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ABSTRACT Locally repairable codes (LRCs) with multiple recovering sets are highly demanded in dis-
tributed storage systems. In this letter, we generalize the construction of WZL code proposed by Wang et al.
and give a construction of optimal binary LRCs with multiple disjoint recovering sets which can reach
the upper bound on the code rate given by Kadhe et al.. Then we further generalize our idea to obtain a
construction of binary LRCs with intersect recovering sets. The code rate is much higher than that of WZL
code and is very closed to the construction of Kruglik et al.Moreover, two special cases of this construction
can reach the upper bound on the minimum distance.

INDEX TERMS Locally repairable codes, codes with availability, optimal LRCs, intersect recovering set.

I. INTRODUCTION
Distributed storage systems use redundancy to ensure data
reliability, such as replication and MDS codes. Com-
pared with traditional [n, k] MDS codes, locally repairable
codes (LRCs) only need to access r � k active nodes
to recover a failure node at the cost of a small amount of
storage overhead, where r is called locality. The set of these
r nodes (symbols) participating in the recovery of a failure
node is referred to as a recovering set of the node.

The formal definition of LRCs was first introduced by
Gopalan et al. [2]. Analogous to the classical Singleton
bound, they established a tradeoff betweenminimum distance
and locality, referred to as the Singleton-type bound. A code
achieving this Singleton-type bound is called optimal. After
their work, other bounds were given in [3]–[6]. A tighter
upper bound on the dimension k of the LRCs depending
on the alphabet size was given in [7], [8]. For more studies
on the bound of LRCs, one can refer to [9]–[11]. The first
breakthrough construction of optimal LRCs is given in [12]
by generalizing the Reed-Solomon codes. For more construc-
tions on optimal LRCs one can refer to [13]–[17].

However, if some nodes in the recovering set are not avail-
able, we have to find an alternative set of nodes to repair the
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failure node. Thus, it is desirable to havemultiple disjoint sets
of nodes available to repair data in each node. The number
t of the disjoint sets is called availability. A code is said to
have locality r and availability t if every symbol has t disjoint
recovering sets, denoted as (r, t)-LRCs [18]. (r, t)-LRCs also
support parallel reading of data, which is very effective for
solving the problems of degraded reading and hot data. The
first upper bound on the minimum distance of the (r, t)-LRC
is given in [19].

d ≤ n− k + 2−
⌈
t(k − 1)+ 1
t(r − 1)+ 1

⌉
. (1)

In [20], the authors gave a bound on the code rate of (r, t)-
LRCs.

R :=
k
n
≤

t∏
i=1

1

1+ 1
ir

. (2)

This bound applies to both linear codes and non-linear
codes. Kadhe et al. gave a tighter bound on the rate for (r, 3)-
LRCs over F2 in [21].

R ≤ 1−
3

r + 1
+

3 log2(2r + 4)
(r + 1)(2r + 3)

. (3)

In 2017, Kruglik et al. [22] generalized the definition of
(r, t)-LRCs, allowing the recovering sets of each coordi-
nate to intersect at most x coordinates. We refer to these
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codes as (r, t, x)-LRCs. This feature can increase the max-
imum achievable code rate [20] and still meet load balanc-
ing requirements. The bound on the minimum distance of
(r, t, x)-LRCs is given in [1]. Note that this bound is also valid
for the case of standard (r, t)-LRCs.

d ≤ min
1≤i≤k−r

qi − qi−1

qi − 1

(
n− (k − i)−

⌊
k − 1− i
r − 1

⌋)
(4)

In this paper, we generalized the construction of
WZL codes [23], and proposed a construction of binary
(r, t)-LRCs.We refer to it as Construction 1. The code rate of
Construction 1 reaches the upper bound (3). Noted that our
Construction 1 is similar with the construction given in [24].
Although both of the constructions are based on the same
inclusion matrix of linear subspaces in Fmq , we additionally
provide the block form of parity-checkmatrix. Also, we assert
the rank of the parity-check matrix in Lemma 4 in a more
complete and general way, so that the same arguement can be
reused in Lemma 7.

