IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 1, 2021, accepted June 13, 2021, date of publication June 21, 2021, date of current version July 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3091313

Extreme Learning Machine Applied to Software
Development Effort Estimation

HALCYON DAVYS PEREIRA DE CARVALHO ~, ROBERTA FAGUNDES *, (Member, IEEE),

AND WYLLIAMS SANTOS

Department of Computer Engineering, University of Pernambuco, Recife 50720-001, Brazil

Corresponding authors: Halcyon Davys Pereira De Carvalho (hdpc@ecomp.poli.br), Roberta Fagundes (roberta.fagundes @upe.br), and

Wylliams Santos (wbs@upe.br)

This work was supported by the Improvement Coordination of Higher Education Personnel—Brazil (CAPES) under Grant 001.

ABSTRACT The project management process has been used in the area of Software Engineering to support
project managers to keep projects under control. One of the essential processes in Software Engineering is
to conduct an accurate and reliable estimation of the required effort to complete the project. This article’s
objectives are: i) to identify the variables that influence the estimation based on the correlation, and ii) to
apply the Extreme Learning Machine - ELM model for effort estimation and compare it with the literature
models. Thus, it was investigated which technique has better effort prediction accuracy. The models were
compared with each other based on predictive precision in the criterion of absolute mean residue (MAR) and
statistical tests. The main findings in this study were: i) important variables for effort estimation and; ii) the
results indicated that the ELM model presents the best results compared to the models in the literature for
estimating software design effort. In this way, the use of Machine Learning techniques in the effort estimation
process can increase the chances of success in the accuracy of the time estimates and the project’s costs.

INDEX TERMS Extreme learning machine, machine learning, effort estimation, software development,

project management.

I. INTRODUCTION

Software development effort forecasting models have been
evaluated for decades to meet the needs of the software
industries [1]. Estimating the software development effort
is one of the project management processes responsible for
determining the effort required to complete the project [2].
Therefore, accurate effort estimation is one of the critical
points in reducing risks increasing the chances of success in
the projects [3].

The software project management process comprises con-
ducting activities through methods to achieve the projects’
objectives [4]. During the software development phase, quan-
titative and qualitative metrics are estimated to meet customer
needs. According to Saraiva [5], having successful software
measurement programs allows users to interpret data and
support decision-making.

There are several techniques to estimate the effort. The
organization needs to decide which technique is the most

The associate editor coordinating the review of this manuscript and
approving it for publication was Davide Aloini.

92676

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

suitable to deliver the product within the estimated time and
cost [6]. One of the techniques used by project managers
to perform software development effort estimates is Expert
Judgment [7]. Still, this type of technique has limitations
since it is subject to human errors.

One of the main challenges faced by Developers and
Project Managers in Software Engineering is the estimation
of software effort, as different project development lifecycle
models require a different amount of effort at each stage of
the process [8]. Traditional estimates [9] require an effort
to document activities, making the estimate more complex
and time-consuming. In addition, the experience of software
developers, the project history of the software team in the
same business area, and a large number of parameters and
the relationship between these parameters are not always
accurately predicted [10].

Thereupon, proposing ML techniques for Software Devel-
opment Effort Estimation (SDEE) is an efficient alterna-
tive due to its learning capacity, modifying its behavior
autonomously. Furthermore, they assist in decision-making
based on data analysis, using minimal human interference

VOLUME 9, 2021

https://orcid.org/0000-0001-8933-5912
https://orcid.org/0000-0002-7172-4183
https://orcid.org/0000-0003-2578-1248

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

IEEE Access

(specialist) [3]. Thereby, specialists spend less time estimat-
ing the project and more time on other tasks of the system that
satisfy the customer [1].

In addition, the project objectives are not always well
defined in the initial phase of the project. The necessary esti-
mates for the project’s development are uncertain, impacting
the effective management of the project. The allocation of
resources for the project’s development depends on a realistic
estimate of the effort during the initial phase of the software
development life cycle [11]. According to Fadhil et al. [12],
estimating project costs in the initial stage is a process of high
significance, as it is necessary for computing resources and
the budget required to deliver the project.

In other words, uncertainties about system requirements
and inadequate estimation of the effort, cost, and staff
required to develop the project are the main reasons for
software projects’ failure. Therefore, to minimize uncertain-
ties during the software development cycle, Machine Learn-
ing (ML) techniques have been used to predict software
development efforts over the past few years [3], [13].

According to the Systematic Literature Review (SLR) of
Ali and Gravino [1], in the last decade, several Machine
Learning techniques have been used to predict the software
development effort, such as Multilayer Perceptron (MLP),
Artificial Neural Network (ANN), Support Vector Regression
(SVR), Support Vector Machine (SVM), Bayesian Network
(BN), K-Nearest Neighbors (kNNs) and Extreme Learning
Machine (ELM), among others. Ali and Gravino [1] also
identified about 20 different datasets.

In this article, five machine learning algorithms are
applied to estimate the software effort: K-Nearest Neighbors
(kNNs), Linear Regression (LR), Support Vector Machine
(SVM), Multilayer Perceptron (MLP), and Extreme Learning
Machine (ELM). KNN is a non-parametric technique used for
classification and regression tasks, where the size of the pop-
ulation can result in slow execution of the algorithm requiring
high memory consumption [14]. SVM is a technique with the
ability to model linear and nonlinear problems, however, its
training process can be time-consuming with large volumes
of data [13]. MLP networks are also used for classification
and regression, according to [15], some parameters must be
analyzed carefully, such as numbers of hidden layers, num-
bers of neurons of each hidden layer, numbers of training
periods, and learning rate.

Recently, many modified ELM algorithms have been pro-
posed, Residual Compensation ELM (RC-ELM) [16], Robust
ELM (R-ELM) [17], Multilayer Extreme Learning Machines
(ML-ELM) [18], Integrated Multiple Kernel ELM (IMK-
ELM) [19]. These mentioned algorithms have been widely
applied in many fields, such as in the prediction of the rate of
gas used in the blast furnace during the manufacture of iron,
in the treatment of tasks with Gaussian and non-Gaussian
noise, deep learning, free location of devices in environments
disordered using spatiotemporal information, among others.

The Systematic Literature Review (SLR) [1] has selected
75 primary studies, but just one [20] of them applies the

VOLUME 9, 2021

ELM technique for Software Development Effort Estimation
(SDEE). The SLR also reveals that among the various Artifi-
cial Neural Networks (ANN) types, feedforward networks are
the most popular. However, according to Huang et al. [21],
training an ELM can be faster than training a neural net-
work by backpropagation, producing better generalization
performance. In this sense, the focus of our study is based
on the advantages of using the ELM technique for Software
Development Effort Estimation (SDEE).

This paper was also investigated which attributes should be
selected to obtain the best results in the effort estimates and
how accurate is the software effort estimate, which leads to
the two research questions answered in the section referenced
in parentheses.

