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ABSTRACT Radar signal sorting is the core part of electronic support measures, which is responsible for
deinterleaving the overlapping pulse sequences received by the receiver from the complex environment,
separating different radiation source signals, and providing support for radiation source identification. Par-
ticle swarm optimization (PSO) is a population-based global optimization algorithm with great advantages
in intelligent sorting of complex signals, which can adapt to the electromagnetic environment with complex
and variable radiation source signals and high pulse stream density. However, the PSO-based sorting method
is prone to premature convergence and cannot adaptively adjust particle swarm parameters and positions.
In this paper, a dynamic modified chaotic PSO algorithm (DMCPSO) is proposed. Chaotic search is used to
increase the diversity of particle swarm in the later iteration to avoid premature convergence and falling into
local optimum. Adaptive adjustment parameters related to the particle fitness value are adopted to balance
the ability of global search and local search. A new fitness function is proposed and the particle position
is dynamically corrected by clustering analysis to improve the accuracy of particle position optimization
and avoid the influence from the distribution of feature parameters. The simulation results show that
the DMCPSO algorithm provides stable and fast performance with excellent sorting indexes in complex,
variable, and dense signal environment.

INDEX TERMS Radar signal sorting, particle swarm optimization, chaotic search, adaptive adjustment

parameters, fitness function, dynamic position correction.

I. INTRODUCTION

As an integral component of electronic warfare, electronic
support measures (ESM) are tasked with searching, inter-
cepting, analyzing, and identifying enemy radar signals. With
the increasing complexity of the electromagnetic environ-
ment, dense and variable radiation source signals enter digital
reconnaissance receivers and intertwine into complex pulse
stream sequences. According to the characteristic parameters
of the intercepted pulse, the arrival time, and other infor-
mation, the pulse streams are sorted. The signals belonging
to the same radiation source are accurately classified, and
then the radar models are identified according to the char-
acteristic parameters of different radiation sources. Based
on the identification results, the type, properties, and threat
level of each radar are obtained [1]. From the above analysis,
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it can be seen that radiation source sorting is a key link in
radar reconnaissance signal processing, which directly affects
the performance of radar reconnaissance equipment and is
related to subsequent operational decisions. Wrong sorting
results will lead to a large number of false alarms and missed
alarms, which will seriously affect the effectiveness of the
confrontation. Therefore, an efficient and accurate signal
sorting algorithm is extremely important.

Signal sorting technology is mainly divided into pulse rep-
etition interval (PRI) analysis and feature clustering [2]-[5].
Among them, the sorting algorithm based on PRI is mainly
divided into two types: statistical histogram algorithm (cumu-
lative difference histogram CDIF, sequence difference his-
togram SDIF) and sequence search method. CDIF and SDIF
algorithms analyze and detect potential signal PRI utiliz-
ing order-by-order statistical time of arrival (TOA) differ-
ence and separate the interleaved sequences step by step.
The sequence search method uses the PRI characteristics of
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known radar signals as the basis for sorting and searches
for pulse sequences of known signals from the interleaved
pulse stream by step-by-step retrieval. Modern interception
systems often combine these two algorithms to achieve signal
sorting. However, the wide application of PRI agility and
low-interception technology makes the TOA of intercepted
signal appear large jitter and loss, which destroys the statisti-
cal characteristics of TOA difference. These reasons greatly
increase the difficulty of sorting based on PRI analysis, mak-
ing it impossible for such algorithms to effectively estimate
the PRI value of the signals and, consequently, to separate the
pulse sequences corresponding to the true PRI value from the
interleaved pulse streams. Therefore, the clustering algorithm
based on radar characteristic parameters came into being and
became an indispensable auxiliary task in the deinterleaving
process of pulse signals. This type of algorithm dilutes the
pulse stream and divides it into several subspaces for pre-
deinterleaving [6]. It draws on the idea of clustering technique
to divide the set of pulse signal feature parameters according
to a specific criterion, aggregating similar features and sepa-
rating different features, when the signal source is unknown.