Then, we use the same method to construct binary (r, t, x)-
LRCs, which is referred to asConstruction 2. The code rate is
much higher than that of WZL codes and is very closed to the
construction of Kruglik et al. [22]. The minimum distance of
this code has 2× greater than that of Kruglik’s construction.
Moreover, the minimum distance of the two special cases of
Construction 2 can attain the upper bound (4).

II. PRELIMINARIES
Let C be an [n, k, d]q linear code over Fq. Denote R = k

n
as the rate of the code C. Denote [m] = {1, 2, · · · ,m} for a
positive integer m. For any subset I ⊆ [n] of coordinates of
a code C, denote CI the restriction of C on I . Given α ∈ Fq,
define C(i, α) = {c ∈ C : ci = α}. The support of a vector v
is defined as supp(v) := {i : vi 6= 0}.

A. GAUSSIAN BINOMIAL COEFFICIENTS
The Gaussian binomial coefficient

[n
k

]
q is q-analogs of the

binomial coefficients. Let n, k and q > 1 be positive integers,[n
k

]
q is defined to be[

n
k

]
q
=

(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)
(qk − 1)(qk−1 − 1) · · · (q− 1)[n

k

]
q counts the number of subspaces of dimension k in a

vector space of dimension n over a finite field Fq.

B. LRC WITH AVAILIBLILITY
If every symbol of the code C can be recovered from t disjoint
subsets of size r , then the code C is said to have locality r and
availability t . The formal definition is as follows.
Definition 1: Let C be an [n, k]q linear code, for any coor-

dinate i ∈ [n], there exist t disjoint subsets of coordinates
R1i , · · · ,R

t
i ⊆ [n] \ {i} such that for all j ∈ [t], |Rji| ≤ r and

every pair of symbols α, β ∈ Fq, α 6= β we have

CRji
(i, α) ∩ CRji

(i, β) = ∅.

Wang et al. [23] gave a construction of binary (r, t)-LRCs
for arbitrary r and t . We refer to the code as WZL code, and
its parameters are nw =

(r+t
t

)
, dw = t + 1, Rw =

r
r+t . They

also gave the relation between (r, t)-LRCs and block design.
We conclude in the following lemma.
Lemma 1 ( [23]): The incidence matrix of a 1-(n, r +1, t)

design can be taken as the parity check matrix of the
(r, t)-LRCwith length n if its blocks B1,B2, · · · ,Bb satisfying
the following condition:

|Bi ∩ Bj| ≤ 1, 1 ≤ i < j ≤ b. (5)

where b = nt
r+1 .

C. CODES WITH AVAILABILITY AND INTERSECT
RECOVERING SET
If the recovering set of (r, t)-LRC can intersect at most x
positions, this code is defined as (r, t, x)-LRC.
Definition 2: A code is said to be (r, t, x)-LRC if for any

coordinate i ∈ [n], there exist t subsets of coordinates
R1i , · · · ,R

t
i ⊆ [n] \ {i} such that

|R`i ∩ R
`′

i | ≤ x,∀`, `
′
∈ [t]

and for all j ∈ [t], |Rji| ≤ r, every pair of symbols α,
β ∈ Fq, α 6= β we have

CRji
(i, α) ∩ CRji

(i, β) = ∅.
We generalize the Lemma 1 to the following result.
Corollary 1: The incidence matrix of a 1-(n, r + 1, t)

design can be taken as the parity check matrix of the
(r, t, x)-LRC with length n if its blocks B1,B2, · · · ,Bb sat-
isfies the following condition:

|Bi ∩ Bj| ≤ x + 1, 1 ≤ i < j ≤ b. (6)

where b = nt
r+1 .