RQ1: Which features are important to obtain better results
in estimating software development effort? (Section III-C)

RQ2: What is the Machine Learning technique that excels
in effort estimation accuracy? (Section V)

Pearson’s correlation coefficient [22] between the vari-
ables and their significance was analyzed, in order, to answer
the first question RQ1. Finally, the performance of the model
ELM were compared with the models investigated in the
literature for software effort estimation [11], [23]-[29]. The
Magnitude of Relative Error (MRE), Mean Absolute Error
(MAE), and Mean Square Error (MSE) criteria were used to
obtain the answers for the second question RQ2.

In summary, this article’s main contribution is to demon-
strate that the ELM technique for building a machine learning
model, using it in a software development effort estimation
dataset. It achieves results equivalent to or superior to the
models investigated in the literature. Also, to bring benefits
to the Software Engineering area, such as reducing time and
costs spent during the project life cycle phases.

This paper is organized as follows. Section II presents
related works. Section III presents the methodology
employed in this research. Section IV the measurements used
for model accuracy. Section V presents the results of the
experiments. Section VI presents threats to validity. Final
considerations and future work are addressed in Section VII.

Il. RELATED WORKS
The investigation conducted by [23] presented a comparative
study of various machine learning techniques used to esti-
mate the effort required to develop software, such as Linear
Regression (LR), Support Vector Machine (SVM), K-Nearest
Neighbor (KNN), and Multi-Layer Perceptron Neural Net-
work (MLPNN) using the determination coefficient (R2) to
evaluate the models. While in the study proposed by [24]
used a Neural Feedforward Network to improve the Software
Development Effort Estimation accuracy. The study [28]
evaluated the use of Bayesian Networks (BNs) based on
data in predicting software effort through extensive validation
procedures.

Oliveira et al. [25] used the Genetic Algorithm (GA) as a
Machine Learning (ML) technique, and the study proposed
by [30] used the GA-based feature model. Both are applied

92677

IEEE Access

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

Phase 1 Phase 2
Analysis Select Dataset
Systematic Literature " | Desharnais [34];
Review [1] Carvalho's Works [1 1]§

v
Phase 3

Data Preparation

Divide
Data set

Traingin set

Phase 4
67% Modelling

Feature Selection
(Pearson’s Correlation)f

—
P
O]

FIGURE 1. Proposed Methodology for Accurate Effort Prediction.

to selecting input resources and parameter optimization of
ML techniques for estimating software development efforts.
In this context, [27] investigated the use of an optimiza-
tion algorithm, Bees Algorithm [31], to choose parameters
depending on the data set used by the Model Tree (MT).
The other work conducted by [26] proposed non-algorithmic
techniques to estimate the software development effort. The
study pointed out that the evolutionary algorithms showed
better results. Experimental studies of automated machine
learning ensembles were carried out in Minku’s work [29].
The proposed approach performs well, being highly demand-
ing in terms of performance across different datasets.

In Rahman’s work [32], were implemented different
machine learning algorithms, Radial Based Function Neural
Network (RBFNN), Extreme Learning Machine (ELM), and
Decision Tree (DT). The effort was measured for each cat-
egory (i.e., small, medium, large) based on the size of the
software. International Software Benchmarking Standards
Group (ISBSG) Release 11 was the data set used to train
and test the algorithms. RBFNN presented an excellent result
for small software. However, DT presented better estimation
results for small and medium software. ELM, on the other
hand, demonstrated better efficiency for large software. The
study [33] utilized a case-based reasoning model hybridized
with the machine learning models: ABE-LS-SVM, ABE-
ELM, ABE-ANN. The study shows that the ABE-LS-SVM
outperforms the testing results ABE-ELM and ABE-ANN for
Maxwell, Finnish and Kemmerer datasets.

Extreme Learning Machine (ELM) and Linear Least
Squares Regression (LSR) have been applied in [20] and [11]
to estimate effort under 231 small programs. In both studies,
the only parameter to be decided for ELM is the number of
hidden nodes. Mean Magnitude of Relative Error (MMRE)
is implemented to analyze the performance of the proposed
method. Our approach involves the use of the ELM algo-
rithm by varying the parameters based on the prediction
error. In addition, were used other MAE, MSE and RMSE
metrics to assess the model’s performance. Was added the

92678

© KNN - MLP

“ LR - ELM a2

- SVM (l{c:)})
2

v
Phase 5

R Experimental Evaluation

Phase 6

Testing set

A 4

Effort

Prediction @

« Calculation of Errors
« Boxplot Construction ——.
* Hypothesis Testing

33%

Desahanais dataset to work to confirm the performance of the
applied ELM model. A statistical test was used to compare
the performance of the proposed model with other models
in the literature through the normality test and hypothesis
test. Furthermore, a temporal performance test was performed
between the models. Were utilized Box-Plot graphs to present
the results, through which we obtained significantly better
results.

IIl. RESEARCH METHODOLOGY

This section presents the methodology used to build
the ELM model applied to software effort estimation.
Figure 1 shows the proposed methodology for accurate
effort prediction, which consists of six phases: Analysis
(Section III-A), Select Data Set (Section III-B), Data Prepara-
tion (Section III-C), Modeling (Section III-D), Experimental
Evaluation (Section IV), Effort Forecasting (Section V).

A. SYSTEMATIC LITERATURE REVIEW's ANALYSIS
The proposal to build the effort estimation model for soft-
ware development was based on the Systematic Literature
Review (SLR) carried out by [1]. The SLR presents empirical
studies published from January 1991 to December 2017, and
after the selection criteria, 75 primary studies were selected.
The ML techniques used in the 75 primary studies were:
Artificial Neural Network (ANN), which is the most ref-
erenced technique and used in 60%; the Support Vector
Machine (SVM) method, which was used in 25%, whereas
Case-Based Reasoning (CBR) was applied in 17%. The other
techniques, Bayesian Network (BN), K-Nearest Neighbors
(KNNs), Decision Tree (DT), Genetic Programming (GP),
Classification and Regression Tree (CART), Random Forest
(RF), were the least referenced machine learning techniques.
The databases used in the 75 primary studies were: NASA,
the most referenced in RSL with 23%. Extensively investi-
gated, COCOMO and ISBSG are registered equally at 21%,
followed by Desharnais, used in 19%. Kemerer, Maxwell,

VOLUME 9, 2021

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

IEEE Access

11 11
8
55
4 4
3 3 3 3 3
o S Q
W &

(a) Techniques
26 P
11
10
8 7 . 5
4 3 3 3
’ o & SR R S SR
& & Q@«\ v&% w\@@* @@ QQ;Q @@

(b) DataSet

FIGURE 2. Top 10 of the Techniques and Dataset used in the last 10 years.

Albrecht, Tukutuku, Finnish, and Miyazaki were the least
referenced databases.

Based on the systematic review, it was selected the primary
studies from the last 10 years. Figure 2 (a) shows the Top
10 machine learning techniques, in which ANN, MLP are
cited in 11 studies and SVR in 8 reviews, the 3 most men-
tioned ones, while Figure 2 (b) shows the Top 10 datasets used
in this period, with emphasis on the COCOMO dataset cited
in 20 studies, followed by ISBSG and NASA, mentioned
in 11 and 8 reviews respectively.

