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ABSTRACT In the modern electronic warfare signal environment, multiple radar signals of high density are
mixed and received, and separating them into signals for each emitter is an essential step for emitter identi-
fication. Each radar has its own pulse repetition interval (PRI), which is a key parameter for deinterleaving
pulse trains. The PRI is modulated in various forms depending on the purpose of the radar operation, and
analyzing the mean PRI and the modulation type of PRI is the core of electronic warfare signal processing.
Many existing papers have tried separate independent approaches for deinterleaving and for PRI modulation
recognition. However, many distortions are unintentionally generated in the process of extracting the pulse
train using the PRI estimated through deinterleaving for the PRI modulation recognition. This degrades the
modulation recognition performance. In this paper, we propose a unified method for the deinterleaving and
PRI modulation recognition of radar pulses using deep learning-based multitasking learning. The simulation
results demonstrate the good performance of the proposed method for deinterleaving and modulation
recognition, compared to the conventional method, and prove that the proposed method is robust in noisy
radar signal environments.

INDEX TERMS Multi-task learning(MTL), deep learning, PRI, deinterleaving, modulation, electronic
warfare.

I. INTRODUCTION
Electronic warfare support(ES) improves the survivability of
allies by providing early warning, through the process of ana-
lyzing received emitter signals and identifying the emitters
by comparing them with identification libraries. However,
in operation, electronic warfare systems designed for emitter
alerts and the self-defense of ships and aircraft face a complex
signal environment, in which multiple emitter signals are
mixed and signal distortions such as missing and spurious
pulses are included [1].

In order to identify an emitter with high accuracy in such a
signal environment, it is essential to deinterleave the pulse
train of each emitter signal and recognize the modulation
type of each pulse train. The purpose of deinterleaving the
pulse train is to separate the corresponding pulse train for
each emitter signal from the received pulse signal. In a sig-
nal environment with low signal density and low distortion,
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it is possible to deinterleave the received pulse signals using
only signal measurement variables such as frequency, direc-
tion of arrival, and pulse width. However, in the modern
electronic warfare signal environment, emitter signals with
various changing signal characteristics can arrive from a
similar direction at the same time, and the density of the
emitter signals has been gradually increasing. As a result,
the deinterleaving of pulse trains has become an increasingly
challenging task [1]. In addition, artificial signal distortion,
such as the jamming pulse in [2], is also being employed for
anti-electronic warfare.

To deinterleave a pulse train, the pulse repetition inter-
val (PRI) information, which is derived from the time of
arrival (TOA) of each pulse, is used. PRI is a key characteris-
tic of radar emitters and refers to the repetition period of the
pulses transmitted by the radar. Given the TOA sequence of
the radar signal, the PRI sequence is defined as:

p(i) = ti+1 − ti, i = 0, 1, . . . ,N − 1 (1)
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where ti is the TOA of the i-th pulse and N is the total
number of received pulses. Radars search or track targets by
sending and receiving pulses, using their own unique PRI
characteristics. Therefore, in electronic warfare support, it is
necessary to deinterleave the pulse trains of each emitter
signal from the received pulse signal by estimating the PRI
based on the continuity and regularity of the received pulse.

Fig. 1(a) shows the general signal processing flow in ES.
The deinterleaving of pulse trains is performed using Pulse
Description words(PDWs) collected from the receiver, and
then pulse trains are extracted using PRI information obtained
through deinterleaving. Deinterleaving is again performed
on the remaining pulses. This process continues until the
number of remaining pulses falls below the threshold. PRI
modulation recognition is performed for each extracted pulse
train. When the modulation recognition is completed, the PRI
information and modulation recognition result are compared
with the built-in library to identify the emitter.

FIGURE 1. Signal processing flow in ES.

Since the result of deinterleaving is used as an input to
the PRI modulation recognition step, the performance of the
deinterleaving greatly affects the performance of the PRI
modulation recognition. If deinterleaving and PRI modu-
lation recognition are performed independently, the perfor-
mance of emitter identification may be degraded, even in
a good signal environment where signal distortions such as
missing pulses do not exist. For a pulse train with modulation
where the PRI type is not stable, pulse distortion can occur
in the pulse train extraction step after deinterleaving. It may
act as a burden on the PRI modulation recognition step and
degrade the overall performance.

To overcome the limitation of separated processes and
ensure highly accurate emitter analysis, it is essential to
perform deinterleaving and PRI modulation recognition at
the same time. Fig. 1(b) illustrates the proposed method,
which combines deinterleaving and modulation recognition.
We train a convolutional neural network(CNN) which per-
forms deinterleaving and PRI modulation recognition at the

same time under the Multi-Task Learning (MTL) framework.
The proposed unified method is designed to take advantage
of the interrelationship between the two tasks to improve
learning efficiency, and the accuracy of deinterleaving and
PRI modulation recognition. As far as we know, this is a new
approach in the field of electronic warfare signal processing.

The rest of the paper is organized as follows. Section II
describes the conventional deinterleaving and PRI modula-
tion recognition methods. In Section III, the concept of PRI
modulation and distortion is introduced, and in Section IV,
a unified method of deinterleaving and PRI modulation type
recognition based on MTL using deep neural networks is
proposed. Section V presents the simulation results under
various conditions. Section VI shows the effect of the param-
eter values on the proposed model, and we conclude in
Section VII.