Proof: If the given conditions are satisfied, then it is
obvious that each row (resp. column) of the incidence matrix
of such design has r + 1 (resp. t) 1s, and any two different
rows can intersect at most x + 1 positions. The rest of the
proof is similar to Lemma 1, so we omit it here. �

III. CODE CONSTRUCTIONS
For any positive integers m, a, b, such that a < b, a+ b ≤ m,
we define a matrix over F2, denoted as Hq(m, a, b), contain-
ing

[m
a

]
q rows and

[m
b

]
qcolumns. Each row of Hq(m, a, b) is

associated with an a-dimensional subspace of Fmq , and each
column of Hq(m, a, b) is associated with a b-dimensional
subspace of Fmq . For 1 ≤ i ≤

[m
a

]
q, 1 ≤ j ≤

[m
b

]
q, suppose

the i-th row is associated with the subspace Wi and the j-th
column is associated with the subspace Vj, then the (i, j)-th
element hij of H (m, a, b) is defined as follows:

hij =

{
1, if Wi ⊆ Vj
0, if Wi 6⊆ Vj.

(7)
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A. A GENERAL CONSTRUCTION OF BINARY (r, t)-LRCs
When a = b− 1, the matrix Hq(m, a, b) can be regarded as a
parity check matrix of an LRC with availability. We have the
following theorem.
Theorem 1: The code C with Hq(m, b − 1, b) as a par-

ity check matrix is a binary [n, k, d] LRC with locality r
and availability t where n =

[m
b

]
q, k ≥

[m
b

]
q −

[ m
b−1

]
q
,

r =
[m−b+1

1

]
q − 1, t =

[b
1

]
q.

Proof: Since the matrix Hq(m, b− 1, b) contains
[ m
b−1

]
q

rows and
[m
b

]
q columns, we can see the code has length n =[m

b

]
q, and dimension k ≥

[m
b

]
q −

[ m
b−1

]
q
. Each row of the

matrixHq(m, b−1, b) is associatedwith a (b−1)-dimensional
subspace W on Fmq . There are

[m−b+1
1

]
q b-dimensional sub-

spaces containing W , so each row of Hq(m, b − 1, b) has[m−b+1
1

]
q 1s. Each column of Hq(m, b − 1, b) is associated

with a b-dimensional subspace V on Fmq . Each V contains[ b
b−1

]
q
=
[b
1

]
q (b− 1)-dimensional subspace, so each column

of Hq(m, b − 1, b) has
[b
1

]
q 1s. Therefore, Hq(m, b − 1, b) is

an incidence matrix of a 1-
([m

b

]
q,
[m−b+1

1

]
q,
[b
1

]
q

)
-design.

Then for any i-th column associated with a b-dimensional
subspace Vi, i ∈

[[m
b

]
q

]
. Since Vi contains

[b
1

]
q (b − 1)-

dimensional subspaces, there are
[m
b

]
q rows which have 1 in

this column. We claim that excluding the coordinate i, sup-
ports of these

[m
b

]
q rows are pairwise disjoint. Otherwise,

assume there are two rows, say the j-th row (denoted as hj,
associated with the subspace Wj) and the l-th row (denoted
as hl , associated with the subspace Vl), such that {i, u} ⊆
supp(hj) ∩ supp(hl) for some u ∈

[[m
b

]
q

]
\ {i}. It implies that

Wj ⊆ Vi ∩ Vu and Wl ⊆ Vi ∩ Vu. Then we get Wj ∪ Wl ⊆

Vi ∩ Vu. But the union of two different (b − 1)-dimensional
subspaces is of dimension at least b, the intersection of
two different b-dimensional subspaces is of dimension at
most b, which leads to a contradiction. Therefore, the matrix
Hq(m, b− 1, b) satisfies the conditions of Lemma 1, and this
completes the proof. �
Lemma 2: The code C with Hq(m, b − 1, b) as a parity

check matrix has minimum distance d ≥
[b
1

]
q + 1.

Proof: It is sufficient to show that any
[b
1

]
q columns of

H2(m, b − 1, b) are linearly independent. In the binary case,
it is equivalent to show that the sum of any s columns of
H2(m, b − 1, b) is not 0 for all 1 ≤ s ≤

[b
1

]
q. W.L.G. let

us consider the first s columns. We denote the b-dimensional
subspace corresponding to i-th column of H2(m, b− 1, b) as
Vi, and (b − 1)-dimensional subspace corresponding to j-th
row of H2(m, b − 1, b) as Wj. Note that V1 ∩ Vi is at most a
(b−1)-dimensional subspace ofFmq for all i = 2, 3, · · · , s and
there are

[b
1

]
q (b−1)-dimensional subspace inV1. We can find

a (b−1)-dimensional subspace, sayW1 such thatW1 6= V1∩
Vi for i = 2, 3, · · · , s (this is possible because s− 1 <

[b
1

]
q).

