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ABSTRACT Almost all image sensors measure only one color per pixel through the color filter array.
Missing pixels are estimated using a demosaicing process. For this reason, a demosaiced image leaves a
particular trace. When an image is manipulated or tampered, the demosaicing trace can be changed. This
change can serve as a basic clue for detecting or localizing image tampering. Demosaicing pattern-based
tampering localization algorithms require a re-interpolation process, and the prediction residue between
the given image and the re-interpolated image is commonly used to localize tampered regions. However,
the prediction residue is not always valid because the demosaicing interpolation kernel cannot be known,
which deteriorates the localization performance. This paper presents an effective re-interpolation process
using singular value decomposition for an unknown demosaicing method. First, the green channel of the
given image is decomposed into four sub-images according to the Bayer pattern. For a small block of
each sub-image, the singular value decomposition is performed. The prediction residue is obtained by
reconstructing the image block after removing the largest singular value. The feature to localize the forged
regions is extracted by the logarithm ratio of the prediction residue variance. The proposed method does
not require any statistical model for the extracted feature, because the prediction residue is more accurate
than that of conventional methods. We perform intensive experiments for three test datasets and compare the
proposed method with state-of-the-art tampering localization methods, the results of which indicate that the
proposed scheme outperforms existing approaches.

INDEX TERMS Image tampering localization, demosaicing trace, singular value decomposition, prediction
residue, re-interpolation kernel, color filter array, image splicing.

I. INTRODUCTION
Images are often used as evidence to determine the authen-
ticity of an event. In recent decades, image manipulation
has been employed for the purpose of simple entertainment
or as the initial step of a photomontage. However, the use
of manipulated images for malicious purposes can demon-
strate a negative impact on human society. Because detecting
forged images by human eye is difficult, the development of
a reliable image tampering detection method is required to
determine image authenticity. A wide range of research has
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been conducted with respect to the detection of various image
forgeries [1]–[4].

A commonly used tampering method is image splicing.
If a part of an image is spliced to a part of another image,
the spliced image exhibits heterogeneous statistical proper-
ties. Choosing which characteristics appear differently by
image tampering is vital. Therefore, identifying the different
statistical characteristics of the parts of a tampered image is
the basis for detecting or localizing image splicing. Splic-
ing detection [5]–[10] can determine whether a given image
is authentic or tampered. In practical forensic applications,
localizing splicing regions [11]–[13] compared with splicing
detection is more effective.
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Image manipulation always leaves a trace, which can
be used to detect tampered images or localize forged
regions. In particular, the statistical inconsistencies of blur-
ring [14]–[16], noise patterns [17]–[19], JPEG artifacts [20],
and color filter array (CFA) patterns [21]–[23] are widely
used as clues to detect forged images or localize tampered
regions. Recently, machine learning-based forgery localiza-
tion networks [24]–[26] received serious research interest.
Among the traces caused by image manipulation, we are
interested in CFA pattern artifacts. Various digital foren-
sic approaches are based on CFA pattern, such as source
camera-model identification [27], CFA pattern configura-
tion [28]–[30], color change detection [31], [32], and image
authentication [33], [34].

CFA is a specially designed element in a single-sensor
imaging pipeline to acquire low-resolution color information
in the image scene. The raw data captured by the image sensor
with CFA are converted into a full-resolution color image
by a demosaicing process, which is a kind of interpolation.
When an image is tampered, forged regions exhibit demosaic-
ing inconsistencies within authentic image regions. Accord-
ingly, a number of studies have been conducted [35]–[40]
to localize forged regions using demosaicing traces. How-
ever, the interpolation kernel for demosaicing is generally
unknown. Thus, almost all methods use the prediction residue
between the given suspected image and the estimated image
by re-interpolation.

In forgery localization based on CFA patterns, the
re-interpolation process is very important and is the first step
in generating a tampering localization map. The performance
of tampering localization can depend on the selection of
the re-interpolation kernel. In general, the re-interpolation
kernel is assumed to be bilinear, bicubic, or median [35]–[37],
[40]. These interpolation kernel types only use intra-channel
information, and they are, therefore, inappropriate for demo-
saicing methods using inter-channel color information.
To address this, least-squares-based approaches [38], [39]
are used to estimate the re-interpolation kernel. However,
estimating one kernel for one image is not desirable because
more than two interpolation kernels can exist for one spliced
image.