II. RELATED WORKS
Research fields of electronic warfare signal processing
include intra-pulse modulation recognition, deinterleaving,
PRI modulation recognition, and emitter identification.
Intra-pulse modulation recognition is a task to classify mod-
ulation of frequency or phase within the pulse. Deep learning
methods such as CNN and LSTM have been actively applied
for intra-pulse modulation [3]–[5] and the construction of
a separate non-negative matrix factorization network was
proposed in [6]. Emitter identification is a task to identify
emitters through comparison with a built-in library using
parameters extracted through signal analysis. [7] proposed a
method to improve the performance of classifiers for emit-
ter identification even in situations where there are many
missing data. Deinterleaving and PRI modulation recognition
have been one of the main research topics in ES. How-
ever, in most research they have been studied separately and
independently.

A. DEINTERLEAVING
The field of deinterleaving started with histogram-based
approaches such as cumulative difference histrogram
(CDIF) [8] and sequential difference histogram (SDIF) [9].
The histogram is generated for the TOA of each pulse, and the
PRI is estimated by comparing it with a predefined threshold.
In the histogram method, the amount of calculation increases
rapidly with the number of pulses, and the performance
difference becomes larger with the size of the histogram bin.
Also, there is ambiguity when setting the threshold, so it
exhibits low performance for pulse trains with non-stable
PRI. Other studies have been conducted to address the speed
problem of the histogram method and the PRI estimation
problem [10], [11], but the ambiguity of the histogram bin
still exists.

In [12], a PRI estimation method based on Discrete Fourier
Transform (DFT) was proposed, but it had low estimation
performance in a noisy environment. The concept of phase
and estimated PRI based on Continuous Wavelet Trans-
form (CWT) was introduced in [13]. Although the method
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showed relatively robust performance against noise, similar
to other existing methods, it had the ambiguity of threshold
setting. However, the CWT method had the potential of con-
firming changes in PRI over time.

[14] proposed a method called PRI transform. Similar to
the CWT method, the PRI transform estimated mean PRI
using the phase information between pulses, and showed
robust performance against noise, but performance degraded
depending on the detection range of PRI and the rate of
variation in the non-stable PRI signal. Various studies have
been conducted to resolve the shortcomings of the PRI trans-
form. Studies were conducted to solve the problem of perfor-
mance degradation due to the upper limit of PRI and stagger
PRI estimation problem [15], and to improve the speed by
changing the phase calculation to linear addition [16]. In
addition, to improve performance for jittered PRI and stag-
ger PRI, a procedural method using two versions of PRI
transform [17] and a method of merging the extracted EDW
(Emitter Description Word) [18] have been proposed. [19]
proposed a method of calculating the PRI transform for each
window by covering the PRI transform with a short time
window like CWT, and estimating the PRI through a total
of 64 snapshots. However, only the contents of the snap-
shot configuration were reported, and no information was
presented on how to estimate the PRI. In addition, another
study proposed a method of processing a large jitter rate
signal through gradient analysis of the input signal [20].
A method of extracting features by converting the collected
signal into a 2D image and estimating the PRI using a rough
transform [21] was also proposed.

Recently, methods using deep learning have also been
proposed. In [22], a method of estimating PRI using pulse
width and PRI as inputs of the recurrent neural network was
proposed, but this must be repeated continuously through
re-input after extracting the pulse train. It did not take into
account the possible ambiguities in the pulse width. In [23],
a denoising autoencoder was used to perform deinterleaving,
and for the first time, the pulse trains were automatically
deinterleaved by the output of the autoencoder without artifi-
cially extracting the pulse train. However, this method, which
focuses on removing noise, has a disadvantage, in that it is
not possible to extract a jittered PRI pulse train composed of
a certain range of noise. [24] proposed amethod of estimating
PRI using the CWT result of the input pulse trains as an
input to theMLP network. In [25], a method of tracking pulse
amplitude to improve the performance of deinterleaving was
proposed.

Inmost of the studiesmentioned so far, performance deteri-
orates rapidly in environments with various signal distortions.
In addition, since only methods of estimating PRI are consid-
ered, the pulse trains of each emitter must be extracted to rec-
ognize the PRI modulation, and distortion is not considered
at all. Since the focus is only on deinterleaving rather than
improving the overall accuracy of electronic warfare signal
processing, they are limited when it comes to achieving the
final goal of accurately identifying emitters.

B. PRI MODULATION RECOGNITION
There are two types of PRI modulation recognition, conven-
tional feature-based methods and recent deep learning-based
methods. [26] proposed a method to calculate the autocor-
relation function (ACF) using TOA to recognize the PRI
modulation type by comparing it with a predefined threshold.
Another ACF-based study was also proposed for the subtype
recognition of complex PRI [27], such as saturated sinusoidal
modulation. [28] proposed a machine learning-based PRI
estimation method. He defined the signum function for the
input TOA, extracted 62 features, and estimated the PRImod-
ulation using Multi Layer Perceptron (MLP), but there were
several limitations, including the number of input signals.
A method [29] was proposed which utilized features such
as continuity and linearity, and used the signum function
in [28]. Another method [30] of utilizing features such as
stationary and symmetry was also proposed. The authors
in [31] used features such as modified Shannon’s entropy
and kurtosis after symbolizing TOA sequences, and in [32],
features such as normalized jump energy and SP-curve for
PRI modulation recognition were used. In addition, a study
on various emitter scenarios was also presented that used
a wavelet transform and histogram in combination through
various procedures [33]. [34] proposed a PRI modulation
recognition method through wavelet-based feature extrac-
tion. In [35], a hierarchical classification method using
histogram-based features and sequential information-based
features was proposed.

Recently, modulation recognition methods using deep
learning have also been proposed. In [36], a method of rec-
ognizing PRI modulation using a CNN without performing
a preprocessing process on the input signal was proposed.
After obtaining ACF results for the input signal, a method
of defining an ACSE network using the features extracted
from the ACF result as an input, was also proposed [37]. [38]
proposed a PRI modulation type recognition method using
attention-based RNN, which worked well on time series data.