This implies W1 ⊆ V1,W1 6⊆ Vi for all i = 2, 3, · · · , s.
Hence the sum of the first s columns of H2(m, b − 1, b) is
not 0. �

B. CONSTRUCTION OF BINARY (r, 3)-LRCs
When q = 2, a = 1, b = 2, the parity check matrix
H2(m, 1, 2) has some special properties. We refer to this
construction as Construction 1.

To see its properties more directly, we need to sort all
the subspaces in the following manner. It is well known that
every k-dimensional subspace of Fnq is the row space of a
k × n matrix of rank k , so we can use reduced row echelon
form (RREF) to represent each subspace. Then take out each
row of the matrix separately, assembled into a 0-1 sequence
in row order, and sort the sequence in the lexical order to get
the order of the subspaces.
Remark 1: The matrix H2(m, 1, 2) can be viewed in the

following way. Each row of H2(m, 1, 2) is associated with a 1-
dimensional subspace of Fm2 , which only contains one vector
of length m, so it can be seen as a binary number of length
m. Similarly, each column of H2(m, 1, 2) is associated with a
2-dimensional subspace of Fm2 . Since a 2-dimensional vector
space contains three vectors, each vector can be seen as a
binary number of length m, where the first two vectors are
the first and second row of the 2× n RREF matrix. The third
vector is the sum of the first two vectors (underF2). If a binary
number corresponding to the ith row is contained in the three
binary numbers of the jth column, the value at the ith row and
jth column of the matrix H2(m, 1, 2) is 1, otherwise 0.
Below is an example of H2(m, 1, 2).
Example 1: Suppose m = 3, the code C with H2(3, 1, 2)

(Fig.1) as a parity check matrix is a (2, 3)-LRC with length
n = 7, dimension k = 3, minimum distance d = 4. We label
all vectors in the vector space at the beginning of rows and
columns (regard a vector as a binary number and convert it
to a decimal number).

FIGURE 1. The matrix H2(3, 1, 2).

The above example has the same parameters as the Sim-
plex code with m = 3. Next we prove some properties of
H2(m, 1, 2) to help understand the code C.
Lemma 3: For any positive integer m ≥ 3, the matrix

H2(m, 1, 2) is of the block form

H2(m, 1, 2) =
(
H2(m− 1, 1, 2) ∗

0 A

)
, (8)

VOLUME 9, 2021 92241



J. Teng, L. Jin: Constructions of Binary LRCs With Multiple Recovering Sets

where

A =

(
11 · · · 1 ∗
I[m−11 ]2

∗

)
,

I[m−11 ]2
is the identity matrix of size

[m−1
1

]
2,0 is a zero

matrix. ∗ represent arbitrary matrix over F2. Particularly,
H2(2, 1, 2) = (1, 1, 1)τ .

Proof: It is easy to see H2(2, 1, 2) = (1, 1, 1)τ . For
the case m ≥ 3, noticed that the RREF matrices corre-
sponding to the former

[m−1
1

]
2 = 2m−1 − 1 rows of the

matrix H2(m, 1, 2) all have 0s as their first entries, thus
these rows can be regarded as 1-dimensional subspaces of
(m − 1)-dimensional space. Since the subspaces associated
with columns are sorted, the subspaces correspond to the
RREF matrices whose first column is all 0s must be at the
top, and these columns can be regarded as 2-dimensional
subspaces of (m − 1)-dimensional space. There are a total
of
[m−1

2

]
2 of such subspaces. Therefore, the upper left block

of H2(m, 1, 2) (i.e. the former
[m−1

1

]
2 rows and the former[m−1

2

]
2 columns) is the matrix H2(m − 1, 1, 2). The RREF

matrices corresponding to the latter 2m−1 rows of the matrix
H2(m, 1, 2) all have 1s as their first entries, but the RREF
matrices corresponding to the former

[m−1
2

]
2 columns of the

matrixH2(m, 1, 2) all have 0s as their first entries. As a result,
the bottom left block is a 2m−1 ×

[m−1
2

]
2 zero submatrix.