This paper presents a novel prediction residue estimation
method based on singular value decomposition (SVD) for
forgery localization. In the proposed method, the prediction
residue is obtained by the reconstructed image by examin-
ing the remaining singular values after removing the largest
singular value. The proposed method is more efficient in
estimating prediction residue compared with conventional
estimation algorithms based on the re-interpolation process.
We propose a simple feature for the variance ratio of pre-
diction residue to localize the tampered image regions. The
proposed scheme does not require CFA configuration infor-
mation, and it generates superior forgery localization results
than conventional localization methods.

The remainder of this paper is organized as follows.
Related works are briefly reviewed in Section II. Section III

FIGURE 1. A typical process of CFA-based forgery localization.

analyzes the variance of prediction residue and its application
to forgery localization. The proposed prediction residue esti-
mation and tampering localization algorithm are presented
in Section IV. Section V presents the experimental results
obtained using the proposed approach, and finally, the paper
is concluded in Section VI.

II. RELATED WORK
Fig. 1 shows the typical process of forgery localization
methods using CFA artifacts. First, the green chan-
nel [36], [37], [39] or all color channels [35], [38], [40]
are selected to estimate the re-interpolation kernel. Next,
prediction residue is generated using the difference between
the tampered and re-interpolated images by the estimated
kernel. Based on the prediction residue, various features are
extracted, the most common of which is the variance ratio.
Feature models to classify authentic or tampered regions can
be developed based on extracted features. Finally, the local-
ization map is obtained using the parameters of the feature
model.

In 2009, Dirik and Memon [35] presented image tam-
pering detection techniques based on CFA processing. They
exploited the fact that the sensor noise variance in inter-
polated pixels obtained by the demosaicing process is
significantly lower than acquired pixels. Based on this, they
recognized that a ratio of noise variances between inter-
polated and acquired pixels can be used to identify image
tampering. This method was successfully applied to tamper
detection with low error rates. However, this scheme exhibits
a limited performance for small tampered regions and pro-
duces coarse localization of image forgery.

Ferrara et al. [36] assumed that image tampering removes
artifacts due to the demosaicing process. They proposed a
new feature measuring the presence of demosaicing artifacts,
that is, the logarithm of the geometric mean ratio of the
prediction error variance, and introduced a new statistical
model that derives the tampering probability of each mage
block. This algorithm can generate fine-grained localization
of tampered regions. However, the detection performance is
affected by JPEG compression, and the forgery maps exhibit
high false positives.

Singh et al. [37] presented a high-order statistical approach
to detect image forgery. This method uses the Markov
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transition probabilitymatrix (MTPM) to identify the presence
or absence of CFA artifacts in a particular image region. The
MTPM was employed on the local variance of the predic-
tion error between the observed and estimated pixels, which
improved the quality of forgery map, however, high false
positives were recorded in the presence of uniform image
regions.

Fernández et al. [38] proposed an image tampering detec-
tion technique based on CFA artifacts arising from the
differences in the distribution of acquired and interpolated
pixels. This approach identifies tampered areas by computing
the probability of each pixel of being interpolated and then
applying discrete cosine transform (DCT) on small blocks
of the probability map. The value of the DCT coefficient
for the highest frequency on each block was used to decide
whether the analyzed region had been tampered with. How-
ever, the method failed to clearly localize tampered regions
in the image.

In 2019, Le and Retraint [39] introduced an improved
forgery localization algorithm using demosaicing artifacts.
They first explained why the demosaicing-based approach is
less effective with JPEG compressed images. A robust statis-
tical feature was presented on the basis of the green-channel
prediction residue, and a penalized expectation maximiza-
tion (EM) algorithm was used to localize forged areas in the
tampered image. This method achieved a high localization
performance, however, the localization performance was still
limited to uncompressed images.

Recently, an image tampering detection technique [40] was
proposed by exposing the CFA artifacts in the difference
domain through high-order MTPM-based statistical analysis.
The suspicious imagewas first re-interpolatedwith four of the
most commonly used Bayer CFA patterns, and then, the dif-
ference between the given image and the re-interpolated
versions was evaluated to analyze CFA inconsistencies. The
MTPM in the DCT domain was obtained for the difference
image. This method produced a significant false positive rate
due to the presence of uniform regions.