Many researchers at home and abroad have done a lot
of research on sorting algorithms based on radar character-
istic parameters clustering. Literature [7] proposed a data
field-based radar sorting algorithm to improve the correct
rate of sorting by introducing data field theory. Litera-
ture [8] proposed a sorting algorithm based on point symme-
try, which used symmetric measurement distance to cluster
pulses instead of Euclidean distance to reduce the influence
of distance on data points. These algorithms can achieve
good sorting results to a certain extent, but the sorting per-
formance is poor when dealing with complex radar feature
sets. Therefore, in order to adapt to the complex electromag-
netic environment, many intelligent algorithms are gradually
applied to the field of radar signal sorting, and the heuristic
optimization algorithm is one of them. Compared with tra-
ditional sorting methods based on clustering, the heuristic
algorithm is a group algorithm, which improves the sort-
ing performance by finding the global optimum. In recent
years, many heuristic optimization algorithms have emerged,
such as ant colony algorithm [9], artificial bee colony algo-
rithm [10], particle swarm algorithm [11], etc. Particle swarm
optimization (PSO) is a widely used algorithm, which is
optimized through information sharing mechanism. It has
the advantages of simple modeling, easy implementation and
fast convergence [12]. However, although the PSO algo-
rithm provides the possibility of global search, it does not
guarantee convergence to the global optimum. And it has
disadvantages such as premature convergence and insuffi-
cient optimizing ability. At present, the main trend to solve
these problems is to increase population diversity or integrate
other methods. For example, a method based on dynamic
particle swarm optimization and K-means is proposed in the
literature [13], [14], which enhances the performance of the
algorithm by dynamically adjusting the inertia weight and
acceleration coefficients. In the literature [15] the clustering
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centroid is improved by changing the fitness function. In the
literature [16], the inertia weight setting and updating strategy
are improved to enhance the ability of local search and global
search. However, they are not fully adaptive and the clustering
results do not well meet the requirements of radar system for
signal sorting accuracy and real-time performance.

In summary, to accurately separate various types of radia-
tion source signals from dense, complex, and variable inter-
cepted pulse streams, this paper proposes a dynamic modified
chaotic particle swarm optimization (DMCPSO) algorithm to
improve the difficulty of correct classification in traditional
sorting algorithms based on clustering and the deficiency of
PSO optimization, and enhance the sorting performance. The
main contributions of this paper are as follows.

(1) The Tent chaotic search is added. And the chaotic
mapping is improved for the phenomenon of small cycles and
unstable period points that appear in Tent, which is unfavor-
able to the optimization problem. It improves the defect that
the population diversity is lost in the late iteration and easily
falls into local optimum;

(2) Adaptive adjustment parameters (inertia weight and
acceleration coefficients) related to the particle fitness value
are used to perceive population changes in real-time so that
the global and local search ability of particles can be better
combined;

(3) A new fitness function is proposed to avoid the short-
comings brought by using only internal distances, such as
the single form of the fitness function, containing little infor-
mation and being influenced by the distribution of feature
parameters. It improves the accuracy of sorting;

(4) The positions of particles are adjusted dynamically
by clustering analysis and then the gravity center index is
introduced to correct the final position of the particles that
meet the conditions so that it is closer to the real clustering
centers and reduces the impact of discrete points and data
distribution on the accuracy of sorting.

The simulation results show that the proposed algorithm
in this paper has greater advantages over several other
improved particle swarm optimization algorithms in terms
of several common and new indexes (Clustering Quality,
Adjusted Rand Index, Normalized Mutual Information, Cen-
troid Index, Davies Bouldin Index, Silhouette Index). Its
convergence speed, stability and robustness also have a better
sorting effect.

Il. PARTICLE SWARM OPTIMIZATION ALGORITHM
Particle swarm optimization (PSO) algorithm is the simula-
tion of migration and swarms in the process of birds forag-
ing [17]. Its basic idea is to find the optimal solution through
cooperation and information sharing between particles. For
the pros and cons of the individual, the fitness function is cal-
culated to evaluate. Each particle in the population contains
two information of position and velocity. According to the
update of the two information, the individuals find the global
optimal position and the individual optimal position in the
search space to perform the search.
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In the standard PSO algorithm, the positions and velocities
of the particles are first randomized, and then the position of
each particle is calculated according to the objective function
of the optimization problem. In each generation, individual
updates its position and velocity according to (1).