Regarding the matrix A, note that the RREF matrix of
the first row of A are (1, 0, · · · , 0), which has m − 1 zeros.
Since the subspaces are sorted, the subspaces correspond to
the RREF matrices whose first row is (1, 0, · · · , 0) must be
ranked after the RREF matrices whose first column is 0,
before other subspaces. There are a total of

[m−1
1

]
2 of such

subspaces. Therefore, the former
[m−1

1

]
2 columns of the first

row of matrix A are all 1s. Moreover, if we add the two
rows of the RREF matrix corresponding to the former

[m−1
1

]
2

columns of matrix A, we can get the vectors whose binary
representation from (1, 0, · · · , 1) to (1, 1, · · · , 1) (decimal
representation from 2m−1 + 1 to 2m − 1). The vectors cor-
responding to the rows start from the second row of matrix
A whose binary representation also from (1, 0, · · · , 1) to
(1, 1, · · · , 1). Therefore, the bottom left block of matrix A
is an identity matrix of size

[m−1
1

]
2.

�
According to the block form of the matrixH2(m, 1, 2), it is

easy to see rank(H2(m, 1, 2)) ≥
∑m−1

i=1

[ i
1

]
2 = 2m − 1 −

m. In fact, the rows of H2(m, 1, 2) are linearly dependant,
so some rows can be deleted. We define the following set.

Ei =
{
(2j− 1)2i + k : 1 ≤ j ≤ 2m−i−1, 0 ≤ k ≤ 2i − 1

}
.

(9)

From the definition of the set Ei, if we fix m = 4, we can
get,

E0 = {1, 3, 5, · · · , 15},

E1 = {2, 3, 6, 7, 10, 11, 14, 15},

E2 = {4, 5, 6, 7, 12, 13, 14, 15},

E3 = {8, 9, 10, 11, 12, 13, 14, 15}.

If all the elements in the Ei are converted into binary form,
we will find that the first digit of all elements in E0 is 1,
that is, all odd numbers; the second digit of all the elements
in E1 is 1; the third digit of all elements in E2 is 1; the
fourth digit of all elements in E3 is 1. In fact, Ei is the set of
elements in the binary form of all elements in the complete set
U = {1, 2, · · · , 2m − 1} whose (i+ 1)th digit is 1.
For convenience, we also define

Ri = {jth row of H2(m, 1, 2) : j ∈ Ei}

Lemma 4: The rank of matrix H2(m, 1, 2) is 2m − 1− m.
Proof: In the following, we show that each 2i-th row in

matrix H2(m, 1, 2) is an F2-linear combination of all rows in
Ri for i = 0, 1, · · · ,m− 1.
Theorem 1 has showed that every column of matrix

H2(m, 1, 2) has three 1s. It is sufficient to show that the
number of 1 in any column of the rows in Ri is 0 or 2.
Since the subspaces are sorted in lexical order, the binary
representation of the vector corresponding to each row can be
regarded as row number, and the (i+1)-th digits of the binary
representation of all elements in the set Ei are all 1. For any
columns in Ri, say j-th column, j ∈ {1, 2, · · · ,

[m
2

]
2}. Suppose

the number of 1 in j-th column is 1 (resp. 3), this means there
is only one (resp. three) vector whose (i+ 1)-th coordinate is
1 in the subspace corresponding to the j-th column, which is
impossible. Because the (i+1)-th coordinate of the remaining
two vectors in the subspace is 0 (resp. 1), so the (i + 1)-th
coordinate of the third vector obtained by adding these two
vectors must also be 0, which leads to a contradiction, from
which the result follows.