III. PRI MODULATION AND DISTORTION
PRI modulation types include stable (STB), stagger (STG),
dwell & switch (D&S), jittered (JTR) and pattern, while
pattern includes wobulated (WOB), sliding(+) (SLP) and
sliding(−) (SLM). The stable PRI type always has the same
PRI value over time, but in non-stable PRI modulation types,
PRI values change over time, as shown in Fig. 2. The stagger
signal is a combination of several signals with the same
period, and the dwell & switch signal dwells in one PRI and
then switches to another PRI under certain conditions. For
jittered, wobulated, sliding(+), sliding(−) signals, the PRI
value changes pulse by pulse, and these types change the PRI
value in a specific form or randomly.

Pulse distortions can occur due to the complex sig-
nal environment itself, deinterleaving of electronic warfare
equipment, or poor pulse train extraction performance. Pulse
distortions eventually degrade the estimation performance of
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FIGURE 2. PRI modulations for non-stable PRI.

FIGURE 3. Distortions in a wobulated signal by the signal environment.

the parameter used to identify the emitter. The spurious pulse
and missing pulse in Fig. 3 are representative pulse distortion
results that occur in the signal environment. However, unlike
distortions caused by such a signal environment, a distortion
that is generated during the process of estimating the emitter’s
PRI information and extracting the corresponding pulse train
can greatly influence both the extracted pulse train and the
remaining pulses.

Fig. 4 illustrates the simulation results when extracting
only the wobulated signal from the pulse train using a

FIGURE 4. Distortions by the deinterleaving performance.

conventional deinterleaving process, in which a wobulated
signal and a jittered signal having the same mean PRI are
mixed. The extraction was performed under the assumption
that there are no spurious pulses or missing pulses. Distor-
tions by deinterleaving are particularly severe when multiple
emitters with similar mean PRI are present at the same time.
This distortion occurs because there is no PRI modulation
information in the process of selecting the next pulse to be
extracted after one pulse is extracted.

In the pulse train extraction step, since there is no accurate
information about the modulation type of the PRI, it must be
extracted using only the mean PRI information. Hence, all
pulses within a specific range around the mean PRI can be
candidates for extraction. Fig. 4 clearly shows that the pulse
distortions arising from traditional deinterleaving and pulse
train extraction methods should not be overlooked.

IV. PROPOSED METHOD
To overcome the shortcomings of conventional electronic
warfare signal processing, we propose a unified deinter-
leaving and PRI modulation recognition method based
on multi-task learning with a CNN. To apply supervised
learning-based deep learning, the input data and labels for
ground truth must be defined. CWT is a signal process-
ing tool for time-frequency analysis of signals that provides
high-accuracy time and frequency localization. CWT can be
simplified as a function of cosine and sine by using Euler’s
formula, so it is easy to apply to real-time embedded sys-
tems such as electronic warfare systems. In addition, it is
possible to check the frequency change over time by applying
CWT for the sliding windows on the pulse trains. Therefore,
we use CWT to construct inputs of our proposed deep neural
network, considering the advantages of easy implementation
and 2D image generation representing deinterleaving and PRI
modulation analysis at once. CWT results [13] are visually
similar to images and can be used to confirm changes in
PRI over time. The label for the target is composed of a
two-dimensional array containing the PRI and modulation
information, and label propagation is proposed to compensate
for the deinterleaving error. The proposed CNN-based MTL
model combines three loss functions, defined for mean PRI
estimation and modulation type prediction, and improves
performance by adding residual blocks and global average
pooling. Post-processing that merges adjacent estimated PRIs
is also introduced to reduce false alarms in the testing process.
The overall training and testing procedure of the proposed
method is shown in Fig. 5.

A. INPUT DATA CONFIGURATION
Suppose the TOA’s of the received pulse train, t1, t2, t3, . . . ,
are represented as a superposition of impulses, as in [13]:

s(t) =
∑
j

δ(t − tj) (2)
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FIGURE 5. Training and testing procedure of the proposed method.

To apply wavelet transform, we define the mother wavelet
as follows [13]:

ψ(t) = M−
1
2χ

(
t
M

)
e2π it (3)

where χ (t) is a rectangular window of unit length defined on
[-1/2, 1/2] and M denotes the size of the moving window on
a pulse train which is set as the minimum number of pulses
for the analysis of the mean PRI and modulation type. CWT
is performed for the pulses within each window which moves
forward.

The wavelet transform for s(t) [13] is as follows:

D(T , t) =
T
M

∣∣∣∣∫ ψ∗
(
t ′ − tw
T

)
s(t ′)dt ′

∣∣∣∣2 (4)

where T is a variable for estimating mean PRI values, which
are assumed to be ranged in [0,512], and tw represents the
starting time of the current window t . If the mean PRI of an
emitter is S, due to the exponential function in Eq (3),D(T , t)
has a large value when T is the multiple of S.

The result of applying CWT to the input pulse train is three
dimensional data of [window number t , T , Power]. Power
is D(T , t), which is the result of applying CWT at window
number t . Assuming the input pulse trains are composed of
stable and wobulated types of mean PRIs of 164µs and 245µs
respectively. Fig. 6 compares the values of D(T , t) in a single
window when three different window sizes, 16, 32, and 64,
are used. For high-accuracy deinterleaving, the peak value
corresponding to the mean PRI of the input pulse train should
be high and the peak shape needs to be sharp. A high peak
value indicates that there is a high probability of a pulse
train having a corresponding mean PRI, and a sharp shape
indicates a high resolution PRI estimation. In the case of
M = 16 in Fig. 6, a peak that appears to correspond to a
stable PRI and a peak group that appears to be wobulated
PRI are shown. However, the width of the peak corresponding
to the stable PRI is large, which degrades the resolution of
the PRI estimation. In addition, the peak at 82µs, which is
a sub-harmonic (half PRI) of this stable PRI, is quite large.
This raises concerns that can be estimated as a result of
deinterleaving to the sub-harmonic. AsM increases, the peak
corresponding to PRI 164µs becomes sharper. This increases
the resolution of the deinterleaving and the accuracy of the
PRI estimation.

