
Received May 18, 2021, accepted June 6, 2021, date of publication June 22, 2021, date of current version July 1, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3091617

Fault-Detection Tactics for Optimized Embedded
Systems Efficiency
SALEH H. ALDAAJEH 1, (Member, IEEE), SAAD HAROUS 2, (Senior Member, IEEE),
AND SAED ALRABAEE 1, (Senior Member, IEEE)
1Department of Information Systems and Security, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
2Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates

Corresponding authors: Saleh H. Aldaajeh (201990215@uaeu.ac.ae), Saad Harous (harous@uaeu.ac.ae), and Saed Alrabaee
(salrabaee@uaeu.ac.ae)

This work was supported by the United Arab Emirates University Start-up Grant G00003261.

ABSTRACT Embedded systems operational environment poses tightened and usually conflicted design
requirements. Software architects aim at introducing effective tradeoff methods to select themost appropriate
design solutions to comply with the software specifications of an embedded system. When defining the
software architecture for critical embedded systems it is mandatory to balance often conflicting goals
to meet the different requirements in terms of resource consumption, schedulability, dependability, and
security, among others. This is an engineering problem that can be addressed by employingMultiple-Criteria
Decision-Making (MCDM) methods from the operational research domain. This paper combines two of
these methods, Analytical Hierarchy Process (AHP) and Technique for Order Preferences by Similarity
to Ideal Solution (TOPSIS), to determine the most efficient fault detection design decisions according
to relevant metrics. The paper employs two algorithm efficiency metrics: run-time complexity and
memory-space complexity. Furthermore, the fault-detection strategy design decisions, Ping/Echo and
Heartbeat, were the subjects of this study.

INDEX TERMS Availability, AHP, design decisions, embedded systems’ efficiency, tactics, TOPSIS,
tradeoff.

I. INTRODUCTION
Embedded systems are widely used in modern society
and can be found in almost every application of daily
lives, including medical instrumentation, transportation, and
national critical infrastructures, such as energy and govern-
ment facilities [1], [2]. Operational environments in which
embedded system are deployed are generally associated
with the requirement to minimize resource consumption [3].
Accordingly, embedded systems need to operate under strict
constraints associated with limited resource availability in
real-time usage and necessity to operate during long-term
periods, exhibiting high resilience to failures [3], [4].
The robustness and accessibility of embedded systems to
authorized users has become of great importance. At present,
embedded systems become more interactive as they are
interconnected by networks and Internet-of-Things (IoT)
applications, such as smart homes, smart farms, and fully

The associate editor coordinating the review of this manuscript and

approving it for publication was Taehong Kim .

automated manufacturers [4]. This new trend has induced
new challenges in terms of the design of software used in
embedded systems while providing high efficiency concern-
ing resource consumption.

In the development of embedded systems software, quality
is a key characteristic. Establishing high quality does not
correspond specifically to a certain or distinct stage of
the system development life cycle. On the contrary, it is
considered as a continuous effort that begins by capturing
quality requirements at the requirement engineering stage
and continues throughout the system development life
cycle [5]. The study conducted by [6] outlined that up to
45% of software quality could be achieved at the software
architecture stage. Furthermore, software architecture society
actively reported how the software architecture influences
quality achievement in software systems [7]–[9]. Software
architecture society identified several architectural design
strategies and decisions (tactics) to consolidate availability
in various software systems [7], [10], [11]. Architectural
design decisions influenced and regulated the development

91328
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-7810-9290
https://orcid.org/0000-0001-6524-7352
https://orcid.org/0000-0001-8842-493X
https://orcid.org/0000-0001-6246-6218

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

of quality attributes [7], [11]. Experience-based reusable
architectural blocks were used to implement quality attributes
in software systems [12].

To engineer important quality attributes such as depend-
ability quality attributes to embedded systems at the software
architecture development stage, it is essential to evaluate
the software architecture design [5], [13]. The underlying
objective of the evaluation process is to determine whether
the proposed design conforms to system requirements. There
are several methods to evaluate the software architecture con-
formity to its specifications, such as the architecture tradeoff
analysis method (ATAM), architecture-level maintainability
analysis (ALMA), and the software architecture analysis
method (SAAM) [7]. According to the study conducted by R.
Kazman et al., there are two general categories that need to be
considered during the evaluation of the architectural design
of a software system: qualitative analysis and quantitative
measurement [14]. Usually, questionnaires, checklists, and
scenarios are used as means to conduct qualitative analysis,
and quantitative measurements including simulations and
metrics, for example, mathematical modeling and simulation
tests. Moreover, quantitative measurement is focused on
estimating the conformity of quality attributes to system
requirements in terms of probabilities [14].

In the present study, we employ multi-criteria decision
making techniques to analyze a tradeoff model concerning
various architectural design decisions. The proposed tradeoff
methodology integrates two multi-criteria decision analysis
approaches: the analytical hierarchy process (AHP) and the
technique for order preferences by similarity to ideal solution
(TOPSIS). The proposed model is developed to enhance
architectural design decisions tradeoff and evaluation pro-
cess, considering fault-detection design decisions based on
their influence on embedded systems efficiency. Further-
more, it employs algorithm-efficiency metrics (run-time
complexity and memory-space complexity) to facilitate deci-
sion making in terms of optimizing resource consumption
in embedded systems under real-time requirements. The
fault-detection strategies ‘‘Ping/Echo’’ and ‘‘Heartbeat’’ are
the subjects of this study.

A. ACRONYMS AND SYMBOLS
Table 1 provides the list of mathematical symbols used in this
paper and their corresponding description.

II. BACKGROUND AND MOTIVATION
The design and development of embedded systems oper-
ating in IoT environments requires thorough analysis and
evaluation. Numerous research studies have been conducted
in the areas of software architecture, availability, and
tradeoff design decisions concerning embedded systems. The
following sections provide a comprehensive literature review
of the previous work reported in the aforementioned areas.