III. ANALYSIS OF PREDICTION RESIDUE
The prediction residue plays a vital role in localizing the
tampered regions of an image. In particular, in almost all
methods, the prediction residue variance is exploited to
extract features for forgery localization. In this section,
we examine demosaicing traces in terms of the mean and
variance of the prediction residue in both authentic and inter-
polated pixels. The analysis is given for a one-dimensional
case, the results of which can be easily extended to
two-dimensional case.

A. DEMOSAICING PROCESS
Letting pA(x) be the acquired pixel, we consider demosaicing
interpolation of the green pixel in a particular image row,
as shown in Fig. 2. The acquired pixel is

pA(x) =

{
G(x), if x even
0, if x odd,

(1)

FIGURE 2. Green pixel selection in a row of image surrounded in yellow
box.

where G(x) denotes the green pixel value at location x. Let-
ting pD(x) denote the demosaiced green pixel at position x, it
can be expressed as

pD(x) =

G(x), if x even∑
u

hupA(x + u), if x odd, (2)

where hu is the interpolation kernel, and 6uhu = 1. When x
is odd, the interpolation is achieved using the signal G(x) at
x in even positions. Therefore, only odd u values contribute
to the convolution in (2). In this case, we assume that the
inter-channel information is not used, and the acquired pixels
are not modified in the interpolation process.

B. PREDICTION RESIDUE
In many studies, re-interpolation is proven to be efficient
with respect to extracting features for forgery localization.
However, the choice of the re-interpolation kernel is arbitrary
and can affect the localization performance. Letting ku be the
re-interpolation kernel, the re-interpolated pixel pR(x) can be
expressed as

pR(x) =
∑
u

kupD(x + u). (3)

The prediction residue e(x) can be defined as e(x) =
pD(x)− pR(x), which can be further expressed

e(x) =


G(x)−

∑
u

kupR(x + u), if x even∑
u

hupA(x + u)−
∑
u

kupR(x + u) if x odd.

(4)

Using (3) and (4), we can obtain

e(x) =


G(x)−

∑
u

ku
∑
v

hvG(x + u+ v), if x even∑
u

(hu − ku)G(x + u) if x odd,

(5)

where 6uku = 1.

C. VARIANCE OF PREDICTION RESIDUE
Let us assume that pA(x) is independent and an identically
distributed signal. Accordingly, we can easily verify that the
mean of e(x) is zero regardless of the position of x. Alterna-
tively, the variance of the prediction residue is dependent on
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the position of x. If x is even (acquired pixel), the variance of
e(x), σ 2

A can be expressed as

σ 2
A = σ

2
G

(
1+

∑
u

k2u
∑
v

h2v

)
, (6)

where σ 2
G is the variance of G(x). The variance of the predic-

tion residue at odd x values (interpolated pixel), σ 2
T is

σ 2
T = σ

2
G

∑
u

(hu − ku)2. (7)

The detail derivations for these two variances are outlined
by [36] and [39].

According to (6) and (7), we can assume that σ 2
A is higher

than σ 2
T in the presence of CFA demosaicing. If we know the

demosaicing kernel hu, then σ 2
T is obviously zero. When an

image has been forged, the relation σ 2
A ≥ σ 2

T can be bro-
ken. Therefore, the imbalance between the prediction residue
variance for even and odd locations is an important clue in
detecting/localizing image tampering.

The relation σ 2
A ≥ σ 2

T is available under the assumption
that the demosaicing interpolations do not use inter-channel
information. However, the relation σ 2

A ≥ σ 2
T can be bro-

ken when inter-channel interpolation is used. To examine
this, we selected 50 images with RGGB Bayer pattern, and
performed six famous demosaicing interpolations, including
bilinear kernel, the adaptive homogeneity-directed (AHD)
method [41], the variable number of gradients (VNG) algo-
rithm [42], DCB demosaicing [43], IGV demosaicing [44],
and the heterogeneity-projection hard-decision (HPHD)
color interpolation [45]. For re-interpolation, the most pop-
ular bilinear method is used, as well as kernel estimation
methods based on ordinary least squares (OLS) [38] and OLS
using with smooth regions (OLSSR) [39].