From this analysis, it was observed that among the various
Artificial Neural Networks (ANN) types, the ELM tech-
nique just emerged in one primary study [20]. According
to Huang [21], training an ELM can be faster to meet the
criteria to complete the training than training a neural net-
work by backpropagation, producing better generalization
performance in most cases. Given the advantages of using the
ELM technique for Software Development Effort Estimation
(SDEE), it was chosen to model the ELM technique for
Software Development Effort Estimation in this work.

We analyzed the datasets with the technique’s choice
to be used in our model to estimate the software devel-
opment effort. We decided to use the Desharnais dataset,
Section III-B1, as it is a little explored dataset among effort
estimation models.

The estimation of software developments is compared with
other models in the literature. We will also use the dataset ref-
erenced in Carvalho’s work [11] described in Section I1I-B2
in order to compare our model’s performance with the por-
posed models in Carvalho’s article [11].

B. SELECT DATASET

This subsection presents the descriptive analysis of the
datasets for the construction of our model.

VOLUME 9, 2021

. %ipe
0.00] / = \\ |

o 7 FER N

) / ‘ =i N

o 7\—

FIGURE 3. Distribution of the effort value in the Desharnais database.

1) DESHARNAIS DATASET

The Desharnais [34] dataset analyzed consists of informa-
tion from 81 software projects from a Canadian company.
Each project has 12 attributes: Project id, Team Experience,
Manager Experience, Year End, Length, Effort, Transaction,
Entities, Point Adj, Adjustment, Point Non-Adjust, and Lan-
guage, which in turn attributes are classified into numeric and
categorical as described and detailed in Table 1.

Based on Table 1, it was selected only the numerical data,
and the ““Project” attribute was also excluded because it is
not correlated to the project effort estimate.

With the selected attributes, the next step was to iden-
tify the independent variables and the dependent variable.
Based on the software development effort estimation mod-
els, the main variable is the effort required to complete
the project, which in this case, the dependent attribute is
“Effort”, and the other correlated variables are the indepen-
dent attributes: “TeamExp”’, “ManagerExp”, “YearEnd”,
“Length”, “Transactions’, “Entities”’, ‘“PointsNonAjust”,
“Envergure” and ‘““PointsAd;j”.

Table 2 presents the statistical measures for all independent
and dependent attributes. The elapsed time (Length) of the
81 measured projects varied between 1 and 39 months (with
an average of 11.7 months). Two attributes that represent
the software size, ‘“‘PointsNonAdjust” and ‘“PointsAdjust”,
in which the difference between the two is not great, since
the average of PointsNonAdjust is 304, while the average
of PointsAdjust is 289. Finally, the level of effort recorded
was between 546 and 23,940 person-hours (with an average
of 5,046.31 person-hours).

The histogram in Figure 3 illustrates the distribution of
data on effort, the dependent variable. The measurement of
effort is in person-hours. The variables are positively skewed:
variables with the majority of records located towards lower
values and some very high external values.

2) CARVALHO's WORK [11]

The second set of analyzed data will be available in [11],
which consists of 231 software projects, and has 5 attributes
classified into numeric and string: “P”’ (Program Number),
“N&C” (New and Changed Code), composed of added and
modified code, “R” (Reused Code) where both are recog-
nized as physical lines of code (LOC) and “AE” (Actual
Effort) which is measured in minutes, are the type numeric
and “DP”" (Developer Code) is of type string.

92679

IEEE Access

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

TABLE 1. Desharnais Dataset Variables.

Attributes Classification Description

Project Numeric Project ID which starts by 1 and ends by 81

TeamExp Numeric Team experience measured in years

ManagerExp Numeric Manager experience measured in years

YearEnd Numeric Year the project ended

Length Numeric Duration of the project in months

Effort Numeric Actual effort measured in person-hours

Transactions Numeric Number of the logical transactions in the system

Entities Numeric Number of the entities in the system

PointsNonAdjust Numeric Size of the project measured in unadjusted function points. This is calculated as Transactions plus Entities

Envergure Numeric Function point complexity adjustment factor. This is based on the General Systems Characteristics (GSC). The
GSC has 14 attributes; each is rated on a six-point ordinal scale. Envergure = Egil CGSy

PointsAdjust Numeric Size of the project measured in adjusted function points. This is calculated as: PointsAdjust =
PointsNonAdjust = (0,65 + 0,01 * Envergura)

Language Categorical Type of language used in the project expressed as 1, 2 or 3. The value “1” corresponds to “Basic Cobol”, where
the value “2” corresponds to “Advanced Cobol” and the value “3” to 4GL language.

TABLE 2. Descriptive Statistics for the Desharnais Dataset.

Attributes Mean Median [Stdev Min Max
TeamExp 2.185 2.000 1.415 -1.000 4.000
ManagerExp 2.531 3.000 1.644 -1.000 7.000
YearEnd 85.741 36.000 1.222 82.000 88.000
Length 11.667 10.000 |7.425 1.000 39.000
Transactions 182.123 [140.000 {144.035 [9.000 886.000
Entities 122.333 99.000 84.882 7.000 387.000
PointsNonAdjust [304.457 [266.000 {180.210 [73.000 1127.000
Adjustment 27.630 [28.000 10.592 5.000 52.000
PointsAjust 289.235 [255.000 |[185.761 |62.000 1116.000
Effort 5046.309 [3647.000 [4418.767 |546.000 [23940.000

TABLE 3. Descriptive Statistics for the Carvalho’s Work Dataset.

Attributes Mean Median (Stdev Min Max

N&C 38.32 30.00 25.47 10.00 137.00
R 39.94 33.00 29.03 1.00 149.00
AE 78.12 71.00 34.60 19.00 195.00

This dataset selected only the numeric attributes and
excluded the “P” attribute because it has no relation to
the effort estimate. The descriptive statistics for attributes
selected are shown in Table 3.

During the dataset analysis, it was identified two indepen-
dent attributes, “N&C” (New and Changed Code) and “R”
(Reused Code), and the target attribute, dependent, “AE”
(Actual Effort).

The histogram in Figure 4 illustrates the distribution of the
dependent variable (Ae-effort) in relation to the effort, which
is measured in minutes. A normal distribution trend is noticed
in the histogram since the largest concentration of data is
around the average, and the frequency is close to the limits.

C. DATA PREPARATION

In addition to the descriptive and statistical analysis of the
bases, this phase used Pearson’s correlation coefficient [22],
also called linear correlation, which measures the degree of
relationship between two quantitative variables and expresses
the degree of correlation by means of values between —1 and
1. A correlation coefficient close to zero indicates that there

92680

FIGURE 4. Effort Value Distribution.

is no relationship between the two variables. The closer to
1 or —1, it suggests that it has a perfect positive or negative
correlation. From the point of view of [35], results between
0.5 and 1.0 indicate a high correlation.

In this study, a high correlation from 0.5 was considered,
according to [35]. As it can be seen in Figure 5, the indepen-
dent attributes, such as: “Transactions”, “Length”, “Enti-
ties”, “PointsAdj” and “PointsNonAdjust” have their corre-
lation coefficients, 0.514296, 0.585761, 0.655355, 0.715757,
0.732605 respectively, above 0.50 in relation to the Effort in
the Desharnais dataset.