A. EMBEDDED SYSTEMS SOFTWARE ARCHITECTURE
Designing the architecture of an embedded system software is
a challenging task due to conflicted operational environment

TABLE 1. Acronyms and symbols description.

requirements, in particular, such as availability, resource and
memory consumption, and the necessity to operate in real
time. To consolidate the implementation of embedded system
software specifications, software architects need to select the
best candidate architectural design solution.

The second stage in the software system development life
cycle is to design the software architecture of a system.
According to L. Bass et al., software architecture can be
described as a structure or structures of a system including
software components, the externally visible properties of
those components, and the relationships among them [6]. The
implementation of quality attributes in software architecture
is performed at two levels: requirements and solutions.
Several frameworks can be used to identify, specify, and
categorize quality requirements [6], [11], [14]–[16]. These
frameworks are applied to define quality attributes in a form
of general and concrete scenarios, which can be considered
in evaluating the conformity of software architecture to the
specified functional and non-functional requirements [6].
General scenarios provide a template to formulate concrete
scenarios to identify quality attributes. Concrete scenarios
are utilized as a means to develop a detailed description of
the requirements associated with quality attributes, thereby
enabling software architects to investigate whether the

VOLUME 9, 2021 91329

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

FIGURE 1. Availability architecture design strategies and decisions [7].

selected architectural strategies and design decisions satisfy
and comply with the desired functional and non-functional
requirements [17].

Software architecture society has been active investigating
various available architectural strategies and design decisions
that can be used to implement different quality attributes
in a software system [6]–[8], [10]–[12], [18], [19]. Gen-
erally, these architectural design decisions are based on
experienced-based solutions [19]–[21]. Figure 1 represents
availability architecture strategies and their corresponding
design decisions [6].

The semantic specification of architecture design decisions
can be realized by adopting the role-based meta-modeling
language (RBML) [18], [22]. The major benefits of utilizing
RBML can be summarized as follows: (1) RBML facilitates
the use of architectural tactics at a model-view level; (2)
RBML is capable of capturing the generic structure of a
tactic; (3) RBML enables instantiating a tactic in various
structures through realizing the multiplicity of roles, thereby
facilitating the reuse of architectural tactics [22], [23].

B. EMBEDDED SYSTEMS AVAILABILITY
Embedded systems software operating in a safety-critical
environment are expected to provide high availability for long
operational periods. Most importantly, embedded systems
are designed to be efficient and therefore they are designed
with certain limitations on resources consumption. Due to the
considerable importance of this aspect in the development
of software systems, research society has been actively
investigating this question. According to A. Avižienis et al.,
availability can be defined as a runtime quality attribute
that describes the readiness of a system to provide services
for authorized users [17]. In the same study, dependability
is determined as a subset of quality attributes including
availability. Information security society considers system
availability as one of the three major security attributes
(availability, integrity, and confidentiality). From this view-
point, availability is defined as the system capability of
granting authorized users access to the system itself and
required resources [16]. The International Organization of
Standards (ISO) ISO/IEC 25010 model considers availability

as a sub-quality factor contributing to the reliability of sys-
tems. Specifically, in this model, availability is described as a
degree towhich the system is operational and accessiblewhen
required for use [20]. Most importantly, the achievement
of dependability quality attributes, including availability,
in the software development process is strongly related to the
software architecture [24].

From practical perspective, steady-state availability serves
as a measurement of a system up-time during a sufficiently
long operational period (90 days, one year, entire project,
etc.) [18]. A well-known expression used to derive a
steady-state availability of a system is formulated as follows:

α =
MTBF

MTBF+MTTR
As shown in Figure 1, availability can be realized

by implementing various design strategies, such as fault
detection, recovery-and-prevention, recovery reintroduction,
and prevention.

The proposed model was applied to the selection of
a fault-detection architecture strategy as a case study.
Fault detection capability in embedded systems software
is crucial to maintain availability as it underlies overall
system reliability. By detecting faulty systems or system
components, the likelihood of achieving a higher degree
of steady-state availability in a system can be substantially
increased [18]. The fault detection architecture strategy
relies on three design decisions: Ping/Echo, Heartbeat, and
Exception, as represented in Figure 1. These design decisions
can be summarized as follows [18], [22]:
• Ping/Echo: An asynchronous request/respond message
pair is exchanged between nodes/components to deter-
mine reachability and a round-trip delay corresponding
to the paths associated with a component in question.
Therefore, this tactic allows checking the availability of
a component by sending ping messages.

• Heartbeat: A periodicmessage is exchanged between the
system monitor and the process. It provides a system
with indications on when a fault is incurred in the
process. Accordingly, this tactic allows checking the
availability of a component by listening to heartbeat
messages sent from components.

• Exception: This tactic is aimed at detecting system
conditions that do not comply with the normal flow of
execution. Then, the system raises an exception as soon
as it detects a fault. In this way, such a design decision
is used to recognize and handle faults. Usually, it is
implemented in combination with other fault detection
design decisions, such as Ping/Echo or Heartbeat.

Figures 2 and 3 illustrate the RBML specifications for
the fault-detection architecture strategy design decisions
Ping/Echo and Heartbeat, respectively. It should be noted
that both aforementioned design decisions are used in
integration with the one called Exception to implement fault
detection and can be utilized in various embedded control and
monitoring systems.

91330 VOLUME 9, 2021

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

FIGURE 2. RBML specification for the Ping/Echo design decision [18].

C. TRADEOFF APPROACHES
Generally, tradeoffs are made subconsciously on daily basis
in all fields of human activity. Tradeoffs are usually made
based on three main approaches [15]:

• Experience-based approach. This approach relies on the
experience of an individual in conducting a tradeoff
process and is considered to be risky as the produced
output is subjective. Moreover, it is difficult to apply
to complex situations. This approach is widely utilized
in the qualitative analysis methodology to evaluate
software architecture.