Table 1 shows the probability that σ 2
A is greater than σ 2

T
for the green color channel. For any image, a 2×2 Bayer
patternmatrix has four components. Therefore, σ 2

A is obtained
by adding two variances based on i = 2 and i = 3.
Alternatively, σ 2

T is calculated by adding two variances based
on i = 1 and i = 4. As shown Table 1, bilinear- and
DCB-demosaiced cases are successful for all re-interpolation
methods. However, three re-interpolation algorithms for the
other demosaicing interpolations either slightly (AHD and
VNG) or significantly (IGV and HPHD) fail to satisfy
σ 2
A ≥ σ 2

T . On average, three kinds of re-interpolation ker-
nels essentially have same success rates (roughly 0.78). The
performance of the forgery localization is highly dependent
on the variance of the prediction error between demosaiced
and re-interpolated images. As observed in Table 1, the con-
ventional re-interpolation methods demonstrate limited per-
formances. As such, we introduce a new algorithm to obtain
prediction residue using SVD.

IV. PROPOSED METHOD
Many demosaicing algorithms attempt to preserve or enhance
the image edge component, however, this is not always suc-
cessful. Accordingly distinguishing between the original and

TABLE 1. Probability of satisfying the relation σ2
A ≥ σ2

T .

interpolated background areas can be difficult. For this rea-
son, a bilinear kernel is a good choice for the re-interpolation
kernel. However, because bilinear interpolation is performed
at every position with the same kernel, it does not reflect
local image variation. Because of this, the utility of the pre-
diction residue obtained by bilinear kernelling is reduced for
edge-preserving demosaicing methods.

SVD for a small image block can be used to obtain
the prediction residue. The large singular values of an
image blockmainly contain low-frequency background infor-
mation. Conversely, small singular values are associated
with high-frequency block components. Therefore, an image
reconstructed by small singular values can be considered as
prediction residue. Because SVD is performed at a small
image block, the prediction residue contains the local vari-
ation of the image.

A. IMAGE DECOMPOSION
In this paper, we only use the green channel to localize tam-
pered regions. For the given suspicious image, we let IG be the
green channel (from hereon in, the superscript G is omitted).
The green channel can be rearranged to four down-sampled
sub-images according to pixel location in the 2×2 Bayer
pattern matrix. By decomposition, I can be expressed as

I =
[
I1 I2
I3 I4

]
, (8)

where Ii is the down-sampled green component (i ∈
{1, 2, 3, 4} is the index of the sub-image corresponding to the
2×2 Bayer pattern matrix), and Ii(x, y) represents the pixel
value at the (x, y) position. In this paper, we omit the variables
that indicates position, that is, x and y, as long as no confusion
occurs. Bold characters represent matrices and non-bold italic
characters imply scalar values. Fig. 3 shows an example of
color component decomposition for a GXXG Bayer pattern.

B. PREDICTION RESIDUE BASED ON SINGULAR VALUES
Letting Ji be a square block with size Q × Q centered on
(x, y), the SVD of Ji is the factorization of Ji into the product
of three matrices as.

Ji =WSZT , (9)

where W and Z are orthogonal matrices, and S is a diago-
nal matrix with singular values on the diagonal. There are
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FIGURE 3. Example of green component decomposition for a Bayer
pattern in an image.

Q singular values with the condition of λ1 ≥ . . . λq ≥

. . . λQ ≥ 0, where λq is the q-th singular value. Large singular
values only contain information about the background or
uniform areas, whereas small singular values contain much
more detailed information. We introduce a method that can
obtain the prediction residue by removing the largest singular
value.

Ji can be alternately expressed in summation form as

Ji =
Q∑
q=1

λqwqzTq , (10)

wherewq is the left singular vector, and zq is the light singular
vector. To obtain the prediction error, we reconstruct the
image block after removing the largest singular value λ1,
which can be expressed as

Ri =

Q∑
q=2

λqwqzTq , (11)

where Ri is the reconstructed block without λ1. From (11),
we can define the prediction residue ei(x, y) at (x, y) as

ei(x, y) = Ri(x, y), (12)

where Ri (x, y) is the reconstructed pixel without λ1 at (x, y).
To obtain the prediction residue ei(x + 1, y) at location (x +
1, y), the M ×M block slides one pixel to the right.
Table 2 presents the probability that σ 2

A is greater than σ 2
T

obtained by the proposed SVD-based prediction residue for
the green color channel. The test conditions are the same as
those in Table 1. As shown in Table 2, the average probability
of satisfying the relation σ 2

A ≥ σ 2
T is 0.84, which is greater

than that of bilinear or OLS-based estimation methods. The
prediction residue based on SVD is adaptively calculated
using local pixel values without the re-interpolation kernel.
Therefore, the proposed algorithm can more precisely esti-
mate the prediction residue than existing algorithms.