In conclusion, the mentioned attributes are statistically the
most significant for our model’s construction, answering the
QI research question:

RQ1: Which features are important to obtain better
results in estimating software development effort?

The scatter plot Figure 6 represents the correlation coef-
ficients of the attributes “Transactions”, “Length”, “Enti-
ties”’, ““PointsAdj” and “PointsNonAdjust” and the attribute
“Effort”. A scatterplot demonstrates the magnitude of the
correlation between two variables if any; Positive correlation
when there is an agglomeration of points in an increasing
trend and Negative correlation when points are concentrated
in a decreasing line [36].

We noted that in Figure 6, the data correlation has an
specific direct (or positive) linear association, showing a
high correlation between the independent variables and the

VOLUME 9, 2021

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

IEEE Access

-0.006 0.21 0.096

-0,42 -0.21 012 01 026 02 024 -
0.42 012 0 016 014 021 021 -0.067 O. . 078

-0.21 -0.048 0.034 0.0017 0.028 -0.057

027 0029 023 -02

014 021 -0.095
050

0.16 -0.048 |

0.14 0.034 | 062 0.58

0.19 [XZN 0.88 K

025
021 00017 048 051 0.19 062 023 06 -
0.21 0.028 m 0.71 0.89 W73 0.38 ﬂ 0.083

-0.067 -0.057 027 046 034 023 038 0.51 -0.2 0.00
019 0.012 §) ‘0.74 0.88 |3 0.51 -

021 034 -0024 -026 0.14 -0.056 0.083 -0.2 0.047

Entities

0 5000 10000 15000 20000 25000
Effort

PointsAjust
H
PointsNonAdjust
o -

5000 20000 25000

10000 1
Effort

FIGURE 6. Correlation coefficients between variables in the Desharnais
database.

dependent variable and that most points on the scatter plot
approximate the straight line.

For the dataset available in Carvalho’s Work [11], it was
also performed the correlation between two independent
attributes, “N&C” and “R” with the dependent attribute
“AE”.

Figure 7 (a) shows a high correlation between the attributes
“N&C” and “AE” (0.69). For Figure 7 (b), it is observed
a low correlation between the attributes “R” and “AE”.
Therefore, there seems to be no linear association between the
two variables. As stated earlier, the correlation or correlation
coefficient measures the tendency of two variables to change,
depending on their relationship.

After analyzing and preparing the datasets, building the
model for estimating the software development effort based
on the ELM technique came next.

D. MODEL BUILDER
In this study, the software development effort estimation
model was built with the Extreme Learning Machine tech-

VOLUME 9, 2021

(a) N&C X AE (Effort)

(b) R (Reused) x AE (Effort)

FIGURE 7. Correlation Carvalho’s Work [11] Dataset.

nique. It was compared with the literature models and the
same data set to estimate the effort was used [23]. The
models in the literature are Linear Regression (LR), Support
Vector Machine (SVM), Nearest K-Neighbor (KNN), and
Multi-Layer Perceptron (MLP).

1) EXTREME LEARNING MACHINE

The Extreme Learning Machine (ELM) algorithm was pro-
posed by [37]. Its architecture is equivalent to a Single-layer
Feedforward Networks (SLFN) or Feedforward Neural Net-
work (FNN), with slight differences. The weights of the
input layer neurons are generated randomly instead of being
adjusted, and the weights of the neurons of the output layer
are calculated analytically, without using iterative processes
as in backpropagation. In this way, the output layer’s activa-
tion function results in a linear model [38].

According to Huang et al. [37], and Huang et al. [21],
the architecture of an ELM can be represented with a hid-
den layer with N neurons. To learn N different arbitrary
samples (x;, t;), where x; = [Xj1, Xi2, ..., Xin]! € R" and
t = [ti1, tio, - .., tim]? € R™, input weights and hidden bias
are randomly generated and the activation function is g(x).
According to Huang et al., [37] and Huang et al., [21] the
mathematical formula of ELM is represented by:

N
> Bigwi-xj+b) =05, j=1.....N, 1)

i=1

where N is the number of neurons in the hidden layer and N
is the number of training samples, §; = [b;1, b2, .. ., biml¥
represents the weight vector that connects the i-th hidden
layer neuron to neurons of the output layer, g(-) is the activa-
tion function, w; = [w;1, Wi, . .., wi,]? is the weight vector
that connects the j-th hidden layer neuron and the input layer
neurons, X; represents each distinct sample and b; denotes
the bias of the j-th neuron of the hidden layer. To make the
network outputs equal to the expected results, in other words,
to perform error training equal to zero, there must be g;, w;
and b; so that the equation can be written as:

N
Y Bgwi-xi+b)=t, j=1,....N,)

i=1

where t; are the outputs expected by the network, referring to
the x; sample input.

92681

IEEE Access

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

The previous N equations are written compactly in the
following equations:

HB=T, 3)
where
[gwi-x;j+b1) -+ gwy - xj+ by)
H = : : L@
| gwi-xy +0b1) - gy - xn +by) |y i
_,31T
B=1 " (5
.T
LEN AN xm
and
i
T=| - (6)
T
tN N xm

H is called the hidden layer output matrix of the neu-
ral network the i-th column of H is the i-th neuron output
vector of the hidden layer in with respect to the entries xi,
X2,..., Xy. In this study, we use the Extreme Learning
Machine model available at [39]. Machine learning tech-
niques have parameters that, most of the time, significantly
affect the performance of these techniques. For our model we
defined the following parameters: n_hidden = 5, alpha = 1.0,
rbf_width = 0.1 and activation = ’sigmoid’.

2) OTHER MODELS INVESTIGATED

Linear Regression (LR) is a technique used to predict an
unknown dependent variable, given the independent vari-
ables’ values. [40].

Support Vector Machine (SVM) is a machine learning
algorithm used for classification and regression. SVM used
for regression analysis is called Support Vector Regression
(SVR) [15].

K-Nearest Neighbor (KNN) technique can be used for
classification or regression. In general, the algorithm uses
Euclidean distance to calculate distances between its closest
neighbors. The results are based on the average of the nearest
neighbor k [15].

Multilayer Perceptron (MLP) neural networks are feedfor-
ward neural networks usually trained with a backpropagation
algorithm. Traditional MLP networks contain at least three
layers: an input layer, a hidden layer, and an output layer.
The number of nodes in the input layer is defined accord-
ing to the independent variables identified. In the hidden or
intermediate layer, the number of nodes is defined through
the configuration parameters. In contrast, in the output layer,
the number of nodes depends on the solution, the number of
dependent variables [41].

92682

To implement the models, we use the Python language such
as the libraries: Numpy [42], Pandas [43], Scikit-Learn [44],
and Matplotlib [45].

IV. EXPERIMENTAL EVALUATION

This section describes the measurements used for model
accuracy. A basic factor for any forecasting model is whether
forecasts are accurate or not.

It is possible to find several metrics in the literature
to assess the software development effort estimation mod-
els’ accuracy. The frequently used assessment measures are
MMRE and PRED (k). According to Shepperd and Mac-
Donell [46], MMRE does not present a good precision in the
forecast of software effort estimation because these criteria
are biased. Although being applied in this work, the results are
used only for comparison with other results in the literature.