• Model-based approach. This approach implies con-
structing a model (for example, a geographical one)
to illustrate influential relationships among tradeoff
subjects/ elements. The underlying reason to utilize such
models is to simplify and evaluate interrelationships
between various elements and how the interrelationship
is affected among two elements or more.

• Mathematical reasoning approach. This approach relies
on mathematical formulas and metrics to construct and
represent tradeoff processes.

The complexity of a tradeoff process depends on a number
of conflicting factors [10]. Multi-Criteria Decision-Making
(MCDM) addresses the need for a numerate structure and
provides a foundation for selecting, sorting, and prioritizing
alternatives based on their appropriateness [25]. Due to its

FIGURE 3. RBML specification for the heartbeat design decision [18].

pervasive application in the decision making process in
various domains, the MCDM has induced several methods
such as Multi-Attribute Utility Theory (MAUT), AHP,
Case-based Reasoning (CBR), Data Envelopment Analysis
(DEA), Fuzzy set Theory, Simple Multi-Attribute Rating
Technique (SMART), Goal Programming (GP), Elimination
and Choice Translating REality (ELECTRE), Preference
Ranking Organization METHod for Enrichment of Evalua-
tions (PROMETHEE), Simple Additive Weighting (SAW),
and TOPSIS [26].

According to [26], AHP is easy to use and scalable. Its
hierarchy structure can be easily adjusted to fit many sized
problems and it is not data intensive. AHP drawback appears
when interdependence exists between criteria and alterna-
tives; where it may cause inconsistencies between judgment
and ranking criteria. However, AHP areas of application is
not limited to performance-type problems but also can be
found in other operational research domains such as resources
management and planning. TOPSIS implementation process
has standard steps. Therefore, TOPSIS method is considered
to be a straight-forward process and easy to use and program.
By using the Euclidean Distance as a measure of most
suitable solution, it neglects the correlation of attributes
making it difficult to weight and maintain consistency of
judgment. Nevertheless, It has a wide range of applications
in various domains such as engineering, manufacturing and
resources management.

VOLUME 9, 2021 91331

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

Each MCDM method has its own shortcomings. Hence,
MCDM methods are combined simultaneously to overcome
these shortcomings and to identify the most suitable solu-
tion/decision. Several studies have combined or integrated
MCDM methods such as [27]–[35]. However, MCDM
methods are compared in terms of their areas of application,
advantages, and disadvantages in the study conducted
by [26].

Due to the multi-criteria nature for selecting most suitable
design decisions/ tactics, MCDM is an effective approach
to resolve this type of selection challenges. In particular,
the analytical model in combination with the integration
between AHP and TOPSIS support determining the most
suitable design decision/ tactic based on specific goals and
objectives [26]. This study employs integrated AHP-TOPSIS
techniques taking into consideration both qualitative and
quantitative factors. In this regard, AHP can be very useful
in implicating several decision making possibilities with
multiple conflicting criteria to arrive at a consensus in
the decision making process. On the other hand, TOPSIS
technique is used to calculate the alternatives ratings based
on their suitability. Moreover, both AHP and TOPSIS
are integrated to create a tradeoff framework and identify
most suitable fault-detection design decision given their
implications on embedded systems’ efficiency.

III. TRADEOFF MODEL
Software architects need to investigate and to analyze the
implications and the influence of each design decision. For
instance, fault detection design decisions, such as Ping/Echo
and Heartbeat, may have the same influence in terms of
contributing to the implementation of availability of an
embedded system software installed in a safety-critical
environment. At the same time, they may have different
implications on resource consumption.

Software architecture evaluation methods are heavily
dependent on expert’s judgment. The proposed tradeoff
model is adopted from operational research domain and
uses two (MCDM) methods. Namely, these methods are
AHP and TOPSIS. The AHP method is applied to score
and define the share of importance based on the set of
decision criteria with relative weights [36]. The TOPSIS
method is used to rank an ideal solution from the list of
alternatives [37].

We estimate the resources in terms of processing efforts
and memory space that are required to implement design
decisions using a specifically developed algorithm. This
algorithm has been formulated based on architectural design
using RBML, as reported in [22]. Moreover, we evaluate
the generated algorithm for defining design decisions in
terms of consistency and testability by considering McCabe
cyclomatic complexity [38]. The generated algorithm is
further analyzed in terms of run-time complexity and
memory-space complexity [38], [39]. Figure 4 depicts the
implementation framework for the multi-criteria tradeoff
model.

FIGURE 4. Implementation framework.

A. DEVELOPING AND VALIDATING DESIGN DECISIONS
We create a set of general and concrete scenarios to identify
the quality attributes associated with availability. General
scenarios provide the means and templates to develop con-
crete scenarios corresponding to specific quality attributes.
The development of such scenarios can be facilitated using
technical information or relying on the requirements of a
system [7], [11]. Moreover, technical information provided
by a supervisory control and data acquisition (SCADA)
system implemented in a smart-grid is used for this purpose.

• General Scenario: A SCADA system deployed in a
smart grid (environment) is designed to manage power
distribution using engineering planning and budgeting
functions (stimulus) by providing access to engineers
(the source of stimulus). Therefore, the SCADA system
must provide access to authorized users with the
response rate as close as possible to 100%, while
providing planned or unplanned maintenance (stimulus)
throughout its operation time.

• Concrete Scenario: A SCADA system in a smart
gird (environment) is designed to control power distri-
bution and to provide access to engineers in a work
station Alpha (the source of stimulus) in terms of
power distribution and data management (stimulus).

91332 VOLUME 9, 2021

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

TABLE 2. Runtime complexity and memory-space complexity calculation for (Ping/Echo).

FIGURE 5. Flow-graph for the design decision (Ping/Echo).

A power-distribution system and its components are
inspected every three minutes, and faults are constantly
reported to the engineers controlling the workstation
Alpha (response measure).

As shown in Figure 1, software architecture society
proposes three design decisions to implement a fault detection
strategy in embedded system software. Both design decisions
Ping/Echo and Heartbeat are used integrated with the design
decision Exception.