By applying CWT for the pulses within a moving window
on the input pulse train, we obtained the image shown in Fig 7,
where the values of D(T , t) for each window are plotted in
each column. The images in Fig. 7 were used as input in the
proposed convolutional neural network. However, the sizes of
the input images for CNN need to be fixed regardless of the
size of a window. In order to have the same number of win-
dows even when a different window size is used, we moved
a window forward, allowing an appropriate overlap size of
windows. In the case of M = 16 of Fig. 7, the shapes
of the two modulation types, stable and wobulated, appear
strongly in bright colors. As M increases, the number of
pulses within a window increases and it becomes difficult to
accurately represent the PRI change per pulse.M determines
the set of pulses to which the wavelet transform is applied,
and accordingly has a great influence on the resolution of
deinterleaving and the performance of PRI modulation. It can

FIGURE 6. PRI estimation result according to window size M.
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FIGURE 7. PRI changes with window size M over time.

be seen that deinterleaving and PRI modulation recognition
performance are in a trade-off relationship according to M .
In order to extract the mean PRI of each emitter in a situation
where the pulses from multiple emitters are mixed, it is
advantageous that the number of pulses to be analyzed at
one time is large enough. On the other hand, the number of
pulses to be analyzed at one time should be small to properly
recognize the change in PRI when the PRIs are extracted by
moving the window over time. Therefore, rather than using a
singleM value, it is necessary to properly combine the results
from multiple M values, which could be advantageous for
deinterleaving and PRI modulation recognition. Fig. 8 shows
the results from the normalized weighted sum of the CWT
results for M = 16 and M = 64 with weights 1/4 and 3/4.
It clearly shows both the mean PRI and PRI modulation type.
In the simulations in Section V, 32× 512 sized images were
constructed by using two window sizes, of M = 16 and M =
64, as the input for CNN.We also give the test results from the
combination of different window sizes such as 32 and 64 or
16 and 32 in Section VI-D. In the image size of 32×512, 32 is
the number of moving windows (t in Equation 4), and 512 is
the range of the PRI to be detected. Hence, it is possible to
change the size of the input image of a deep neural network
by changing the PRI range to be detected or by changing the
number of moving windows.

FIGURE 8. Proposed input data.

B. LABEL CONFIGURATION
In order to train a CNN model, the target label for an
input data must be clearly defined. The label for our MTL
model with deep neural networks must include the ground
truth of both deinterleaving and PRI modulation recognition.
We define a target label as a two-dimensional array where
the first row contains the information for the mean PRIs and
the remaining rows indicate modulation type. The value 1 in
the first row means that a pulse train with a mean PRI corre-
sponding to that index is present in the input signal. The PRI
modulation type corresponding to each PRI index is encoded
as a 5-digit binary vector in the column from the second row
to the sixth row. Fig. 9 shows an example of the label con-
figuration for a signal with a PRI of 205µs and a modulation
wobulated type. In our simulation in Section V, the PRI range
to be considered was set from 100µs to 300µs. Therefore,
the target label was configured as a two-dimensional array
whose column size was 201 and a row size was 6. The dwell
& switch modulation type has stable PRI values within a spe-
cific range, and the stagger type always has a constant frame
period, so those two types are usually analyzed first as stable
type. Dwell & switch and stagger types are further recognized
during post-processing. Accordingly, the dwell & switch and
stagger PRI types were excluded in the experiments for PRI
modulation recognition.

The peak of the CWT result for input signal may appear in
some indices around the mean PRI due to pulse distortion as
shown in Fig. 10. In order to reflect this observation about

FIGURE 9. An example of label configuration as a two dimensional array.
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FIGURE 10. Several PRI peaks for stable and wobulated PRI.

FIGURE 11. Label configuration after label propagation (PRI = 164µs,
245µs).

label configuration, we propose a method, called a label
propagation method, that propagates the PRI and modulation
flag using a margin which is set differently depending on the
PRI modulation type. We set a margin of 1µs for the stable
PRI type and 3µs for the non-stable PRI type. The PRI flag
1 is propagated as it is within the margin range, while the
propagated value is set to a value other than 1 with a slight
penalty. We set the propagated value as 0.9 for stable type
and as 0.8 for non-stable types as shown in Fig. 11. As for the
modulation flag, the value 1 is propagated as it is within the
range in which the PRI flag is propagated.

C. NETWORK ARCHITECTURE
We propose an MTL architecture using CNN as a unified
model for deinterleaving and PRI modulation recognition.
CNN is a specialized kind of neural network for processing
data that has a known, grid-like topology [39]. Convolutional
networks have been tremendously successful in practical
applications such as object detection in computer vision, and
has since been widely used in various fields such as speech
recognition. The proposed networkmodel is shown in Fig. 12.