In turn, the performance indices, Mean Absolute Error
(MAE), Mean Square Error (MSE), and Root Mean Square
Error (RMSE), are being used as metrics to assess the accu-
racy of the evaluated model.

A. MEAN MAGNITUDE OF RELATIVE ERROR

The Magnitude of Relative Error (MRE) is the difference
between the actual effort (work done by the developer to com-
plete the project) and the predicted effort (estimated using
project management techniques), divided by the real effort.
MRE is represented in Equation 7.

lvi — ¥il
Vi

MRE = @)

where y; is the actual effort, and y; is the estimated effort, both
of which are used in software project i.

The Mean Magnitude of Relative Error (MMRE) is the
average of the MRE of the software project. MMRE is cal-
culated for each project in the dataset following Equation 8

1 n
MMRE = - ZMRE,- (8)
n
i=1

where n the number of cases in dataset.
The Mean Absolute Error is a measure of how far the esti-
mates are from actual values. MAE is defined in Equation 9

1 o R
MAE =~ " |yi = i ©

=1

y; is the ith value of the variable being predicted, y; its
estimate, y; — y; the ith residual.

Mean Squared Error (MSE) is the mean quadratic differ-
ence between the estimated values and the current value as
denoted in Equation 10.

n

1 i
MSE =~ 3~ (i = 5)’ (10)
t=1

VOLUME 9, 2021

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

IEEE Access

Root Mean Squared Error (RMSE), as denoted in Equa-
tion 11.

(1)

The sample of 500 iterations was calculated as the Standard
Deviation (SD) of the Error. Besides, we performed statistical
tests, such as the Shapiro-Wilk [47] and Wilcoxon [48] tests.
It was also used relative p-value to evaluate the performance
of the models.

V. RESULTS AND DISCUSSION

This section discussed the results obtained from the exper-
iments using the Desharnais [34] data set and the data set
available in Carvalho’s [11] work. The applied model is based
on the ELM technique according to the configurations pre-
sented previously. The Algorithm 1 presents the pseudocode
for experimental evaluation.

Algorithm 1 Pseudo-Code of the Experiment Execution

Input: Use the dataset
1: Set: Model = KNN, LR, SVM, MLP, ELM
LOOP Process
2: for each Model do
3: fori=11t0500do
4: Shuffle dataset in Training (67%) and Testing
(33%)
Apply: Model to Training set
Select: Best Model
Apply: Model to Testing set
Calculate: the Erros of the interaction
end for
Calculate mean and standard deviation of error
MMER (8)
11: Calculate mean and standard deviation of error MAE
©)
Calculate mean and standard deviation of error MSE
(10)
Calculate mean and standard deviation of error RMSE
(11)

14: end for

i S

13:

A. DESHARNAIS DATASET

It was applied the techniques of KNN, LR, SRV, MLP, and
ELM to the Desharnais [34] datasets. It was analyzed the
mean and standard deviation (SD) for all metrics, considering
the 500 simulations performed for this dataset. Table 4 shows
the results Means and, in parentheses (SD), the Standard
Deviation of errors in the dataset.

Figure 8 shows the MAE boxplot graph in each model
and that there is an outlier in all regression models, except
the LR model. Indeed, KNN, LR, SVM, and MLP mod-
els are overestimated concerning the applied ELM model.
Hence, it is possible to observe that the applied ELM model

VOLUME 9, 2021

TABLE 4. Desharnais: Comparison of the results Means and Standard
Deviation (SD) of the literature study in [23].

MMER MAE MSE RMSE
TechnicsMeans (SD) [Means (SD) |[Means (SD) |Means (SD)
KNNT [0.2413 (0.0398)[0.0727 (0.0130)[0.0127 (0.0048)[0.1107 (0.0221)
LR! 0.2287 (0.0457)(0.0646 (0.0113){0.0088 (0.0032)(0.0924 (0.0173)
SVM! 04130 (0.0500)[0.0719 (0.0133)[0.0102 (0.0039)(0.0993 (0.0189)
MLP! 104235 (0.0646)0.0677 (0.0133)[0.0104 (0.0050)(0.0994 (0.0224)
ELM?2 (0.1808 (0.0121)/0.0562 (0.0046)[0.0078 (0.0017)(0.0880 (0.0086)
T results of the literature study in [23].

2 results of the applied model.
TABLE 5. Results p-value.

Erro Technics p-value

MRE KNN X ELM | 5.287210~ 79
MRE LR X ELM 1.461210—62
MAE | KNNXELM | 1.286210— %9
MAE | LR XELM 1.266210~36
MAE | SVMXELM | 3.097x1067
MAE | MLP X ELM | 3.781x105°
MSE LR X ELM 9.021z10— 11
RMSE | KNNXELM | 6.711x10~°%
RMSE | LR X ELM 1.687210~08
RMSE | SVM X ELM | 2.794210—27
RMSE | MLP X ELM | 7.779x10—23

MAE comparison between KNN, LR, SVM, MLP and ELM

010

MAE

006

n

KNN

FIGURE 8. Boxplots of Mean Absolute Erro.

obtained the best result because of its simplicity of usage,
higher speed of learning, greater generalization performance.
Besides, the box and tail (boxplot) of the applied model ELM
are less distorted than those of the other commonly used
literature models.

Analyzing the results obtained in Table 4, it is possible to
conclude that the ELM model obtained the smallest amount
of errors shown in table 4 confirming better performance.
However, in most cases, in the second decimal place, the gain
was necessary to carry out hypotheses to validate the results.

Before performing the hypothesis test, it was verified
the existence of normality between the values using the
Shapiro-Wilk test [47]. Since the dataset does not have a
normal distribution, the Wilcoxon hypothesis test [48] was
used with a 5% significance. In the null hypothesis (HO),
the model presents results equal to or less than the applied
ELM model. Whereas, in the alternative hypothesis (H1),
the applied ELM model had the smallest error shown in

92683

IEEE Access

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

TABLE 6. Critical Evaluation Table of Related Work.

Authors Dataset Techniques MMRE

Jodpimai P, Sophatsathit P, Lursinsap C [24] | Albrecht, CF, Cocomo, Desharnais, Nasa ANN 0.420

Oliveira et al. [25] Albrecht, Cocomo, Desharnais, Kemerer, Nasa M5P 0.594
MLP 0.315
SVRL 0.368
SVR RBF 0.405

Gabrani, Goldie and Saini, Neha [26] Desharnais, Maxwell, Miyazaki94 ANFIS 1.057
MLP 0.782
SVR 0.738

Mohammad Azzeh [27] Albrecht, Cocomo, Desharnais, ISBSG, Kemerer, Maxwell, Nasa93, Tele- | OMT 0.323

com
Tierno et al. [28] Cocomo, Desharnais, Maxwell BN 0.689

The MMRE value is relative to the Desharnais dataset for each model compared

TABLE 7. Article: Results Means and Standard Deviation (SD) of dataset
available in Carvalho’s [11] work.