Vitk + 1) = wVi(k) + c1 - rand - (Xppesr,i — Xi)
~+c - rand - (ngest,i - Xi)
Xitk +1) = Xi(k) + Vi(k + 1) (D

where, X; and V; represent the position and velocity of the
current ith particle, respectively; Xppes; and Xgpeg TEpresent
the best individual value and the best value in the cluster,
respectively; w is the inertia weight; c; and ¢ are the accel-
eration coefficients. From (1), it is clear that the update of the
particle is to search the global optimal value in the solution
space of the feasible region by the interaction of memory
items, self cognition, and group cognition.

As can be seen above, the PSO algorithm involves few
parameters, simple structure, strong operability, and easy
implementation, and finds the optimal solution through con-
tinuous adjustment in the search space. These advantages
make it known as the research direction of radar signal sort-
ing, but it still has congenital disadvantages:

(1) The population is prone to premature convergence in
the late iteration. In the PSO, the particles always move to the
individual optimal position and the global optimal position.
This information sharing mechanism reduces the diversity
of the population, and the population is prone to premature
convergence.

(2) Fixed inertia weigh w and acceleration coefficients ¢
and c;. The quality of the population is not the same at
different stages of the algorithm, and the fixed parameters
make it impossible for the particles to adjust adaptively to
changes in the population, which may cause the population
to skip the global optimum.

(3) Only the internal distance information is used to char-
acterize the fitness function. This calculation method ignores
the information outside the cluster, which is prone to misclas-
sification, and is susceptible to data distribution.

(4) The particle positions are not accurate. Taking the
position of particles as the clustering centers is only a rough
estimation method, which does not truly reflect the distribu-
tion of clusters and is sometimes affected by the distribution
of feature parameters.

Therefore, in order to better play the advantages of the PSO
algorithm, the DMCPSO algorithm proposed in this paper
has made many improvements to the above shortcomings,
to meet the accuracy and real-time requirements of signal
sorting technology in complex electromagnetic environment.

Ill. IMPROVED PARTICLE SWARM OPTIMIZATION
ALGORITHM

A. CHAOTIC SEARCH

Chaotic search variables have the advantages of randomness,
ergodicity, and regularity, which enable it to go through all
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stages of a certain range without repetition. Using these
advantages, it can maintain the diversity of populations dur-
ing the iteration of the algorithm, effectively avoid premature
convergence, and improve the global search capability. The
basic idea of the chaotic search proposed in this paper is as
follows. Firstly, the chaotic sequence is generated based on
the optimal position searched by the current entire particle
swarm. Then, the optimal particles in the generated chaotic
sequence are used to replace the particle individuals in the
current particle swarm whose individual optimal values are
unchanged and are not global optimal.

The existing chaotic mappings are Tent mapping, Logis-
tic mapping, etc. Most chaotic optimization algorithms pro-
posed in the literature use Logistic mapping to generate
chaotic search sequences. For example, Reference [18] pro-
posed to add Logistic mapping into the PSO algorithm and
achieved some results. However, due to the uneven distribu-
tion of Logistic chaotic sequence, the long search time cannot
meet the real-time requirements of signal sorting technology.
Therefore, in this paper, the Tent mapping [19] with uniform
distribution characteristics is chosen to shorten search time
and improve the algorithm’s optimization speed. However,
the small period and unstable periodic points that exist in the
Tent mapping will cause the mapping to a fixed point [20].
To solve this problem, this paper adds random disturbance
factor to improve Tent mapping, and the relationship is shown
in (2).