FIGURE 6. Flow-graph for the design decision (Heartbeat).

To the best of authors’ knowledge, there exists no study
that is focused on investigating an algorithm for fault
detection design decisions. The related algorithms are based
on the design semantic specification introduced in the study
conducted by D. Kim [22], as shown in Algorithm 1 and
Algorithm 2 for Ping/Echo and Heartbeat, respectively.
Accordingly, we provide the results of run-time complexity
and memory-space complexity calculations in Tables 2 and 3
for Ping/Echo and Heartbeat, respectively.

VOLUME 9, 2021 91333

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

TABLE 3. Run-time complexity and memory-space complexity calculation for (Heartbeat).

TABLE 4. Cyclomatic complexity measurement scale and description.

Both design decisions are further analyzed to evaluate
their complexity consideringMcCabe cyclomatic complexity
[38], [39]. Figures 5 and 6 represent independent paths and
flow graphs corresponding to both considered algorithms.
Cyclomatic complexity can be calculated using the following
equation:

V (G) = E−N + 2 (1)

The underlying reason to apply the cyclomatic complexity
metric to the proposed algorithms is to assure that they
are consistent and testable. Table 4 provides the cyclomatic
complexity V (G) measurement intervals/ranges and their
meaning. Cyclomatic complexity for both algorithms is
calculated as follows:
• ‘‘Ping/Echo’’: V (G) = E − N + 2 = 20− 16+ 2 = 6
• ‘‘Heartbeat’’: V (G) = E − N + 2 = 22− 18+ 2 = 6

B. DESIGN DECISIONS TRADEOFF ANALYSIS
The second step in implementing the proposed tradeoff
model implies applying AHP to obtain the weights for the
predefined tradeoff criteria. The criteria of embedded system
software correspond to the common requirements proposed
by I. Crnkovic: dependability, real time execution, resource
consumption, and long operational life [3]. The generated
criteria weights are then used in TOPSIS. The steps of
applying AHP can be summarized as follow:

Algorithm 1: Ping/Echo Design Decision
1 Faults detected in an unresponsive component are

reported Data:MaxWaitingTime = value,
TimeInterval = value, elapsedTime = 0

/* Ping Receivers (n) */
2 for i = 1 to Rcvrs do
3 if Time == TimeInterval then
4 Ping (Rcvr)
5 elapsedTime→ Reset
6 do
7 if elapsedTime > MaxWaitingTime then
8 PingSender→ ExceptionNotifier
9 FaultMonitor→ ExceptionHandler

10 Exception (NotifyException)
11 Break
12 else
13 elapsedTime← increament
14 while Echo(Rcvr) = False
15 else
16 Time→ Increment
17 i→ Increment
/* Reply Sender */

18 if Ping(received) is True then
19 Echo(ReplySender)

1) Modeling a hierarchical structure that illustrates the
considered problem (a tradeoff case) to perform
design decision selection, with the goal at the top

91334 VOLUME 9, 2021

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

TABLE 5. Random consistency index.

TABLE 6. Relative-importance saaty scale.

Algorithm 2: Heartbeat Design Decision
1 Faults detected in n components are reported

Data: CheckingTime = value,
LastUpdatedTime = 0, CheckingInterval =
value, expireTime = value

/* Heartbeat sender */
2 if SendingInterval 6= expireTime then
3 for i = 1 to Rcvrs do
4 pitapat (Rcvr)
5 UpdateTime(lastUpdatedTime)
6 i← increment

7 else
8 SendingInterval ← increment
/* Heartbeat receiver */

9 if Checking Interval = CheckingTime then
10 for i = 1 to Senders do
11 isAlive = CheckAlive(Sender)
12 if isAlive is false then
13 Heartbeat → ExceptionNotifier
14 FaultMonitor → ExceptionHandler
15 Exception (NotifyException)
16 i← increments
17 else
18 i← increments

19 else
20 Checking Interval → CheckingTime
21

of the hierarchical structure, the attributes/criteria of
embedded system software at the second level, and
alternative candidate solutions (design decisions) at the
lowest level, as depicted in Figure 7.

2) Determining a relative importance of different
attributes /criteria with respect to the stated goal. This,
however, can be realized by formulating a pair-wise
comparison matrix and measuring relative importance
on a pre-defined Saaty scale [40]. Table 6 provides the
relative importance scale measurements.

FIGURE 7. Three-level hierarchical structure of AHP.

The importance scale for a concrete scenario in
a smart-grid SCADA system can be defined as
follows:
• Resource consumption (RC) is considered to have
the highest importance compared to the other
decision criteria. It has a very strong importance,
strong importance, and extreme importance with
respect to dependability (DP), real-time execution
(RT), and long operational life (LL), respectively.

• Dependability is considered to have moderate
importance and very strong importance compared
to R-T and LL, respectively.

• Real-time execution is considered to have strong
importance compared to (LL) long operational
life.

Thereafter, the results of relative importance assess-
ment are inserted into a pair-wise matrix and are read
row-wise, as shown in Table 7.

VOLUME 9, 2021 91335

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

TABLE 7. Comparing the relative importance of decision criteria.

3) Conducting sensitivity analysis. The AHP method
requires complying with four axioms formulated as
follows [41], [42]:
• Reciprocity: In case when element x is n times
more important than y, then element y is of an (1/n)
importance of element x.

• Homogeneity: Only equally comparable elements
can be compared, in contrast to heterogeneous
elements.

• Dependence: Correlating a group of elements from
one level with the other elements from a higher
level.

• Expectations: Changes in the hierarchy model
should be reflected in the data presented in the
matrix.

C. AHP ANALYSIS
AHP is applied to obtain the weights for the predefined
tradeoff criteria for optimized embedded systems efficiency.
A pair-wise comparison matrix is shown in equation 2.
Its dimension depends on the number of decision criteria
(n = 4).

A =


A11 A12 · · · A1n
A21 A22 · · · A2n
...