�
Lemma 5: When m ≥ 3, the code C which has the parity

check matrix H2(m, 1, 2) has minimum distance d = 4.
Proof: From Lemma 3, the upper left block of the

matrix H2(m, 1, 2) contains H2(3, 1, 2) for m ≥ 3, and the
bottom left block is a zero matrix, The matrix H2(3, 1, 2)
has 4 columns that are linearly dependant (see Fig.1). So
there are 4 columns in the matrix H2(m, 1, 2) that are linearly
dependant. Combine with the Lemma 2, the result follows. �
Corollary 2: The code C with H2(m, 1, 2) as a parity check

matrix is a binary [n, k, d]-LRC with locality r and availabil-
ity t where n =

[m
2

]
2, k =

[m
2

]
2 −

[m
1

]
2 + m,r = 2m−1 − 2,

t = 3, d = t + 1 = 4. Therefore, the code is an optimal LRC
with availability which reaches the bound (3).

C. CONSTRUCTIONS OF (r, t, x)-LRCs
When q = 2, a = 1, b ≥ 3, we can get the LRC with
availability in which the recovering sets can intersect in a
small number of coordinates. We refer to this construction
as Construction 2.

Let us give an example of H2(m, 1, b).
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Example 2: Suppose m = 4, the code C which has the
parity checkmatrix H2(4, 1, 3) is a (6, 7, 2)-LRCwith n = 15,
k = 10, d = 4.

1 1 1 0 0 0 0 1 0 0 0 0 1 1 1
1 1 0 1 0 1 0 0 1 0 1 0 0 0 1
1 1 0 0 1 0 1 0 0 1 0 1 0 0 1
1 0 1 1 1 0 0 0 1 1 0 0 1 0 0
1 0 1 0 0 1 1 0 0 0 1 1 1 0 0
1 0 0 1 0 0 1 1 1 0 0 1 0 1 0
1 0 0 0 1 1 0 1 0 1 1 0 0 1 0
0 1 1 1 1 1 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 1 1 1 0 0 0
0 1 0 1 0 1 0 0 0 1 0 1 1 1 0
0 1 0 0 1 0 1 0 1 0 1 0 1 1 0
0 0 1 1 1 0 0 0 0 0 1 1 0 1 1
0 0 1 0 0 1 1 0 1 1 0 0 0 1 1
0 0 0 1 0 0 1 1 0 1 1 0 1 0 1
0 0 0 0 1 1 0 1 1 0 0 1 1 0 1


Note that the minimum distance of the above code has

reached the bound (4).
Theorem 2: The code C which has the parity check matrix

H2(m, 1, b) is a (r, t, x)-LRC for b ≥ 3, where r =
[m−1
b−1

]
2
−

1, t =
[b
1

]
2, x =

[m−2
b−2

]
2
− 1.

Proof: Each row of matrix H2(m, 1, b) is associated
with a 1-dimensional subspace W on Fm2 . There are

[m−1
b−1

]
2

b-dimensional subspaces containing W , so each row of
H2(m, 1, b) has

[m−1
b−1

]
2
1s. Each column of H2(m, 1, b) is

associated with a b-dimensional subspace V on Fm2 . Each
V contains

[b
1

]
2 1-dimensional subspace, so each column of

H2(m, 1, b) has
[b
1

]
2 1s. Therefore,H2(m, 1, b) is an incidence

matrix of a 1-
([m

b

]
2,
[m−1
b−1

]
2
,
[b
1

]
2

)
-design.

For any two rows of H2(m, 1, b), say ith row and jth row,
which corresponds to the subspace Wi and Wj respectively,
for 1 ≤ i < j ≤

[[m
1

]
2

]
. Wi ∩ Wj is a 2-dimensional

subspace. For any column of H2(m, 1, b), there are
[m−2
b−2

]
2

b-dimensional subspace which contains such 2-dimensional
subspace Wi ∩ Wj, that is the supports of any two rows of
H2(m, 1, b) intersect at

[m−2
b−2

]
2
coordinates, i.e. x =

[m−2
b−2

]
2
−

1. Therefore, the matrix H2(m, 1, b) satisfies the conditions
of Corollary 1, and it complete the proof. �
Then we give a brief analysis of the structure of the matrix

H2(m, 1, b) for b ≥ 3.
Theorem 3: For any positive integer 3 ≤ b < m,

the matrix H2(m, 1, b) is of the block form

H2(m, 1, b) =
(
H2(m− 1, 1, b) ∗

0 ∗

)
, (10)

where 0 is a zero matrix, ∗ represent arbitrary matrix over F2.
In particular H2(b, 1, b) = (1, · · · , 1)τ is a column vector of
length

[b
1

]
2.