Fig. 4 depicts the prediction residue for a tampered image
obtained by various estimation methods, including the pro-
posed algorithm. In this example, we do not know which
interpolation kernel is used in the demosaicing process.
We estimate that the Bayer pattern type will be GXXG,
because the variances of i = 1 and i = 4 seem to be greater
than those of i = 2 and i = 3 in the authentic region.

TABLE 2. Probability of satisfying the relation σ2
A ≥ σ2

T based on the
proposed method.

FIGURE 4. Prediction residues obtained by various re-interpolation
kernels. (a) bilinear kernel, (b) OLS kernel, (c) OLSSR kernel, and
(d) proposed SVD-based re-interpolation.

Alternatively, we can observe that the variances of i = 1 and
i = 4 are obviously smaller than those of i = 2, and i = 3 in
the tampered region.

As shown in Fig. 4(a), the relation σ 2
A ≥ σ

2
T is broken in the

tampered region when re-interpolation is performed using the
bilinear kernel. However, in the authentic region, strong edges
are not sufficiently removed. OLS-based re-interpolation
methods providemore accurate discrimination in the acquired
regions compared with bilinear re-interpolation, however,
the discrimination decreases in the tampered region as shown
in Fig. 4(b) and (c). In contrast, the prediction residues
obtained by the proposed algorithm exhibit good discrim-
ination in both authentic and tampered regions as shown
in Fig 4(d).

C. FEATURE EXTRACTION
In most localization approaches [36]–[39], the weighted vari-
ance of the prediction residue and its geometric mean are both
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FIGURE 5. Overall system of proposed algorithm.

calculated. The logarithm of mean ratio is used to achieve
forgery localization. In addition, Gaussian mixture model-
ing, which results in an EM algorithm, is exploited for the
extracted logarithm-mean ratio feature.

In this paper, we propose a simple feature extraction algo-
rithm. First, we calculate the variance of the prediction under
the assumption that the local stationarity of prediction residue
is valid in a (2K + 1)×(2K + 1) window. The local variance
of the prediction residue is

σ 2
e,i(x, y) =

1

(2K + 1)2

K∑
m,n=−K

[
e2i (x + m, y+ n)− µ

2
e,i

]
,

(13)

where µ2
e,i is the local mean of the prediction residue.

Next, we divide the given variance image into B × B
non-overlapping blocks, where B is related to the period
Bayer pattern mosaic. Letting Bi(k, l) be the B × B variance
block in the block index (k, l) and sub-image index i. The
proposed feature, F↘(k, l) is

F↘(k, l) = log
(
M1,4(k, l)
M2,3(k, l)

)
, (14)

where

M1,4(k, l) =
∑

x,y∈B1(k,l)

σ 2
e,1(x, y)+

∑
x,y∈B4(k,l)

σ 2
e,4(x, y),

(15)

and

M2,3(k, l) =
∑

x,y∈B2(k,l)

σ 2
e,2(x, y)+

∑
x,y∈B3(k,l)

σ 2
e,3(x, y).

(16)

Because the Bayer pattern type is not known, swapping
M1,4 (k, l) and M2,3 (k, l) in (14) can also be a feature.
The swapped feature, of F↙(k, l) is −F↘(k, l). The GXXG
pattern corresponds to F↘(k, l), whereas the XGGX pattern
corresponds to F↙(k, l). Assuming that the tampered area is
smaller than the acquired area, we define the final feature,

TABLE 3. Three parameter values used in the experiment.

F(k, l) as follows.

F(k, l) =

F↘(k, l),
∑
k,l

F↘(k, l) <
∑
k,l

F↙(k, l)

F↙(k, l), otherwise.
(17)

In conclusion, the proposed algorithm can localize tam-
pered regions even if the Bayer pattern type is unknown.