...
. . .

...

An1 An2 · · · Ann

 (2)

The values of the pair-wise comparison matrix are
expressed in equation 3. Considering the reciprocity axiom,
they are calculated according to equation 3, the third case,
where (v) is considered based on the Saat relative importance
scale, as shown in table 6.

Aij = vi < j1∀ i = j
1
Aji
i > j (3)

A normalized matrix (B) is computed using equation 4.

Bij =
Aij∑n
i=1 Aij

(4)

Weights are calculated using an eigen vector from the
normalized matrix B by computing the arithmetic mean for
each row of the matrix using equation 5.

wi =

∑n
j=1 bij
n

(5)

To examine the extent of consistency in matrix A, a quan-
tifiable measure is considered. The resulting normalized

weight matrix is represented in matrix equation 6, and the
consistency ratio is obtained according to equation 7.

C =



w1

w1

w1

w2
· · ·

w1

n
w2

w1

w2

w2
· · ·

w2

wn
...

...
. . .

...

wn
w1

wn
w2

· · ·
wn
wn


(6)



w1

w1

w1

w2
· · ·

w1

n
w2

w1

w2

w2
· · ·

w2

wn
...

...
. . .

...

wn
w1

wn
w2

· · ·
wn
wn





w1

w2

...

wn


= n



w1

w2

...

wn


(7)

In the case when Matrix A is inconsistent, the relative
weight wi is approximated utilizing the average of n
elements in row i corresponding to the normalized matrix C.
If the greatest eigenvalue is equal to the dimension of the
matrix, this indicates that the matrix is consistent. Therefore,
the distance between λmax and n can be used as a measure
of inconsistency (namely, the closer λmax to n, the more
consistent is the pair-wise comparison. Assuming that w̄ is
the computed average vector, the consistency relation can
be formulation as Cw̄ = λmaxw̄, λmax ≥ n. However,
the consistency ratio is computed as per equation 8. In the
case when the calculated (CR 6 1.0), the level of consistency
is considered to be at an acceptable rate. Otherwise, a decision
maker is required to re-evaluate the elements of Aij in
matrix A.

CR =
CI
RI

(8)

CI is the consistency index of the matrix and is calculated
according to equation 9.

CI =
λmax − n
n− 1

(9)

RI is obtained based on the random consistency index
[43], [44]. Table 5 provides the values of this index.

One of the characteristic features of AHP is that it
allows comparing the considered criteria between each other,
resulting in the formulation of a pair-wise comparisonmatrix.
The AHP method progresses by determining global and
local preferences (weights) based on a pair-wise comparison
matrix and calculates compliance factor (CI). The final step
is to create the final ranking of accepted alternatives [37].
Tables 7 and 9 provide the pair-wise comparison matrix and
the normalized matrix, respectively, obtained using the AHP
method.

D. TOPSIS ANALYSIS
TOPSIS is one of the methods used to identify an
optimal solution by solving multiple criteria decisions or

91336 VOLUME 9, 2021

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

TABLE 8. Design decisions relative importance for various criteria.

FIGURE 8. TOPSIS illustrating PIS and NIS.

problems [23], [27], [37], [45], [46]. This method is applied
to assess and evaluate the appropriateness of alternative can-
didate solutions by simultaneously measuring their proximity
to the positive ideal solution (PIS) and to the negative ideal
solution (NIS). PIS is an alternative solution that is mostly
preferred by a decision maker, while NIS corresponds to the
least preferred solution [37], [42]. The preference order is
then formulated according to the relative closeness of the
alternative solutions to PIS and is considered as a scalar
criterion that combines these two distance measures. TOPSIS
requires the sufficient understanding of the complexity of a
decision or a problem. Furthermore, the evaluation criteria,
criteria weights, alternatives, and their resolution levels are
analyzed and are precisely defined in the form of a decision
matrix. TOPSIS relies on two hypotheses:

1) Each attribute in a decision matrix takes either
monotonically increasing or monotonically decreasing
utility.

2) A set of weights is determined for attributes.
Figure 8 illustrates the scheme underlying the TOPSIS

method. Below, we describe the steps executed while
applying TOPSIS to the proposed tradeoff model concerning
the fault-detection design decisions.
• First step: Constructing a normalized decision matrix
using equation 10.

nij =
ri,j√∑m
i=1 r

2
ij

(10)

• Second step: Creating a weighted dimensionless matrix
with w vector obtained from AHP. ND is a matrix
in which the rates of indices are dimensionless and
comparable, and Wn×n is a diagonal matrix in which
only elements of its original diameter have non-zero
values.
The second step is executed by applying equation 11.

V = ND ×Wn×n =


v11 · · · v1j v1n
v21 · · · v2j v2n
...

. . .
...

...

vm1 · · · vmj vmn

 (11)

• Third step: Calculating PIS and NIS v+ and v− by
finding the maximum beneficial value for the best ideal
solution, and the minimum value for the worst one.
Equations 12 and 13 are used to define PIS and NIS.

v+ = {(maxVij|j ∈ J ′|i = 1, 2, 3 · · ·m}

= {V+1 ,V
+

2 , · · ·V
+

j , . . .V
+
n } (12)

v− = {(minVij|j ∈ J ′|i = 1, 2, 3 · · ·m}

= {V−1 ,V
−

2 , · · ·V
−

j , . . .V
−
n } (13)

• Fourth step: Calculating the distance between an alter-
native solution and the ideal one using the Euclidean
method, as shown in equation 14.

S+i =

√√√√ n∑
j=1

(vi,j − v
+

j)
2
; i = 1, 2, 3 · · ·m

S−i =

√√√√ n∑
j=1

(vi,j − v
−

j)
2; i = 1, 2, 3 · · ·m (14)

• Fifth step: Calculating the relative closeness to the ideal
solution utilizing equation 15. Ranking alternatives are
based on the calculated value of P+i . The maximum
value is considered to be the best alternative.