As an input the proposed network receives images with a
size [1 × 32 × 512] set by the CWT process and extracts
features while passing through the convolution layers. The
filter used in most convolution layers of the network is a 3×3
size filter. In the last convolutional layer, a 1× 1 size filter is
used to adjust the size of the output channel to 1206, which
is 201(PRI)×6(modulation). After features are compressed

through convolution and maxpooling, representative features
for each channel are extracted through global average pooling
(GAP) [40]. In conventional CNN, after a feature is extracted
through CNN, classification is performed through a number
of fully connected layers, which is likely to cause overfitting.
Instead of adding several fully connected layers on top of
the feature maps, global average pooling takes the average
of each feature map, and the resulting vector is fed directly
into the last dense layer. In order to prevent gradient loss
as the depth of the network increases, we composed some
convolutional layers in the network as a residual block. The
residual block adds the identity to the convolution result and
leaky-relu activation as a shortcut connection [41]. Table 1
details the output shape and number of parameters for each
layer of the proposed model.

TABLE 1. Number of parameters in the proposed network.

D. LOSS FUNCTION
MTL is a deep learning method that derives results by sharing
the characteristics of an input for two or more tasks [42]. We
used hard parameter sharing to share most of the network
parameters for MTL. The proposed method was performed
using three loss functions for the last output at the top of
the network. We set up the tasks for the deinterleaving task
and the PRI modulation recognition task. It is important that
the deinterleaving task accurately finds the mean PRI of the
active emitter, but it is also important not to generate false
alarms. Therefore, we divided the deinterleaving task into an
emitter estimation task and a non-emitter suppression task.
As described in Section IV-B, the output of the proposed
network is a two-dimensional array, where the first row is
the PRI flag, and each column in the remaining subarray
represents 5-digits, encoding for the PRImodulation type. For
the input imageX, the two-dimensional array representing the
ground truth label, designated as Y , is configured by the label
propagationmethod explained in Section IV-B.We denote the
output of the network as Ŷ . Yi,j and Ŷi,j are the i,j-th element
of Y and Ŷ .

89366 VOLUME 9, 2021



J.-W. Han, C. H. Park: Unified Method for Deinterleaving and PRI Modulation Recognition

FIGURE 12. Proposed network model.

The goal of the emitter estimation task is to estimate the
emitter PRI accurately, which is a true positive prediction
for the input PRI. We define the loss function for the emitter
estimation task as follows:

LT =
∑
i

Y1,i(Y1,i − Ŷ1,i)2 (5)

where Y1,i is the ground truth for emitter PRI. The loss
function measures the difference between the true PRI values
and predicted PRI values in PRI indices where the emitter PRI
exists.

The non-emitter suppression task aims to suppress a
non-emitter PRI flag from being 1. In other words, its goal
is to prevent a false positive prediction for PRI. The loss
function for the non-emitter suppression task is as follows:

LF =
∑
i

(1− Y1,i)(Y1,i − Ŷ1,i)2 (6)

The loss function has been designed to measure the differ-
ence between the true PRI values and predicted PRI values in
PRI indices where an emitter PRI does not exist. In electronic
warfare, this is also called a false alarm.

The PRI modulation recognition task processes the predic-
tion of PRI modulation type for each emitter PRI. The loss
function for the PRI modulation recognition task is defined
as follows:

LM =
∑
i

Y1,i(Y2:6,i − Ŷ2:6,i)2 (7)

where Y2:6,i denotes the i-th column in Y which is the 5-digit
encoding for the modulation type of the emitter PRI. LM
compares the squared error in the prediction of modulation
type when the PRI flag of the ground truth is 1. The total loss
of the proposed method can be expressed asLtotal after taking
the weighted sum for these three losses.

Ltotal = λTLT + λFLF + λMLM (8)

where λ is the weight of each task. Therefore, our MTL
training can be treated as an optimization problem as follows:

θ∗ = argmin
θ

Ltotal(D, θ) (9)

where D is the training set for the tasks, θ is the total param-
eters in our MTL model.

E. WEAK LABEL MERGING
With any kind of deinterleaving method, it is almost impos-
sible to directly estimate just the values corresponding to the
PRIs of the input signal in the presence of pulse distortion.
Although there is a difference depending on the degree of
distortion, CWT-based methods, like other deinterleaving
methods, produce multiple peaks (PRIs) in the output when a
signal with pulse distortion is used for input data, making it
difficult to estimate accurately. To improve the performance
in the PRI estimation, we propose using weak label merg-
ing (WLM) as a post-processing step for the PRI flag vector
in the network output. WLM does not directly affect training,
and it operates only in the test step. WLM merges adjacent
values to the largest value if there are several adjacent values
estimated as the PRI of the emitter. For the modulation flag,
the type with the maximum value of modulation flag for the
active PRI flag in the WLM result is set as the modulation
type for the PRI flag.
Algorithm 1 shows the details of WLM. It takes the two

inputs, the output of network (Ŷ ) and the score threshold (σ ).
The threshold σ determines whether merging should be per-
formed in the corresponding PRI index. In WLM, the PRI
scores of the indices adjacent to the PRI index in which the
PRI score has the largest value are merged. The merging
process is repeated for the next largest PRI value among
the remaining PRI values. The process terminates when the
largest PRI value to be merged is smaller than the threshold.
Depending on the PRI modulation type in the index, which is
the center of the merge, if it is stable, the merging range (τ )
is set to only 1µs, as in line 9 of Algorithm 1, otherwise it is
set to 3µs, as in line 11. Merging is performed on the τ range
left and right from the merging basis index, as in lines 13 to
16. By merging adjacent peaks through WLM, the number of
peaks generated per emitter can be reduced, and as a result,
deinterleaving accuracy can be improved.