D. LOCALIZATION
The proposed feature exhibits a range of −∞ < F(k, l) <
∞. To localize foraged regions, we introduce a probability
map using F(k, l) as

P(k, l) =
1

1+ eF(k,l)
, (18)

where P(k, l) represents the probability that the block B(k, l)
has been tampered. Before obtaining P(k, l), 5×5 median
filtering is applied to F(k, l).

E. OVERALL ALGORITHM
The overall proposed algorithm is presented in Fig. 5. From
the given image, the green channel is decomposed into four
sub-images according to the Bayer pattern. The prediction
residues are obtained based on SVD by removing the largest
singular value. Four variance images for four corresponding
prediction residues are calculated. The feature is extracted
based on (17). Finally, the probability map using (18) is
calculated to localize tampered regions.

In the proposed method, there are three parameters, includ-
ing Q, K , and B. Table 3 shows the parameter values used in
our experiment.
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FIGURE 6. Performance comparison of various tampering localization methods for CUISDE [46].

V. SIMULATION RESULTS
To verify the effectiveness of the proposed tampering local-
ization method, we tested it on three datasets, including
the Columbia uncompressed image splicing detection eval-
uation dataset (CUISDE) [46], image manipulation dataset
(IMD) [47], and realistic tampering dataset (RTD) [48].
CUISDE presents 180 images for evaluating splicing detec-
tion performance, and it is the easiest dataset to use of the
three listed. IMD is comprised of 160 images, whereas RTD

presents 220 images for image forgery detection. The images
of RTD are captured by four camera models, such as Canon
60D, Nikon D90, Nikon D7000, and SonyA57. RTD presents
both copy-moved and spliced images. The performance of
our approach is compared with those of four state-of-the-art
methods, namely, Dirik and Memon [35], Ferrara et al. [36],
Fernández et al. [38], and Le and Retraint [39] algo-
rithms. The code of the proposed algorithm is available
in [49].
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FIGURE 7. Performance comparison of various tampering localization methods for IMD [47].

A. QUALITATIVE COMPARISON
Fig. 6 compares the performance of the proposed algorithm
for CUISDEwith four image tampering localizationmethods.
As shown in Fig. 6, Dirik’s method roughly localizes the
tampered region. Ferrara’s and Fernández’s methods fail to
localize in many cases. Le’s algorithm identifies a tampered
region, however, it generates a lot of false detected pix-
els. Overall, the proposed method has the best localization
performance.

The localization results for IMD are depicted in Fig. 7.
As shown in Fig. 7, Dirik’s method does not efficiently
localize the tampered area. Rather, it shows up the contour
of the foraged areas. Ferrara’s method often fails to
achieve localization, however, it is successful for some
images. Fernández’s and Le’s methods achieve reason-
able localization performance, however, in some images,
their algorithms produce erroneous results. The proposed
scheme demonstrates the best localization performance
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FIGURE 8. Performance comparison of various tampering localization methods for RTD [48].

with relatively low erroneous regions. All methods do not
localize authentic regions in copy-moved images, because
CFA pattern-based approaches can only localize moved
areas.

Fig. 8 presents the localization performance for RTD.
Dirik’s method almost highlights the tampered regions, how-
ever, it exhibits large erroneous areas. Although the other
three existing algorithms can identify tampered regions,
they still falsely identify acquired areas as forged regions.

The proposed approach achieves reasonable localization
performance.

B. FAILURE CASES
If the Bayer pattern configuration and demosaicing method
of the tampered region are the same as those of the acquired
region, the CFA pattern-based tampering localization scheme
will fail. In this case, the relation σ 2

A ≥ σ 2
T does not serve

as a criterion for detecting or localizing image tampering.
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FIGURE 9. Failure cases.

This fact is a limitation of the forgery detection method based
on demosaicing traces. Fig. 9 illustrates some failure cases of
the conventional and proposed methods. As expected earlier,
the localization maps exhibit a random pattern or highlight
salient regions.