2[zn + 0.1 x rand(0, 1)],
2[1 — (zp + 0.1 x rand(0, 1))],

0<z,<0.5
OSSanl

(@)

The specific chaotic search process is as follows, where the
chaotic initial variable is defined as z:

(1) Transform the current global optimal position Xgpes:
from the optimization variable taking the value interval
[Xmin, Xmax] to the chaotic variable taking the value inter-
val [0,1];

In+1 =

7= ngest — Xmin 3)

Xmax — Xmin
(2) The global optimal position Xgpes is subjected to M
chaotic disturbance to generate chaotic sequences. Then,
the generated chaotic variable sequence is mapped to the

value space of the original variable through (4):
2= (Xmax — Xmin) Z + Xmin 4

(3) Generate new particles based on the generated chaotic
sequences: X = Xgper + B - z. In order to make the particle
carry out a small range of chaotic disturbance within the
feasible solution range and near the optimal solution, here the
value range of g is less than 10 %;

(4) In the original solution space, each feasible solution
experienced by the chaotic variable is re-clustered to calculate
the fitness. And the feasible solution with the best perfor-
mance is retained, to replace the particle individuals in the
original solution space.
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In this work, the Tent mapping has the characteristics
of uniform probability density and fast optimization speed,
which ensures the high diversity of population particles in
the later stage of the algorithm and avoids the PSO falling
into local optimum. Meanwhile, the Tent chaotic mapping is
improved by adding random perturbation factors, so that it
does not tend to the fixed points to give full play to its best
performance.

B. ADAPTIVE ADJUSTMENT OF INERTIA WEIGHT AND
ACCELERATION COEFFICIENT

The PSO algorithm mainly involves three parameters,
namely, inertia weight w and acceleration coefficients cy, ¢3.
And their values play an important role in the performance of
the algorithm. In this paper, the update methods of the three
parameters are analyzed and optimized respectively.

The inertia weight keeps the particle moving inertially,
giving it a tendency to expand its search space. The acceler-
ation coefficient adjusts the role played by the particle’s own
experience and social experience in its motion. To balance the
local search capability and global search capability, the main
idea of existing research direction is to determine the required
search capability of a particle based on the individual fitness
value during the same iteration of the particle swarm. For
example, literature [13], [21] proposed an update method
based on dynamically adjusted parameters, but it still needs
to specify the range of inertia weights in advance; litera-
ture [22] proposed an inertia weight for partial differential
equations, but the update method is complicated. Therefore,
in this paper, we propose an update method that concisely and
adaptively adjusts the weights according to the fitness value,
as follows:

F,

_ Upbest
w=ce Fobest (5)

where, Fgpes is the global optimal fitness value and Fpe is
the particle individual optimal fitness value. From (5), it can
be seen that the inertia weight of each particle is inversely
proportional to its quality in the population. The smaller the
fitness value is, the worse the current position of the particle
is. And the larger the corresponding inertia weight, which
means that the particle needs to go beyond the local search
to find the global optimal point. Conversely, the larger the
fitness value is, the smaller the corresponding inertia weight
is, and the particle focuses more on searching for the optimal
solution in the local range. This modification in strategy can
well balance the local search and global search, which is very
beneficial to the convergence of the algorithm.

For the acceleration coefficient, if the value of self-
cognitive factor ¢y is low, it indicates that the particle has
weak self-cognitive ability, and the algorithm will ignore
the optimal position of self-exploration, leading to premature
convergence and easy to fall into local optimum. If the value
of social cognitive ¢, is low, it indicates the weak social
information sharing ability among the particles and slows
down the convergence of the population. Therefore, this paper
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proposes a new adaptive acceleration coefficient.

13
c] = 2-e max
t
C) = e'max (6)

where, ¢ is the number of iterations, and #,,x is the maximum
number of iterations. From (6), it can be seen that the pro-
posed adaptive acceleration coefficient causes the value of ¢
to change nonlinearly as the number of iterations increases.
This approach makes the particle position update slower in
the late iteration so that the particles are less likely to skip
the global optimum position. At the same time, ¢ decreases
gradually and ¢; increases gradually, which makes the par-
ticles focus more on the social cognitive search in order to
find the optimal solution when more and more solutions are
obtained from the search in the late iteration.