V. SIMULATIONS
A. DATA GENERATION
In this section we perform simulations to demonstrate the
performance of our unified method for deinterleaving and
PRI modulation recognition based on MTL with deep neural
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Algorithm 1 Algorithm for WLM

Input: prediction Ŷ , score threshold σ
Output: Ŷ
1: s← sort Ŷ by the descending order (index of Ŷ )
2: fi← 0, i = 0, . . . , n− 1
3: for i = 0 to n− 1 do
4: if (Ŷ1,si ≤ σ ) then
5: break
6: end if
7: if (fsi == 0) then
8: if argmax(Ŷ2:6,si ) == 0 then
9: τ ← 1

10: else
11: τ ← 3
12: end if
13: for j = −τ to τ do
14: Ŷ1,si ← Ŷ1,si + Ŷ1,si+j
15: Ŷ1,si+j ← 0
16: f̂si+j ← 1
17: end for
18: end if
19: end for

networks. To analyze the performance based on a real EW
environment, we applied spurious pulses and missing pulses
to the input data.

Table 2 shows the parameters used to generate the input
signal. Since our proposed method is based on MTL deep
learning, training data and validation data are required.
To train our model, we generated a total of 10,000 sig-
nals. 80% of the generated signals were used for training
and the remaining 20% were used for validation to prevent
over-fitting in the training step. Various PRI variation rates
and pulse distortion rates were set. Each data was a pulse
train consisting of a total of 512 pulses. The number of
emitters in each signal of the training data were randomly
chosen in the range from 1 to 4, and the modulation type
of each emitter was randomly selected from the five types
shown in Table 2. If the modulation type was non-stable,
a range of PRI variation from 5 to 20%was randomly applied.
Distortion pulses such as spurious pulse and missing pulse
were applied randomly within 0∼5%. We also generated the
test data with 2,000 signals for each test condition. All other
parameters were set the same as in the training data, except
that pulse distortion from 0% to 30% was applied in 5%
increments. The SNR, which is an error factor considered
in the receiver, is already reflected in the PDW, so it is not
considered in this paper.

B. METRICS
In this section, we describe the metrics used for perfor-
mance evaluation. Since the proposed method has two main
tasks, of deinterleaving and modulation type recognition,
we used separate metrics to evaluate the performance of the

TABLE 2. Parameters of the input signals.

two tasks. In the deinterleaving task, multiple PRI values
can be estimated from 100µs to 300µs. We evaluated the
performance by focusing only on the positive prediction,
because only a small part of the whole PRI range is activated.
Finding the emitter accurately and not generating false alarms
are the most important objectives in deinterleaving. Hence,
we used precision P as a performance metric for deinterleav-
ing, defined as

P =
TP

TP+ FP
(10)

where TP is a true positive prediction for an active emitter,
and FP is a false positive prediction for a non-active emitter.

To measure PRI modulation recognition performance,
we used the macro F1-score, which is one of the evaluation
metrics for a multi-label classification problems [43], [44].
The F1-score includes concepts of precision and recall. First,
we constructed a confusion matrix for true modulation types
versus predicted modulation types using the results from PRI
modulation prediction. In the output from the trained network
for each input pulse train, the predicted PRI modulation types
for ground-truth mean PRI value contribute to increase the
count by 1 in the row of the true modulation type in the con-
fusion matrix. For example, suppose an input pulse train has a
stable (STB) modulation type with a mean PRI of 200µs, and
a jittered (JTR) modulation type with a mean PRI of 275µs.
If the prediction results are a stable modulation type with a
mean PRI 200µs, a sliding(-) (SLM) modulation with a mean
PRI 275µs, and a jittered (JTR) modulation with a mean PRI
310µs, then only the (True, Predicted) = (STB, STB) and
(JTR, SLM) units in the confusion matrix are increased by 1.

For each modulation type k , precision Pk and recall Rk can
be computed as follows:

Pk =
TPk

TPk + FPk
(11)

Rk =
TPk

TPk + FNk
(12)

where TPk is a true positive prediction, FPk is a false positive
prediction, and FNk is a false negative prediction for modu-
lation type k. False negative prediction means that the true
modulation type is not the predicted type. Fig. 13 shows an
example of a confusion matrix to explain precision and recall.
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FIGURE 13. An example for a confusion matrix.

TP1 = 30, FP1 correspond to the shaded block in the first
column, and FN1 is explained by the shaded block in the first
row. The precision (P1) and recall (R1) for the STB type are
calculated as follows:

P1 =
30

30+ 3+ 1+ 3+ 0
; 0.8108 (13)

R1 =
30

30+ 0+ 5+ 4+ 3
; 0.7143 (14)

F1-score is a harmonic mean of precision and recall, and
can be calculated as follows:

F1k =
2× Pk × Rk
Pk + Rk

(15)

where, F1k is F1-score for PRI modulation type k. After
calculating the F1-score for each type, we can calculate the
macro F1-score using their arithmetic mean as follows:

macro F1 =
1
5

5∑
k=1

F1k (16)

C. RESULTS AND DISCUSSION
1) DEINTERLEAVING PERFORMANCE
We verified the performance of the proposed MTL-based
deinterleaving by comparison with the conventional CWT
method. The conventional CWT method estimates the
PRI among peaks by comparing them with a predefined
threshold. In the paper by Driscoll [13], an example was
given where the threshold values were set to 0.5 and 0.6,
but specific threshold values were not fixed. To derive the
best performance in the conventional CWT method, we vari-
ously applied two configurable parameters, the size M of the
moving window and the threshold value for PRI estimation.
For four cases CWT16, CWT32, CWT64, CWT80, we used the
window sizes of 16, 32, 64, 80, respectively. CWTpro used the
combined CWT results from two window sizes 16 and 64 as
in our proposed method. For each case, the best result was
chosen after applying four thresholds of 0.3, 0.5, 0.6, 0.8. For
the proposed method, the score threshold(σ ) for weak label
merging was set to 1, and the weights of each loss function
were all set equally to 1.