C. QUANTITATIVE COMPARISON
The proposed method and four existing localization algo-
rithms give a probability or score. Therefore, we use a
receiver operator characteristic (ROC) curve [50] and a
precision-recall curve for quantitative comparison. The ROC
curve is a graphical plot, which shows the diagnostic abil-
ity of binary classifiers. In essence, it shows the trade-off
between the true positive rate and the false positive rate.
The true positive rate is the proportion of tampered pixels
correctly localized, whereas the true negative rate indicates
the proportion of acquired pixels wrongly localized. TheROC
curve close to the top-left corner represents an optimal clas-
sification performance. The precision-recall curve shows the
tradeoff between precision and recall for different threshold.
A high area under this curve represents both high recall and
high precision. A high precision relates to a low false positive
rate, and a high recall relates to a low false negative rate.
High precision-recall scores for both show that the classifier
is returning accurate results, as well as returning a majority
of all positive results.

Fig. 10 shows the ROC curves for various tampering
localization methods. In Fig. 10, we also present an area
under curve (AUC) value, which is a performance indica-
tor of each localization method into a single measure, and
it is a general measure of predictive accuracy. Fig. 10(a)
depicts the ROC curves for all 560 test images. As shown
in Fig. 10(a), the proposed tampering localization algorithm
has the best performance. The AUC value of the proposed
method is 0.834, which is higher than that of other local-
ization methods. The forgery localization performance for
each dataset is also depicted in Fig. 10. Fig. 10(b) presents
ROC curves and AUC values for CUISDE. The proposed
algorithm has an AUC value of 0.947, which is the greatest
value of the five algorithms. Le’s method is ranked in second
(0.865), followed by Dirik’s (0.860), Ferrara’s (0.805), and
Fernández’s (0.732) methods. The ROC curves for IMD are
illustrated in Fig. 10(c). The proposed scheme demonstrates
the best performance, followed by Ferrara’s algorithm. For
this dataset, localizing tampered regions is hard because it
contains copy-move images. Finally, Fig. 10(d) shows the
results for RTD. In this dataset, the localization performance
is similar for the proposed method, as well as for Dirik’s, and
Ferrara’s methods.

Fig. 11 illustrates the precision-recall curves for var-
ious forgery localization methods. Fig. 11(a) shows the
precision-recall curves for all test images. As shown in
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FIGURE 10. ROC curve and AUC value for various datasets. (a) all dataset,
(b) CUISDE, (c) IMD, and (d) RTD.

Fig. 11(a), the proposed localization method has the best
performance. Figs. 11(b), 11(c), and 11(d) depict curves for
CUISDE, IMD, and RTD, respectively. As shown in these

FIGURE 11. Precision-recall curve and AUC value for various datasets.
(a) all dataset, (b) CUISDE, (c) IMD, and (d) RTD.

figures, the proposed approach has the superior localization
performance for all datasets.

D. EFFECT OF PARAMETERS
Fig. 12 shows the effect of parameters in localizing tam-
pered regions. Fig. 12(a) presents the AUC values for
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FIGURE 12. ROC curve and AUC value for various parameters obtained by
proposed method. (a) various B values, and (b) various Q values.

various B sizes. Except for the smallest block size of B = 4,
all demonstrate high AUC values. Fig. 12(b) shows the ROC
curves of the proposed method according to various Q size.
AUC values are 0.834, 0.825, and 0.808 when Q is 3, 5,
and 7, respectively. When Q=3, the largest AUC values are
achieved. Even when Q = 7, which exhibits the lowest ACU
value, the proposed method exhibits a higher AUC value
compared with the other methods. All results obtained by
the proposed algorithm used the parameter values shown in
Table 3.

VI. CONCLUSION
In this paper, we proposed a novel image tampering local-
ization method based on CFA pattern artifacts without
knowledge of CFA configuration. We introduced SVD to
estimate the prediction residue between the acquired and
re-interpolated images. The prediction residue was obtained
in the reconstructed image by examining the remaining
singular values after removing the largest singular value.
We showed that the prediction residue of the proposed algo-
rithmwas more efficient for localizing forged regions. A sim-
ple feature using the logarithm of the ratio of the variance
of prediction residue was extracted. Finally, we obtained
the probability map to localize tampered regions using
extracted features. The proposed method was compared with
existing tampering localization algorithms, the results of
which showed that the proposed scheme outperforms state-
of-the-art approaches in terms of subjective and objective
qualities.
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