P+i =
S−i

S+i + S
−

i

; 0 6 P+i 6 1; i = 1, 2, 3 · · ·m (15)

IV. TRADEOFF ANALYSIS
The generated algorithms corresponding to the design
decisions Ping/Echo and Heartbeat indicated that the for-
mer provided worse run-time complexity θ (n2), while the
run-time complexity of the latter was equal to θ (n). Both
design decisions exhibited the same space complexity equal
to θ (n).
According to the cyclomatic complexity metric inter-

val/rages provided in Table 4, the Ping/Echo design decision
was considered to be well-structured with the high testability
of V (G) = 6. In turn, the Heartbeat design decision was
also observed to be well-structured with the high testability
of V (G) = 6. The consistency of a normalized matrix
was calculated using eigenvalue λmax that was compared to
the dimension of the normalized matrix (n). The distance
between (λmax) and ((n)) could be utilized to determine an

VOLUME 9, 2021 91337

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

TABLE 9. AHP application on multiple-decision criteria for embedded systems software.

TABLE 10. TOPSIS application on fault detection design decisions (Ping and Echo, and Heartbeat).

inconsistency (namely, the closer was (λmax) to (n), the better
was the consistency of the matrix). The consistency index
corresponding to the normalized pair-wise comparisonmatrix
was found to be (0.172). The consistency ratio was computed
for normalized matrix scoring (0.0193) and was considered
to be acceptable as (CR :0.0193 6 1.0).

The criterion weight was obtained based on the normalized
matrix wi. It was then utilized at the evaluation step while
implementing the TOPSIS method. It was assumed that
the Ping/Echo and Heartbeat design decisions exhibited a
neutral contribution with respect to the criterion ‘‘Depend-
ability’’. Both design decisions enabled the realization of
a fault-detection architectural strategy and consolidated the
realization of the dependability quality attribute ‘‘Availabil-
ity’’. Using the proposed algorithm, it was found that both
design decisions, Ping/Echo and Heartbeat, had a neutral
contribution with respect to the criterion ‘‘Long operational
life’’. Both design decisions were assigned the value of
(1), Table 8. Table 10 represents the application of the
TOPSIS method and provides the normalized matrix and
the calculated distance between the alternative candidate
solutions (the Ping/Echo and Heartbeat design decisions) and
a hypothetical ideal solution obtained using the Euclidean
method (Si+&Si−). (Pi+) in the ranking process. It was found
that the Heartbeat design decision was a better option with
the value of run-time complexity equal to (Pi+ = 1) in
comparisonwith that of (Pi+= 0) in the case of the Ping/Echo

design decision. It was also found that both design decisions
exhibited the same value of memory-space complexity equal
to Pi+ value.

V. CONCLUSION
In the present study, we have employed multiple-criteria
decision making techniques (AHP and TOPSIS) to prioritize
fault-detection design decisions influence on embedded
systems efficiency. The application AHP was focused on
estimating relative contribution of each criteria included in
the tradeoff process towards the goal (weights). While TOP-
SIS was applied to obtain the actual ranking (prioritization)
using the provided weights obtained from AHP. Hence,
calculating a quantifiable evidence to prioritize the most
‘‘ideal’’ fault-detection design decision to optimize embed-
ded systems’ efficiency in terms of resources consumption.

Tradeoff process was applied to a case study consider-
ing multiple criteria imposed on embedded systems. The
obtained results indicated that the proposed model could be
successfully employed as a practical tool to identify the most
appropriate architectural design decision for various types of
software systems.

Previously, software architects had relied on objective-
reasoning approaches that depended solely on their expe-
rience in analyzing tradeoff at the software architecture
development stage. The proposed model could be effec-

91338 VOLUME 9, 2021

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

tively used by software architects as an evidence-based
multi-criteria tradeoff decision making compelling tool.
Embedded systems operational environment is evolving.
Emerging factors influencing the efficiency of embedded
systems may rise as criteria and new efficiency metrics might
be applied. Hence, this research area will continue to evolve
towards more optimized embedded systems’ efficiency.

ACKNOWLEDGMENT
The authors are grateful to the anonymous IEEE ACCESS

reviewers for their comments and suggestions.

REFERENCES
[1] S. Sridhar, A. Hahn, and M. Govindarasu, ‘‘Cyber–physical system

security for the electric power grid,’’ Proc. IEEE, vol. 100, no. 1,
pp. 210–224, Oct. 2011.

[2] L. Cheng, K. Tian, and D. Yao, ‘‘Orpheus: Enforcing cyber-physical
execution semantics to defend against data-oriented attacks,’’ in Proc. 33rd
Annu. Comput. Secur. Appl. Conf., Dec. 2017, pp. 315–326.

[3] I. Crnkovic, ‘‘Component-based approach for embedded systems,’’ in
Proc. 9th Int. Workshop Compon.-Oriented Program., 2004, pp. 1–6.

[4] S. Hammoudi, Z. Aliouat, and S. Harous, ‘‘Challenges and research
directions for Internet of Things,’’ Telecommun. Syst., vol. 67, no. 2,
pp. 367–385, Feb. 2018.

[5] S. H. Al-Daajeh, R. E. Al-Qutaish, and F. Al-Qirem, ‘‘Engineering
dependability to embedded systems software via tactics,’’ Int. J. Softw. Eng.
Appl., vol. 5, pp. 45–53, 2011.

[6] C. Ebert and D. Reiner, Best Practices in Software Measurement:
Establish-Extract-Evaluate-Execute. Heidelberg, Germany:
Springer-Verlag, 2007.

[7] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.
Reading, MA, USA: Addison-Wesley, 2015.

[8] S. Mikael and W. Claes, ‘‘A comparative study of quantitative and
qualitative views of software architectures,’’ in Proc. 7th Int. Conf.
Empirical Assessment Softw. Eng., 2003, pp. 1–8.