Technics (Ref)

ELM with 2 n_hidden [11]
ELM with 5 n_hidden [11]
ELM with 2 n_hidden Model
ELM with 5 n_hidden Model

Error (SD)

23.8934 (3.9770)
24.2228 (2.0757)
21.5982 (0.2708)
21.6207 (0.2918)

Equation 12.

Ho:pyp <= 2

(12)
Hy:pp > o

Table 5 shows the p-value results for the Wilcoxon tests.
With 95% confidence, the null hypothesis (HO) is rejected.
It is possible to conclude that the difference between the
population medians is statistically significant, according to
the Wilcoxon test.

Table 6 shows the comparison with other studies in the
literature that used Desharnais datasets to estimate soft-
ware development effort. According to the results presented
in Table 4, the applied ELM model obtained better results
than studies in the literature due to its remarkable general-
ization performance and implementation efficiency.

B. CARVALHO's WORK DATASET

Likewise, the ELM technique applies to the other dataset
used by [11] for two independent variables N&C and R.
For this dataset, 1000 simulations were performed, the same
amount of simulations used by the author. Table 7 shows the
mean and standard deviation in parentheses (SD) of errors
in the dataset. The applied EIM model with 2 and 5 hid-
den layers appears more stable and reliable generalization
performance.

Figure 9 show the boxplot graph of the ELM Mod-
els with 2 and 5 hidden layers. The “ELM with 2 and
5 n_hidden [11]” presented a mean with greater variability
in relation to the “ELM with 2 and 5 _hidden applied”
models. It is also possible to note that data dispersion in the
“ELM with 2 and 5 n_hidden applied”” models are almost
non-existent and remarkable generalization performance.

92684

MAE comparison between ELM Models

-
K

ELM with 5 n_hiaden [11]

i

DO

20

g

ELM with 2 n_nidden [11] ELMwith 2 n_hidden Applied ELMwith 5 n_hidden Applied

FIGURE 9. MAE comparison between ELM models.

C. PERFORMANCE EVALUATION
In this section, the performance of the applied ELM learning
algorithm is compared with KNN, LR, SVM algorithms,
and the conventional back-propagation (MLP) algorithm. All
simulations of the algorithms are performed using packages
developed in Python language and executed in the Jupyter
Notebook environment, running on an Intel(R) Core(TM)
i7 2.1 GHz CPU, 8 GB RAM. To evaluate the time con-
sumption of the algorithms, all simulations were conducted
with 500 iterations, 1,000 iterations, 5,000 iterations, and
10,000 iterations. Figure 10 shows the comparison of the
time consumption speed of the evaluated models. The ELM
algorithm is faster than the KNN and MLP models in this case
and has practically the same performance compared to the
LR and SVM algorithms. According to the values presented,
the ELM model was 3 times faster than the backpropagation
algorithm, MLP.

Finally, let’s answer our last research question:

RQ2: What is the machine learning technique that
stands out in the accuracy of effort estimation?

Throughout the work, we investigated five machine learn-
ing techniques used in datasets to estimate the software
development effort, namely: (i) Linear Regression (LR),
(i1) Support Vector Machine (SVM)), (iii) K-Nearest Neighbor
(KNN), (iv) Multilayer Perceptron (MLP), and (v) Extreme
Learning Machine (ELM). In simulations, we evaluated the
accuracy of the precision of each effort estimation technique

VOLUME 9, 2021

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

IEEE Access

B 1798

3399

R 16,959
A 33,266

B 5,494

11,345

ELM

56,070

110,234

| FEIT
3,149
D 15,224
S 30,950
| FRE)
2,879
B 14,425
A 29,503
B 2492

4,495

KNN ==
S— 22379

44,366

0 10 20 30 40 50 60 70 80 90 100 110 120

=500 1.000 =5.000 =10.000

FIGURE 10. Comparison of time consumption of the applied methods.

where the ELM was the one that presented the best results,
Table 4, compared to the other techniques used in the litera-
ture.

We can also highlight that the use of machine learning
in the area of Software Engineering can have a great gain,
since Software Engineering is related to obtaining quality
results defined in the project management plan to meet
the schedule (effort) and the budget (cost) of the project.
Therefore, the use of machine learning techniques to predict
software development efforts can help the project team deal
with uncertainties in estimates during the project lifecycle,
providing better quality project deliverables in terms of effort
and cost.

VI. THREATS TO VALIDITY

This section will discuss our study’s validity based on inter-
nal and external threats and construct validity [49]. Internal
validity relates to the examination of causal relations [49].
A possible threat to internal validity is the choice of ELM
algorithm parameters. In our study, we considered selecting
parameters as an explicit step in dealing with internal validity.
For each data set used in the research, it was necessary to
adjust the parameters, as there are no studies in this area on
how to determine these parameters for each data set.

We randomly divided the data into the training and test sets
in the proportion of 67% and 33%, respectively. The random
assignment of the data can have a considerable influence on
the results of the model. However, considering that all models
are executed on the same data sets, there will be no significant
impact on the overall work since the objective is to compare
the performance of the models in the applied data set.

External validity concerns the generalization of study
results outside the study to other situations [49]. One of the
problems of external validation in machine learning is related
to the number of samples available in the data set. Due to the
small size of the data set, the number of data remaining for
testing is even more limited. Another limitation we encoun-
tered was the availability of data sets from free software
projects. Data availability is not frequent and often paid for,

VOLUME 9, 2021

causing forecasting difficulties with a reduced amount of
data.

Construction validity refers to the extent to which the
operational measures studied represent what the researcher
has in mind and what is investigated according to the research
questions [49]. One of the metrics used to assess the models’
accuracy to estimate the software development effort was the
Mean Magnitude of the Relative Error (MMRE). However,
according to Shepperd and MacDonell [46], MMRE does not
present a good precision in the forecast of software effort
estimation. Although it is being used at work, this metric is
used only for comparison with other results in the literature.
In the study, we used the Mean Absolute Error (MAE), pro-
posed by [46] as a good metric to measure the accuracy of the
software effort estimation model.

VII. CONCLUSION AND FUTURE WORK

In Software Engineering, obtaining a reliable and accurate
estimate of the software development effort has always been
challenging. Estimating the effort and precise cost in the
initial phase of the project would greatly benefit the area.
With this in mind, to minimize the uncertainty of the estimates
during the software development cycle, a technique based
on machine learning was applied, the Extreme Learning
Machine (ELM), as a model for estimating software devel-
opment effort compared with other effort estimation models
used in the literature. The applied model will support the Spe-
cialist and Project Managers in forecasting effort estimates,
reducing the time and costs spent during the execution phase
of the effort project and cost estimation.

In simulations, it was used two sets of data from software
projects similar to our reality. Desharnais [34] containing
81 software projects from a Canadian company and the data
set evaluated in Carvalho’s work [11] having 231 software
projects. For the two data sets, the data set in training and tests
was divided in the proportion of 67% and 33%, respectively.
In all simulations, the inputs were normalized in the interval
[0.15; 0.85], and the data were randomly assigned to a data
set in training and testing to obtain unbiased results.