Fig. 14 shows the deinterleaving performance of each case,
while increasing the range of change in the non-stable PRI
from 5% to 20% with no pulse distortion. The conventional
CWT showed big performance differences depending on the

FIGURE 14. Deinterleaving precision on PRI variations (non-stable PRI).

size of the moving window, and showed meaningful perfor-
mance when the size of the moving window was 64 or more.
It is a reasonable result that the moving window itself has a
great influence on resolution when it comes to deinterleaving.
It can be seen that the proposed method shows much better
performance than the conventional CWT methods. While the
performance of the conventional CWT methods degrades as
the PRI variation rate increases, the proposed method shows
stable performance regardless of the PRI change rate. For
the conventional CWT method, as the range of PRI variation
grows wider, the peak range appears wider. But its intensity is
weaker, reducing the accuracy of the PRI estimation. On the
other hand, the proposed method has already learned about
the case where the range is wider and the power is weakened,
so the degradation in performance is limited

Fig. 15 and Fig. 16 show the deinterleaving performance
in a signal environment where spurious and missing pulse
distortions are applied, respectively. Like the previous results,
the conventional CWT method shows meaningful perfor-
mance onlywhen the size ofmovingwindow is larger than 64.
The proposed method has a slightly degraded performance
depending on the degree of pulse distortion, but generally

FIGURE 15. Deinterleaving precision with spurious pulses.
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FIGURE 16. Deinterleaving precision with missing pulses.

exhibits stable performance, with a large difference in per-
formance compared to the conventional method.

2) MODULATION RECOGNITION PERFORMANCE
Conventional modulation recognition methods analyze the
modulation type of each extracted pulse train for each emitter,
while our proposed method analyzes the modulation type
as it is collected before each emitter is extracted. Hence,
direct comparison with conventional methods is impossible.
Instead, we analyzed performance under various environmen-
tal conditions as in the deinterleaving performance analysis.

To analyze the performance of the PRImodulation recogni-
tion, the estimated modulation types were compared with the
ground truth. Fig. 17 shows the performance for modulation
type recognition when the change rate of non-stable PRI was
changed from 5% to 20%. The figure shows the F1-score for
eachmodulation type and themacro F1-score. The interesting
thing about themodulation recognition performancewith PRI
variations is that 10% of the change range showed better
performance than the 5% change range. This is because the
non-stable PRI signal only changed within 5% of the mean
PRI, which created some difficulty in distinguishing it from
the stable PRI. When the PRI variation range was 20%,

FIGURE 17. Modulation recognition performance with PRI variations
(non-stable PRI).

the performance was slightly degraded, due to some overlap-
ping with the PRI variation range of other emitters, because
of the wide PRI variation range. The modulation recogni-
tion performance with PRI variation was slightly different
in the non-stable PRI, but generally had a high performance,
of over 99%.

Fig. 18 shows the PRImodulation recognition performance
according to the degree of spurious pulses. The macro F1-
score was used to evaluate the overall performance of the
proposed model, and the F1-score for each type was used
to check the performance of each modulation type. Macro
F1 scores of 99% or more were obtained for up to 15%
spurious pulses, but when the spurious pulse application was
increased to 20%, the performance of the JTR type decreased
significantly and the macro F1 score dropped to 98%. The
reason the JTR type is particularly poor in performance can
be understood by looking at the confusion matrix. Fig. 19
shows the confusion matrix for modulation recognition in a
situation where there were 20% spurious pulses. In a situation
where a lot of spurious pulses were applied, it can be seen
that various types aremisclassified as JTR types. In particular,
since theWOB type is misclassified as JTR type with random

FIGURE 18. Modulation recognition performance with spurious pulses.

FIGURE 19. Confusion matrix with spurious pulses (20%).
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FIGURE 20. Modulation recognition performance with missing pulses.

FIGURE 21. Confusion matrix with missing pulses (20%).

characteristics, it shows low performance in the F1-score of
the JTR type and WOB type.

Fig. 20 shows the PRImodulation recognition performance
according to the degree of missing pulses. Overall, the trend
is similar to the case with spurious pulses. Although the
confusion matrix in Fig. 21 is slightly different, the results
are similar.

In these various simulations, our proposed method showed
competent performance, even in various situations with PRI
change and pulse distortions.

VI. PARAMETER SENSITIVITY
In our unifiedMTL-based deinterleaving and PRImodulation
recognition method, the values of some parameters need to
be determined for the model and label configuration. In this
section, the effect of parameter values on the performance of
the proposed method is shown.

A. EFFECTS OF WEAK LABEL MERGING
In this subsection, we analyze the effect of WLM on dein-
terleaving and modulation type recognition performance. As
mentioned in Section IV-E, we determined the merging range
according to the modulation type of the PRI index based on

TABLE 3. Deinterleaving precision by WLM on PRI variations.

the WLM. Table. 3 shows the performance of deinterleav-
ing according to the weak label merging parameter settings.
In the table, the PRI merging range is described as (stable
merging range, non-stablemerging range). For example, (1,3)
indicates that the merging range for stable PRI is 1µs, and
the merging range for non-stable PRI is 3µs. WLM merges
the scores of adjacent PRIs around the index with the largest
PRI score among the surroundings. Since the encoded value
of PRI modulation type does not change, the modulation
recognition result is not affected. When the merging range
of 3 or 4µs was set for the non-stable modulation type,
stable performance was obtained regardless of the rate of PRI
variation.

