability withwindow
sizes of 100 and 1000, it can be found that a modal collapse
phenomenon shown in the red dashed box appears in Fig. (5)
(also reflected in Fig. (4)). Because D3Q overemphasizes the
importance of the re-entry error in the optimization stage of
the re-entry point, a local pole that is not conducive to evading
the interceptor is stuck. In subsequent training, D3Q jumps
out of this local pole and gains intelligence to balance re-entry
error and evasion.

It can be seen in Fig. (6) that D3Q is very stable in the opti-
mization stage of re-entry error. The re-entry error gradually
converges from approximately 100 km to 5 km. Table 3 shows
that D3Q achieves a 100% penetration probability in the last
100 episodes of training, and the re-entry error is concentrated
in a small range (approximately 3 km). Judging from the
statistical results of the last 1000, 5000, and 10,000 episodes,
D3Q can still maintain a high average cumulative reward
and a small variance, and the penetration probability and
re-entry error are within acceptable ranges. In the final period
of training, D3Q has adapted to the scenario with multiple
random factors.

C. TEST ANALYSIS
The D3Q performs penetration tests in virtual scenarios to
reveal the specific strategy that it has learned from training.
To verify the adaptability of D3Q facing different expected
re-entry points, the expected re-entry heights of 6475 km,
6525 km and 6575 km are tested. Since random exploration
is no longer needed, ε is set to 0. For each of the three
re-entry heights, 1,000 episodes are carried out while keeping
random factors in mind to simulate the uncertain nature of a
battlefield. Test results are shown in Fig. (7).

It can be seen in subplot (a) and (d) of Fig. (7) that when
facing a low expected re-entry point, the strategy adapted by
D3Q is to bypass the interceptable zone of the interceptor
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FIGURE 7. Test results of (a)(d) expected re-entry heights of 6475 km;
(b)(e) expected re-entry heights of 6525 km; (c)(f) expected re-entry
heights of 6575 km.

downwards. The triple variance (3σ ) of ballistic is small,
so the strategy is stable. It can also be seen in subplot (d) of
Fig. (7) that D3Q has diverse purposes in different time
periods. From 0 to 40 s, as the probability of action 1 is much
greater than that of action −1, D3Q mainly ignites upper
pulse motors to evade the interceptor as soon as possible.
From 40∼90 s, the interceptor enters the terminal guidance
stage, and D3Q adapts the corresponding ignition control
according to the real-time situation. If the estimated missing
amount was large, the re-entry point would be corrected in
advance. If the estimated missing amount was small, further
maneuvers would be taken to expand the missing amount.
In the post-90 s, D3Q mainly takes an upward maneuver for
terminal correction because in the early stage of penetration,
too many downward maneuvers have been used to evade the
interceptor. Subplot (c) and (f) of Fig. (7) show that D3Q
adapts a strategy of bypassing the interceptable zone upwards
when facing a high expected re-entry point. In the early stage,
it mainly uses an upward maneuver to bypass the interceptor.
A partial downward maneuver is adopted to reduce re-entry
error. The above phenomenon shows it is clearly that D3Q can
provide penetration strategies when facing different expected
re-entry heights.

Subplot (b) of Fig. (7) shows that the strategy is very
unstable when D3Q faces a medium height point, and the
maneuver of the interceptor is also unstable. For different
interceptions, D3Q adapts different penetration strategies.
In this situation, the main factor affecting the penetration
strategy is no longer the height of the expected re-entry

TABLE 4. Initial parameters in medium height test.

FIGURE 8. Orbits of all scenarios in the medium height re-entry test.

TABLE 5. Statistics of different strategies.

point but the real-time situation of both offense and defense,
which reflects D3Q’s ability to adapt to the uncertainty of the
battlefield. To reveal this intelligence, the expected re-entry
point is fixed to 6525 km, and scenarios with different initial
energy states are tested. The parameters of the 4 test scenarios
are shown in Table 4, and the orbits of all scenarios are shown
in Fig. (8).

In scenarios 1, 2, and 4, D3Q bypasses the interceptable
zone from the upper side of the interceptor, but in scenario 3,
D3Q takes a downward evasion strategy. In scenario 3, the
interceptor’s Vx is slow, and the velocity of the ballistic
missile is faster. Therefore, the interceptor has a bigger incli-
nation during inertial taxi and has a larger interceptable zone
for targets passing above. If D3Q still took the strategy of
flying upwards, it would need to make a downward maneuver
when it is close to the expected re-entry point, which would
reduce the relative inclination and therefore enter the inter-
ceptable zone.

To better illustrate the intelligence of the D3Q, three
penetration strategies (randommaneuver, continuous upward
maneuver, and continuous downward maneuver) are
compared. The results are shown in Table 5.
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The penetration probability of the random maneuver strat-
egy is 0. Obviously, it is impossible to evade the interceptor at
all. The re-entry error is beyond the acceptable range although
continuous upward maneuvering and continuous downward
maneuvering can evade the interceptor by 100% probability.
D3Q also achieves a 100% evade probability, and the re-entry
point error is approximately 5 km, which has significant
advantages. Comparing the missing amount of interceptors,
when facing D3Q, the missing amount is much smaller than
other strategies. This shows that D3Q does not pursue to
evade the interceptor blindly but bypasses the interceptable
zone at a relatively close distance. This saves many mean-
ingless pulses and reserves considerable maneuverability to
optimize the re-entry error.

V. CONCLUSION
A D3Q-based controller is constructed in this paper for
maneuver control of a ballistic missile in midcourse pen-
etration. Reinforcement learning is then implemented to
make it more intelligent. Compared with traditional methods,
the controller and its training algorithm proposed in this paper
have the following advantages: (1) Through training in virtual
scenarios, available penetration strategies can be obtained
independently without relying on any prior human knowledge
or labeled training data. (2) D3Q ensures that the ballistic
missile can evade an interceptor while taking the re-entry
error into account, and it can autonomously respond to a vari-
ety of battlefield situations with high intelligence. (3) D3Q is
entirely data-driven, simple in structure, and consumes very
few computing resources.
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