Proof: The proof is similar to the proof of Theorem 3,
so we omit it here. �
Next, we generalize the method of proving the rank of

H2(m, 1, 2) to prove the rank ofH2(m, 1, b ≥ 3). Since all the

subspaces are defined over F2, for the convenience of proof,
we also view the vector in the subspace as a binary number.
Lemma 6: For any m-dimensional vector space V over F2.

Let S be a set of column indices such that 1 ≤ |S| ≤ m − 1.
Then |{v ∈ V : vi = 1,∀i ∈ S}| ≡ 0 mod 2.

Proof: Let n ≥ m be the vector length of V . We
represent V as a RREF matrix G of size m × n. Denote GS
as a submatrix formed by the columns of indices in S. We
transform G to a matrix G′, such that GS is in its RREF. If k
is the rank ofGS , 0 ≤ k ≤ |S|, then the last (m−k) rows ofG′S
are all zero vectors. Notice that the vector space generated by
the first k rows ofG′S contains at most one all 1s vector. Now,
consider the vector space generated by the last (m− k) rows
of G′, its cardinality is 2m−k , and all vectors have 0 entries
at the columns of indices in S. Therefore, the vector space
generated by G contains either 0 or 2m−k vectors that have
all 1s in the columns of indices in S. From which the result
follows. �
In fact, rows of the matrix H2(m, 1, b) are linearly depen-

dant, so some rows can be deleted. We define the following
set consisting of s-tuples of positive integers:

Cm
s = {(α1, · · · , αs) : 1 ≤ α1 < · · · < αs ≤ m} (11)

Actually, Cm
s is a set of s-combination of [m],

∣∣Cm
s

∣∣ = (ms ).
Let Esj be a set of all them-bit binary number whose i-th bit

is 1, for all i ∈ (α1, α2, · · · , αs)j, where (α1, α2, · · · , αs)j is
the j-th tuple inCm

s . Let (E
s
j )min be the smallest element in Esj .

Obviously, when s traverses from 1 to b− 1, all these (Esj )min

are different and
∑b−1

s=1

∣∣∣Esj ∣∣∣ = ∑b−1
s=1

(m
s

)
. For convenience,

we also define

Rsj =
{
i− th row of H2(m, 1, b) : i ∈ Esj

}
Lemma 7: For any b ≥ 3, rank(H2(m, 1, b)) ≤

∑b−1
s=1

(m
s

)
.

Therefore the code C which has the parity check matrix
H2(m, 1, b) has dimension k ≥

[m
b

]
2 −

[m
1

]
2 +

∑b−1
i=1

(m
i

)
.

Proof: In the following, we show that each (Esj )min-th
row in matrix H2(m, 1, b) is an F2-linear combination of rall
rows in Rsj for j = 1, 2, · · · ,

(m
s

)
and s = 0, 1, · · · , b− 1.

The matrix H2(m, 1, b) is defined over F2, it is sufficient
to show that the number of 1 in any column of the rows in
Rsj is even. Since the subspaces are sorted in lexical order,
the binary representation of the vector corresponding to each
row can be regarded as a row number. According to Lemma 6
and the definition of Esj , for each row in Rsj , its i-th column is
1 for all i ∈ (α1, α2, · · · , αs)j, where (α1, α2, · · · , αs)j is the
j-th tuple in Cm

s . Therefore, the number of 1 in any column
of the rows in Rsj is even. Moreover, because all these (Esj )min
are different, we can sort (Esj )min in increasing order, then all
(Esj )min-th rows of theH2(m, 1, b) can be deleted in this order.
From which the result follows. �
Corollary 3: The code C which has the parity check matrix

H2(m, 1, b) has dimension

k ≥
[
m
b

]
2
−

[
m
1

]
2
+

b−1∑
i=1

(
m
i

)
. (12)
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so the code rate is,

R ≥ 1−

[m
1

]
2 −

∑b−1
i=1

(m
i

)[m
b

]
2

. (13)

Remark 2: In fact, if we use the method similar to the
analysis of matrix H2(m, 1, 2) to deeply analyze the block
structure of H2(m, 1, b), we can get that the rank of the matrix
H2(m, 1, b) is indeed

∑b−1
i=1

(m
i

)
.