Many projects use the Mean Magnitude of the Relative
Error (MMRE) to assess the forecasting methods’ accuracy
in estimating the software project effort, as shown in the
related works [24]-[28]. However, according to Shepperd and
MacDonell’s study [46], MMRE is not an ideal metric for
evaluation, as it does not have a good precision in estimating
the software effort. The MMRE metric results are being used
only in comparison with other results in the literature and the
MAE, MSE and RMSE metrics were adopted to evaluate the
ELM model.

In the Desharnais [34] dataset, it was conducted experi-
ments to compare the ELM technique with other techniques
in the literature, (i) Linear Regression (LR), (ii) Support
Vector Machine (SVM), (iii) K-Nearest Neighbor (KNN),
(iv) Multilayer Perceptron (MLP). In the data set evalu-
ated by Carvalho’s work [11], experiments were carried out

92685

IEEE Access

H. D. P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

compared to the author’s model, adjusting the parameters to
obtain a better result as suggested in future works.

One of this article’s main contributions is that the applied
model, based on the ELM technique, was obtained by com-
paring it with the literature models used to predict soft-
ware development effort estimates. Consequently, the error
estimate rates tend to be reduced, helping project managers
increase the forecast in the effort estimate during the project
life cycle.

In addition, during the process of preparing the bases, Pear-
son’s correlation coefficient was used to identify the variables
with high correlation, which in turn identified the potential
variables to be used in the model applied for estimating
software effort, thus achieving better results compared to the
literature.

It is concluded that the accurate and reliable estimation
of the effort required to complete a project is an important
process in Software Engineering. In this way, the use of the
technique based on machine learning increases the project’s
chances of success, reducing the time and costs of the project.

For future work, we propose using an optimization method,
namely, Particle Swarm Optimization (PSO), to optimize the
model parameters for estimating the software development
effort.

REFERENCES

[1] A. Ali and C. Gravino, “A systematic literature review of software effort
prediction using machine learning methods,” J. Softw., Evol. Process,
vol. 31, no. 10, pp. 1-25, Oct. 2019.

[2] Project Management Body of Knowledge (PMBOK), 6th ed., Project Man-
age. Inst., Newtown Square, PA, USA, 2017.

[3] N. Rankovic, D. Rankovic, M. Ivanovic, and L. Lazic, “A new approach
to software effort estimation using different artificial neural network
architectures and Taguchi orthogonal arrays,” IEEE Access, vol. 9,
pp. 26926-26936, 2021.

[4] R.S. Pressman, Software Engineering: A Practitioner’s Approach, 8th ed.
New York, NY, USA: McGraw-Hill, 2016.

[5]1 R. Saraiva, A. Medeiros, M. Perkusich, D. Valadares, K. C. Gorgonio,
A. Perkusich, and H. Almeida, “A Bayesian networks-based method to
analyze the validity of the data of software measurement programs,”” IEEE
Access, vol. 8, pp. 198801-198821, 2020.

[6] S. Tarig, M. Usman, and A. C. M. Fong, ““Selecting best predictors from
large software repositories for highly accurate software effort estimation,”
J. Softw., Evol. Process, vol. 32, no. 10, pp. 1-19, Oct. 2020.

[71 C. Lopez-Martin, “A fuzzy logic model for predicting the development
effort of short scale programs based upon two independent variables,”
Appl. Soft Comput. J., vol. 11, no. 1, pp. 724-732, Jan. 2011.

[8] M. Hammad and A. Alqaddoumi, ‘“‘Features-level software effort estima-
tion using machine learning algorithms,” in Proc. Int. Conf. Innov. Intell.
Informat., Comput., Technol. (ICT), Nov. 2018, pp. 1-3.

[9] A.B. Nassif, M. Azzeh, L. F. Capretz, and D. Ho, ““Neural network models
for software development effort estimation: A comparative study,” Neural
Comput. Appl., vol. 27, no. 8, pp. 2369-2381, Nov. 2016.

[10] V. Yurdakurban and N. Erdogan, “Comparison of machine learning meth-
ods for software project effort estimation,” in Proc. 26th IEEE Signal
Process. Commun. Appl. Conf., May 2018, pp. 1-4.

[11] H. D. P. Carvalho, M. N. C. A. Lima, W. B. Santos, and
R. A. de A. Fagunde, “Ensemble regression models for software
development effort estimation: A comparative study,” Int. J. Softw.
Eng. Appl., vol. 11, no. 3, pp. 71-86, May 2020.

[12] A.A.Fadhil, R. G. H. Alsarraj, and A. M. Altaie, “Software cost estimation
based on dolphin algorithm,” IEEE Access, vol. 8, pp. 75279-75287, 2020.

[13] P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective
approach for software project effort and duration estimation with machine
learning algorithms,” J. Syst. Softw., vol. 137, pp. 184-196, Mar. 2018.

92686

(14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]
(36]

(37]

Y. Song, J. Liang, J. Lu, and X. Zhao, “An efficient instance selection
algorithm for k nearest neighbor regression,” Neurocomputing, vol. 251,
pp. 26-34, Aug. 2017.

M. Hosni, A. Idri, A. B. Nassif, and A. Abran, “Heterogeneous ensembles
for software development effort estimation,” in Proc. 3rd Int. Conf. Soft
Comput. Mach. Intell. (ISCMI), Nov. 2016, pp. 174-178.

J. Zhang, W. Xiao, Y. Li, and S. Zhang, “Residual compensation extreme
learning machine for regression,” Neurocomputing, vol. 311, pp. 126—136,
Oct. 2018.

J. Zhang, Y. Li, W. Xiao, and Z. Zhang, “Robust extreme learning machine
for modeling with unknown noise,” J. Franklin Inst., vol. 357, no. 14,
pp. 9885-9908, Sep. 2020.

J. Zhang, Y. Li, W. Xiao, and Z. Zhang, “‘Non-iterative and fast deep learn-
ing: Multilayer extreme learning machines,” J. Franklin Inst., vol. 357,
no. 13, pp. 8925-8955, Sep. 2020.

J. Zhang, Y. Li, and W. Xiao, “Integrated multiple kernel learning for
device-free localization in cluttered environments using spatiotemporal
information,” IEEE Internet Things J., vol. 8, no. 6, pp.4749-4761,
Mar. 2021.

S. K. Pillai and M. K. Jeyakumar, “Extreme learning machine for software
development effort estimation of small programs,” in Proc. Int. Conf.
Circuits, Power Comput. Technol. (ICCPCT), Mar. 2014, pp. 1698-1703.
G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: The-
ory and applications,” Neurocomputing, vol. 70, nos. 1-3, pp. 489-501,
Dec. 2006.

D. Montgomery and G. Runger, Estatistica Aplicada e Probabilidade Para
Engenheiros, 5th ed. Rio de Janeiro, Brazil: LTC, 2012.

S. Shukla and S. Kumar, “Applicability of neural network based models
for software effort estimation,” in Proc. IEEE World Congr. Services
(SERVICES), Jul. 2019, pp. 339-342.

P. Jodpimai, P. Sophatsathit, and C. Lursinsap, “Estimating software effort
with minimum features using neural functional approximation,” in Proc.
10th Int. Conf. Comput. Sci. Appl. (ICCSA), 2010, pp. 266-273.