B. EFFECTS OF NETWORK MODEL
Our MTL model consists of a total of 12 layers, and the 2nd
to 6th layers are all composed of residual blocks. We defined
a total of four models as shown in Fig. 22 to verify the effect
of applying the residual block. We analyzed the precision of
deinterleaving task and the macro F1-score of PRI modula-
tion recognition for each model. In order to compare per-
formances according to models, we performed simulations
under the conditions of spurious pulses and missing pulse
distortions that degrade performance.

As shown in Fig. 23 to Fig. 26, the use of residual blocks
is superior to that of convolution alone. Among the models
where the residual block was applied, the 5_residual model
used in our MTL model and the 6_residual model showed
stable performance during PRI estimation and modulation
recognition. As shown in Fig. 23 and 24 for the simulation
results in the spurious pulses environment, the 5_residual
model and the 6_residual outperformed other models. It can
be seen that the overall performance of the 5_residual model
was slightly better than that of the 6_residual model. The sim-
ulation results with missing pulses in Fig. 25 and 26 showed
surprising performance with the residual block. In particular,
Fig. 25 shows a significant performance drop in deinterleav-
ing when the residual block was not used. When the pulse
missing rate was 15∼30%, the 4_residual model showed
some good performance, but the 5_residual model showed
stable performance overall.

The results in this section indicate that, to ensure good
performance in pulse distortion environments, it is necessary
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FIGURE 22. Model definition.

FIGURE 23. Deinterleaving precision with spurious pulses.

FIGURE 24. Modulation recognition performance with spurious pulses.

to use an appropriate number of residual blocks. Our model
applied 5_residual, which showed more stable performance
than other residual models.

C. EFFECTS OF LOSS WEIGHTS
In Section IV-D, we defined the loss functions for three tasks,
of emitter estimation, non-emitter suppression and modula-
tion recognition, and the total loss was set as their weighted
sum. In this subsection, we study the effect of the weight of
each loss function on performance.

Fig. 27 to Fig. 30 show the performance of deinterleaving
and PRI modulation recognition depending on the set weight

FIGURE 25. Deinterleaving precision with missing pulses.

FIGURE 26. Modulation recognition performance with missing pulses.

FIGURE 27. Deinterleaving precision on PRI variations (non-stable PRI).

applied to the loss of each task. In the figure, λT and λF

represent the weight of the loss function of the emitter estima-
tion task and the non-emitter suppression task, respectively,
and λM represents the weight of the loss function of the PRI
modulation recognition task.

The performance changed as the PRI variation in the
non-stable PRI pulse train increased, as shown in Fig. 27 and
Fig. 28. Giving a larger weight to either the emitter estimation
task or the non-emitter suppression task had no effect on
the accuracy of deinterleaving. In terms of deinterleaving,
both were equally important, so giving the same weight value
showed better performance. Applying a larger weight to the
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FIGURE 28. Modulation recognition performance with PRI variations.

FIGURE 29. Deinterleaving precision with missing pulses.

FIGURE 30. Modulation recognition performance with missing pulses.

PRI modulation recognition task made no difference to the
overall performance. This is because when only modulation
recognition was emphasized, the deinterleaving performance
degraded.

Fig. 29 and Fig. 30 compare the performance under the
missing pulses environment. Because the difference in per-
formance was slightly bigger for missing pulses than for
spurious pulses, the effect of loss weight on performance
can be mainly attributed to missing pulses. PRI modulation
recognition showed almost similar performance, but the best
performance for deinterleaving was obtained with the same
value for each loss weight.

Through several simulations, we came to the following
conclusions about setting the loss weight. Focusing on find-
ing the active emitter increased false alarms, while emphasiz-
ing suppression of the non-emitter reduced the false alarms,
but reduced the accuracy of the active emitter estimation.
In addition, emphasis on modulation recognition perfor-
mance led to degraded deinterleaving performance. As a
result, the estimated active emitter was reduced and the
number of emitters for modulation recognition was reduced.
Therefore, it is possible to expect stable performance under
various distortion conditions by assigning the same weight
to each of the two tasks, for deinterleaving and one task for
modulation.

D. EFFECTS OF WINDOW SIZE
In this subsection, we analyze the effect of window size(M )
on deinterleaving and PRI modulation recognition perfor-
mance. Fig. 31 to Fig. 34 compare deinterleaving and PRI
modulation recognition performance according to various
window size settings. When the window size is small,
the deinterleaving performance is degraded, but the modu-
lation recognition performance is increased. As the window
size is increased, the result is the opposite. On the other
hand, when the CWT results from two window sizes are
combined, high performance in both tasks was obtained.

FIGURE 31. Deinterleaving precision with spurious pulses.

FIGURE 32. Modulation recognition performance with spurious pulses.
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FIGURE 33. Deinterleaving precision with missing pulses.

FIGURE 34. Modulation recognition performance with missing pulses.

Therefore, stable performance can be expected in both tasks
by appropriately combining the results of a small M value and
a large M value.

VII. CONCLUSION AND FUTURE WORKS
In this paper, we proposed a unified method based on MTL
using deep neural networks to solve the two main tasks
in electronic warfare - deinterleaving and PRI modulation
recognition. We conducted various studies to find the model
parameters suitable for our proposed MTL model, and ana-
lyzed the performance of the proposedmethod by comparison
with the performance of the conventional CWT method in
various environments, such as pulse distortions. The simu-
lation results showed that our model estimated the PRI and
modulation type of each emitter in the input pulse train with
high accuracy, evenwith various PRI variations and in various
pulse distortion environments.

For the convenience of simulation, we set the range of the
PRI to be detected to 100∼300µs, but in order to operate in an
actual environment, it must be able to cover the entire range of
the PRI to be detected. In addition, in this paper, the research
focused only on using the information between pulses, such
as PRI, but it can be extended to use information in the pulse
itself, such as frequency modulation or scan type analysis.
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