[9] W. Wu and T. Kelly, ‘‘Safety tactics for software architecture design,’’
in Proc. 28th Annu. Int. Comput. Softw. Appl. Conf. (COMPSAC), 2004,
pp. 368–375.

[10] L. Zhu, M. A. Babar, and R. Jeffery, ‘‘Mining patterns to support software
architecture evaluation,’’ in Proc. 4th Work. IEEE/IFIP Conf. Softw. Archit.
(WICSA), Jun. 2004, pp. 25–34.

[11] G. M. L. Bass and H. M. Klein, ‘‘Applicability of general scenarios to the
architecture tradeoff analysis method,’’ Softw. Eng. Inst., Carnegie-Mellon
Univ., Pittsburg, PA, USA, Tech. Rep. CMU/SEI-2001-TR-014, 2001.

[12] J. Scott and R. Kazman, ‘‘Realizing and refining architectural tactics:
Availability,’’ Softw. Eng. Inst., Carnegie-Mellon Univ., Pittsburg, PA,
USA, Tech. Rep. CMU/SEI-2009-TR-006, 2009.

[13] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic concepts
and taxonomy of dependable and secure computing,’’ IEEE Trans.
Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[14] R. Kazman, S. J. Carrière, and S. G. Woods, ‘‘Toward a discipline
of scenario-based architectural engineering,’’ Ann. Softw. Eng., vol. 9,
nos. 1–2, pp. 5–33, 2000.

[15] T. J. McCabe, ‘‘A complexity measure,’’ IEEE Trans. Softw. Eng.,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[16] N. Lassing, D. Rijsenbrij, and H. van Vliet, ‘‘On software architecture
analysis of flexibility, complexity of changes: Size isn’t everything,’’ in
Proc. 2nd Nordic Softw. Archit. Workshop (NOSA) Ronneby, Sweden,
1999, pp. 1103–1581.

[17] J. Heit, ‘‘Impact of methods and mechanisms for improving software
dependability on non-functional requirements,’’ Ph.D. dissertation, Univ.
Stuttgart, Stuttgart, Germany, 2007.

[18] R. B. France, D.-K. Kim, S. Ghosh, and E. Song, ‘‘A UML-based
pattern specification technique,’’ IEEE Trans. Softw. Eng., vol. 30, no. 3,
pp. 193–206, Mar. 2004.

[19] J. Bogner, S. Wagner, and A. Zimmermann, ‘‘Using architectural modifi-
ability tactics to examine evolution qualities of service- and microservice-
based systems,’’ SICS Softw.-Intensive Cyber-Phys. Syst., vol. 34, nos. 2–3,
pp. 141–149, Jun. 2019.

[20] R. Wojcik, F. Bachmann, L. Bass, P. Clements, P. Merson,
R. Nord, and W. Wood, ‘‘Attribute-driven design (add), version
2.0,’’ Softw. Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep. CMU/SEI-2006-TR-023, 2006. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8147

[21] F. Bachmann, L. Bass, and R. Nord, ‘‘Modifiability tactics,’’
Softw. Eng. Inst., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep. CMU/SEI-2007-TR-002, 2007. [Online]. Available:
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=8299

[22] D.-K. Kim, ‘‘The role-based metamodeling language for specifying design
patterns,’’ inDesign Pattern Formalization Techniques. Hershey, PA, USA:
IGI Global, 2007, pp. 183–205.

[23] T. Kühn, C. Werner, H. Schön, Z. Zhenxi, and U. Aßmann, ‘‘Contextual
and relational role-based modeling framework,’’ in Proc. 45th Euromicro
Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2019, pp. 442–449.

[24] C. Andersson, ‘‘Managing software quality through empirical analysis of
fault detection,’’ Ph.D. dissertation, Lund Univ., Lund, Sweden, 2006.

[25] A. Jahan, K. Edwards, and M. Bahraminasab, ‘‘Multi-criteria decision-
making for materials selection,’’ in Multi-Criteria Decision Analysis for
Supporting the Selection of Engineering Materials in Product Design,
2nd ed. Oxford, U.K.: Butterworth-Heinemann, Feb. 2016, pp. 63–80.

[26] M. Velasquez and P. T. Hester, ‘‘An analysis of multi-criteria decision
making methods,’’ Int. J. Oper. Res., vol. 10, no. 2, pp. 56–66, 2013.

[27] R. Kumar, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal, and
R. A. Khan, ‘‘An integrated approach of fuzzy logic, AHP and TOPSIS
for estimating usable-security of Web applications,’’ IEEE Access, vol. 8,
pp. 50944–50957, 2020.

[28] F. A. Al-Zahrani, ‘‘Hesitant-fuzzy sets-based computational approach
for evaluating the survivability impact of multi-fiber WDM net-
works: Kingdom of Saudi Arabia perspective,’’ IEEE Access, vol. 8,
pp. 212409–212422, 2020.

[29] M. Alenezi, A. Agrawal, R. Kumar, and R. A. Khan, ‘‘Evaluating
performance of Web application security through a fuzzy based hybrid
multi-criteria decision-making approach: Design tactics perspective,’’
IEEE Access, vol. 8, pp. 25543–25556, 2020.

[30] A. Agrawal, A. K. Pandey, A. Baz, H. Alhakami, W. Alhakami,
R. Kumar, and R. A. Khan, ‘‘Evaluating the security impact of healthcare
Web applications through fuzzy based hybrid approach of multi-criteria
decision-making analysis,’’ IEEE Access, vol. 8, pp. 135770–135783,
2020.

[31] A. Agrawal, M. Alenezi, R. Kumar, and R. Ahmad Khan, ‘‘Measuring the
sustainable-security of Web applications through a fuzzy-based integrated
approach of AHP and TOPSIS,’’ IEEE Access, vol. 7, pp. 153936–153951,
2019.

[32] R. Kumar, A. Baz, H. Alhakami, W. Alhakami, M. Baz, A. Agrawal,
and R. A. Khan, ‘‘A hybrid model of hesitant fuzzy decision-making
analysis for estimating usable-security of software,’’ IEEE Access, vol. 8,
pp. 72694–72712, 2020.