A. L. I. Oliveira, P. L. Braga, R. M. F. Lima, and M. L. Cornélio,
“GA-based method for feature selection and parameters optimization for
machine learning regression applied to software effort estimation,” Inf.
Softw. Technol., vol. 52, no. 11, pp. 1155-1166, Nov. 2010.

G. Gabrani and N. Saini, “Effort estimation models using evolutionary
learning algorithms for software development,” in Proc. Symp. Colossal
Data Anal. Netw. (CDAN), Mar. 2016, pp. 1-6.

M. Azzeh, “Software effort estimation based on optimized model tree,”
in Proc. 7th Int. Conf. Predictive Models Softw. Eng. (PROMISE), 2011,
pp. 20-21.

1. A. P. Tierno and D. J. Nunes, “An extended assessment of data-driven
Bayesian networks in software effort prediction,” in Proc. 27th Brazilian
Symp. Softw. Eng. (SBES), Oct. 2013, pp. 157-166.

L. L. Minku and X. Yao, “Ensembles and locality: Insight on improv-
ing software effort estimation,” Inf. Softw. Technol., vol. 55, no. 8,
pp. 1512-1528, Aug. 2013.

C.-L. Huang and C.-J. Wang, “A GA-based feature selection and parame-
ters optimizationfor support vector machines,” Expert Syst. Appl., vol. 31,
no. 2, pp. 231-240, Aug. 2006.

D. T. Pham, A. Ghanbarzadeh, E. Kog, S. Otri, S. Rahim, and M. Zaidi,
“The bees algorithm—A novel tool for complex optimisation prob-
lems,” in Intelligent Production Machines and Systems. Amsterdam,
The Netherlands: Elsevier, 2006, pp. 454—459.

M. T. Rahman and M. M. Islam, “A comparison of machine learning
algorithms to estimate effort in varying sized software,” in Proc. IEEE
Region Symp. (TENSYMP), Jun. 2019, pp. 137-142.

T. R. Benala and R. Bandarupalli, “Least square support vector machine in
analogy-based software development effort estimation,” in Proc. Int. Conf.
Recent Adv. Innov. Eng. (ICRAIE), Dec. 2016.

J. S. Shirabad and T. J. Menzies. (2005). The PROMISE Repository
of Software Engineering Databases. Accessed: Oct. 24, 2020. [Online].
Available: http://promise.site.uottawa.ca/SERepository

S. Boslaugh, Statistics in a Nutshell: A Desktop Quick Reference, 2nd ed.
Sebastopol, CA, USA: O’Reilly Media, 2012.

W. O. Bussab and P. A. Morettin, Estatistica Bdsica, 9th ed. Pinheiros,
Brazil: Saraiva, 2017.

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
A new learning scheme of feedforward neural networks,” in Proc. IEEE
Int. Joint Conf. Neural Netw., vol. 2, Jul. 2004, pp. 985-990.

VOLUME 9, 2021

H. D.

P. De Carvalho et al.: Extreme Learning Machine Applied to SDEE

IEEE Access

[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

Q.-Y. Zhu, A. K. Qin, P. N. Suganthan, and G.-B. Huang, “Evolu-
tionary extreme learning machine,” Pattern Recognit., vol. 38, no. 10,
pp. 1759-1763, Oct. 2005.

D. C. Lambert. (2013). Basic ELM algorithms. Simple BSD.
Accessed: Oct. 24, 2020. [Online]. Available: https://personal.ntu.
edu.sg/egbhuang/elm_codes.html

S. Bhatia and V. K. Attri, ““Machine learning techniques in software effort
estimation using COCOMO dataset,” J. Comput. Sci. Eng., vol. 2, no. 6,
pp. 101-106, 2015.

K. V. Kumar, V. Ravi, M. Carr, and N. R. Kiran, “Software development
cost estimation using wavelet neural networks,” J. Syst. Softw., vol. 81,
no. 11, pp. 1853-1867, Nov. 2008.

NumPy. (2021). NumPy V1.20, NumPy Project and Community. Accessed:
Feb. 14, 2021. [Online]. Available: https://numpy.org/

Pandas. (2021). Pandas V.1.2.2. Accessed: Feb. 14, 2021. [Online]. Avail-
able: https://pandas.pydata.org/

Scikit. (2021). Scikit-Learn V.0.24. Accessed: Feb. 14, 2021. [Online].
Available: https://scikit-learn.org/stable/

Matplotlib. (2021). Matplotlib V.3.3.4. Accessed: Feb. 14, 2021. [Online].
Available: https://matplotlib.org/stable/index.html

M. Shepperd and S. MacDonell, “Evaluating prediction systems in soft-
ware project estimation,” Inf. Softw. Technol., vol. 54, no. 8, pp. 820-827,
Aug. 2012.

Z.Hanusz and J. Tarasiriska, ‘““Normalization of the Kolmogorov—Smirnov
and Shapiro—Wilk tests of normality,” Biometrical Lett., vol. 52, no. 2,
pp. 85-93, Dec. 2015.

F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bull., vol. 1, no. 6, pp. 80-83, 1945.

P. Runeson and M. Host, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Softw. Eng., vol. 14,
no. 2, pp. 131-164, Apr. 2009.

HALCYON DAVYS PEREIRA DE CARVALHO
was born in Brasilia, Distrito Federal, Brazil,
in 1980. He received the bachelor’s degree in infor-
mation systems from the Integrated University of
Recife, PE, Brazil, in 2008. He is currently pursu-
ing the graduate degree in computer engineering
with the University of Pernambuco, Recife. He is
experienced in project management for ten years
in the information technology (IT) area. Currently,
he is a Project Manager with Tribunal Regional

Federal da 5% Regido, Recife. He is responsible for implementing the Project
Management Office and Portfolio Management of the Organization.

VOLUME 9, 2021

ROBERTA FAGUNDES (Member, IEEE) received
the graduate degree in telematics technology from
the Federal Center for Technological Education of
Paraiba (CEFET-PB), in 2002, the master’s and
Ph.D. degrees in computer science, and the Ph.D.
degree in statistics from the Federal University of
Pernambuco (UFPE), Brazil, in 2006, 2013, and
2015, respectively. She is currently an Adjunct
Professor in information systems and computer

4 engineering with the University of Pernambuco
(UPE), Brazil. She is also a Vice-Coordinator and a Professor of the Graduate
Program in Computer Engineering, (PPGEC), where there are masters and
doctorate courses. Her research interest includes computer science, with an
emphasis on computational intelligence.

WYLLIAMS SANTOS received the M.Sc. and
Ph.D. degrees in computer science from the Infor-
matics Center (CIn), Federal University of Per-
nambuco (UFPE), Brazil, in 2011 and 2018,
respectively. From 2015 to 2016, he undertook his
joint Ph.D. research with the Department of Com-
puter Science and Information Systems (CSIS),
University of Limerick, Ireland, and in collab-
oration with Lero—the Irish Software Research

: Centre. He is currently an Adjunct Professor
with the University of Pernambuco (UPE), Brazil, where he leads the
REACT Research Laboratories. His research interests include the manage-
ment of software projects, agile software development, technical debt, and
industry—academia collaboration.

92687