Lemma 8: The code C which has the parity check matrix
H2(m, 1, b) has minimum distance d ≥ 4.

Proof: It is obvious that any two columns of the
matrix cannot be equal. It is sufficient to show that the
sum of any 3 columns of H2(m, 1, b) is not 0. We denote
the b-dimensional subspace corresponding to ith column of
H2(m, 1, b) asVi. Note that any two different subspacesVi∩Vj
is at most a (b − 1)-dimensional subspace of Fm2 . And a
(b − 1)-dimensional subspace contains

[b−1
1

]
2 = 2b−1 − 1

1-dimensional subspaces. So the supports of any two columns
of H2(m, 1, b) can intersect at most 2b−1 − 1 coordinates.
However, the number of 1 in any column of H2(m, 1, b) is[

b
1

]
2
= 2b − 1 > 2× (2b−1 − 1) = 2×

[
b− 1
1

]
2

This means that the sum of any 3 columns cannot be 0, from
which the result follows. �

IV. COMPARISON WITH OTHER CONSTRUCTIONS
A. GENERAL CONSTRUCTION
Our general construction is a binary regular LDPC code
with girth > 4. Hao et al.’s [25] proposed a construction
of LRC codes with information symbols by combining an
existing regular LDPC and an identity matrix. But we directly
construct the parity-check matrix to obtain an LRC code, and
this matrix can be viewed as a incidence matrix of BIBDwith
λ = 1, so our construction can also be regarded as a kind of
BIBD-LDPC codes.

B. CONSTRUCTION 1
Among (r, t)-LRCs that have the same availability t = 3
as our Construction 1, WZL code is the one that has good
parameters. It has been shown that WZL code has a higher
rate than that of direct product code and Prakash et al.’s
construction [3].

Recall that the parameters of a WZL code are nw =(r+t
t

)
, dw = t + 1, Rw =

r
r+t . For all r > 0, the code

length of Construction 1 is n1 =
(r+1)(2r+3)

3 , which is shorter
than that of WZL code nw =

(r+3
3

)
. Both constructions

have the same minimum distance. To compare the code rate,
Construction 1 is rate optimal. Indeed, it is easy to see that
we always have a greater code rate thanRw for r > 0.

C. CONSTRUCTION 2
There are few works on constructions of (r, t, x)-LRCs.
Kruglik et al.’s construction is based onWZL code, its param-
eters are nk = (x + 1)

(r+t
t

)
, dk = 2, rk = (r + 1)(x +

1) − 1,Rk =
r+(t−1)x
r+t+(t−1)x , so our Construction 2 has a much

shorter code length and 2× greater minimum distance than
Kruglik’s construction. We also compare our code rate to that
of Kruglik et al. and WZL code with the same locality r and
availability t , as shown in Fig. 2 and Fig. 3.

FIGURE 2. Comparison of code rate for b = 3, 4 ≤ m ≤ 11.

FIGURE 3. Comparison of code rate for b = 4, 5 ≤ m ≤ 11.

The figures show our code rate are greater thanWZL code,
but slightly less than Kruglik et al. Moreover, when m =
4, b = 3 and m = 5, b = 4, our construction reaches the
minimum distance bound (4) of (r, t, x)-LRC codes. Note
that since the matrix H2(m, 1, b) has the above-mentioned
block form (see Theorem 3), when b is fixed, the minimum
distance is also fixed, which is the same as the code has parity
check matrix H2(b+ 1, 1, b).

V. CONCLUSION
In this paper, we generalize the construction of WZL codes
and propose two constructions of LRC codes. Construction
1 can produce optimal (r, t)-LRCs, which can reach the upper
bound of code rate (3). Construction 2 has much higher
rate than that of WZL codes and attain the upper bound on
minimumdistance (4) in two special cases.Moreover, we give
a sufficient condition for a 1-design’s incidence matrix that
can be the parity-check matrix of a (r, t, x)-LRCs.
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