[33] K. Sahu, F. A. Alzahrani, R. Srivastava, and R. Kumar, ‘‘Evaluating
the impact of prediction techniques: Software reliability perspective,’’
Comput. Mater. Continua, vol. 67, no. 2, pp. 1471–1488, 2021.

[34] K. Sahu, F. A. Alzahrani, R. K. Srivastava, and R. Kumar, ‘‘Hesitant
fuzzy sets based symmetrical model of decision-making for estimating
the durability of Web application,’’ Symmetry, vol. 12, no. 11, p. 1770,
Oct. 2020.

[35] A. Alharbi, W. Alosaimi, H. Alyami, M. Nadeem, M. Faizan, A. Agrawal,
R. Kumar, and R. A. Khan, ‘‘Managing software security risks through an
integrated computational method,’’ Intell. Autom. Soft Comput., vol. 28,
no. 1, pp. 179–194, 2021.

[36] L. Zhu, A. Aurum, I. Gorton, and R. Jeffery, ‘‘Tradeoff and sensitivity
analysis in software architecture evaluation using analytic hierarchy
process,’’ Softw. Qual. J., vol. 13, no. 4, pp. 357–375, Dec. 2005.

[37] K. Halicka, ‘‘Technology selection using the TOPSIS method,’’ Foresight
STI Governance, vol. 14, no. 1, pp. 85–96, Mar. 2020.

[38] K. S. Kumar and D. Malathi, ‘‘A novel method to find time complexity of
an algorithm by using control flow graph,’’ in Proc. Int. Conf. Tech. Adv.
Comput. Commun. (ICTACC), Apr. 2017, pp. 66–68.

[39] J. Graylin, J. E. Hale, R. K. Smith, H. David, N. A. Kraft, and C. Ward,
‘‘Cyclomatic complexity and lines of code: Empirical evidence of a stable
linear relationship,’’ J. Softw. Eng. Appl., vol. 2, no. 3, p. 137, 2009.

[40] T. L. Saaty, ‘‘How to make a decision: The analytic hierarchy process,’’
Eur. J. Oper. Res., vol. 48, no. 1, pp. 9–26, Sep. 1990.

VOLUME 9, 2021 91339

S. H. Aldaajeh et al.: Fault-Detection Tactics for Optimized Embedded Systems Efficiency

[41] A. Ishizaka andM. Lusti, ‘‘How to derive priorities in AHP: A comparative
study,’’ Central Eur. J. Operations Res., vol. 14, no. 4, pp. 387–400,
Nov. 2006.

[42] A. Ishizaka and P. Nemery,Multi-Criteria Decision Analysis: Methods and
Software. Hoboken, NJ, USA: Wiley, 2013.

[43] T. L. Saaty, ‘‘An exposition of the AHP in reply to the paper ‘remarks on
the analytic hierarchy process,’’’Manage. Sci., vol. 36, no. 3, pp. 259–268,
Mar. 1990.

[44] H. Zhang, X. Chen, Y. Dong, W. Xu, and S. Wang, ‘‘Analyzing
Saaty’s consistency test in pairwise comparison method: A perspective
based on linguistic and numerical scale,’’ Soft Comput., vol. 22, no. 6,
pp. 1933–1943, Mar. 2018.

[45] R. Kumar, A. I. Khan, Y. B. Abushark, M. M. Alam, A. Agrawal, and
R. A. Khan, ‘‘A knowledge-based integrated system of hesitant fuzzy set,
AHP and TOPSIS for evaluating security-durability of Web applications,’’
IEEE Access, vol. 8, pp. 48870–48885, 2020.

[46] L. Wang, Y. Ali, S. Nazir, and M. Niazi, ‘‘ISA evaluation framework for
security of Internet of health things system using AHP-TOPSIS methods,’’
IEEE Access, vol. 8, pp. 152316–152332, 2020.

SALEH H. ALDAAJEH (Member, IEEE) received
the B.Sc. degree in computer science from the
University of Petra, Amman, Jordan, in 2007, and
the M.Sc. degree in software engineering from
the Blekinge Institute of Technology, Karlskrona,
Sweden, in 2010. He is currently pursuing the
Ph.D. degree in information security with the
College of Information Technology, United Arab
Emirates University, Al Ain, United Arab Emi-
rates. His research interests include information

security, reverse engineering, the Internet of Things, and dependability
engineering in safety-critical systems.

SAAD HAROUS (SeniorMember, IEEE) received
the Ph.D. degree in computer science from
Case Western Reserve University, Cleveland, OH,
USA, in 1991. He is currently a Professor with
the College of Information Technology, United
Arab Emirates University. He has more than
30 years of experience in teaching and research
in three different countries: USA, Oman, and
United Arab Emirates. He has publishedmore than
200 journal articles and conference papers. His

teaching interests include programming, data structures, design and analysis
of algorithms, operating systems, and networks. His research interests
include parallel and distributed computing, P2P delivery architectures,
wireless networks, VANET, and the use of computers in education and
processing Arabic language.

SAED ALRABAEE (Senior Member, IEEE)
received the Ph.D. degree in information system
engineering from Concordia University, Montreal,
QC, Canada, which was executed under the
supervision of Prof. Mourad Debbabi and Prof.
Lingyu Wang. He is currently an Assistant
Professor with the Department of Information
Systems and Security, United Arab Emirates
University (UAEU). Prior to joining UAEU,
he was a Visiting Assistant Professor with the

Department of Electrical and Computer Engineering and Computer Science,
University of New Haven (UNH), USA. He is also a Permanent Research
Scientist with the Security Research Center, CIISE, Concordia University,
Canada. His research and development activities and interests focus on the
broad area of reverse engineering, including, binary authorship attribution
and characterization, malware investigation, and function fingerprinting.

91340 VOLUME 9, 2021