In this work, the ability of the parameters of the popu-
lation update to adjust adaptively according to the iteration
time and fitness value is exploited to allow the particles to
continuously adjust their range and speed of the optimization
search according to the real-time changes in the population
state until the population converges to a better result. This
improvement enhances the performance of particle swarm
optimization search.

C. FITNESS FUNCTION AND DYNAMIC CORRECTION OF
PARTICLE POSITION
The fitness function is the guidance of the PSO algorithm to
search for the global optimal solution. It is the basis of particle
updating, so it largely determines the quality of the iterative
results. The basic fitness function is to calculate the distance
between the samples and the cluster centers. However, it is far
from enough to minimize the intra-class distance [23] to get
higher accuracy, so many scholars have done a lot of research
on how to design a better fitness function. For example, in the
literature [15], it is proposed to calculate the fitness function
using the classification results. This method can obtain good
clustering centers. However, it requires prior knowledge of
the classification label information. An internal index PBM
of clustering is proposed in the literature [24] to characterize
the quality of clustering, which guarantees the formation of
a small number of tight clusters and large intervals between
at least two clusters. However, this index ignores the effect
of the distribution of feature parameters. For this reason, this
paper proposes an improved PBM index (IPBM) through as
the fitness function.

The IPBM index consists of three components, as defined
in (7)

1 E 1
IPBM = — - —- . —

K Ex Dk
K N

Ex =) > lv—al,
k=1 j=1
K

D = nfix | — 51, @
i,j=1
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where K is the number of clusters; N is the total number of
data sets; Dk is the maximum inter-cluster separation; Eg
is the sum of the total intra-cluster scatter between samples
and their cluster centers, and E; is the sum of the distances
between all data samples contained and the centers in only
one cluster. This index reduces the proportion of the maxi-
mum inter-cluster separation and avoids the adverse impact
of discrete points being incorrectly selected as cluster centers
in the clustering process. A higher IPBM value indicates a
better clustering scheme.

In the standard PSO algorithm, individuals adjust their
trajectory to any neighbor member’s best position and their
previous best performance position by searching space. How-
ever, it is pointed out in the literature [25] that the updating
method of the topological structure ignored the influence of
the clusters, and drew on the idea of K-means clustering.
It proposed that the previous best positions of individuals
and neighbors are replaced with the average of the intra-class
samples by performing cluster analysis of their previous best
positions. In this paper, we will draw on the above ideas to
improve the accuracy of clustering and reduce the influence
of data distribution by dynamic position correction of the
updated particles according to cluster analysis. Although the
literature [25] chose the average value of samples after each
particle clustering to replace the individual best position,
the average value of a cluster does not necessarily reflect the
distribution of clusters. Therefore, this paper draws on liter-
ature [26] and proposes the gravity center index as the basis
to determine the clustering centers. The specific principle is:
when the particle has a better fitness value, the gravity center
index of each sample (including the position of the particle)
obtained by the particle position as the clustering centers is
calculated. And the one with the largest value of the gravity
center index is selected to replace the individual best position.
The Gravity Center Index (GCI) is defined as:

GCI = num(z)
{Xi IX; — Xillp < roi £k}

N N
> > dii

Z

r= %, coef =0.3
dii = {dyi | dii = 1 Xk — Xill2
k=1,2,...,N,i=1,2,...,N}
n= (N —1)N; (3

where, z represents the set of samples and their neighbors that
are distant r from each other. The index reflects the cohe-
siveness between samples and can eliminate the influence
of discrete points. The gravity center index can also reflect
whether the cluster contains other samples that do not belong
to this class. This paper believes that if the distance between
the two samples is greater than a certain threshold, and the
gravity center indexes of the two samples are relatively large,
both can be used as new clustering centers, namely, new parti-
cle positions. Among them, the threshold setting is generally
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an integer multiple of r. Finally, all the searched particle
positions are combined to the required number of clusters.

In this work, the proposed new fitness function is used to
reflect both cluster dispersion and tightness. And the location
correction according to gravity center index can adapt to
different data distributions. These improve the population
location search, and in turn improve the accuracy of the
algorithm.

D. ALGORITHM FLOW
The flow chart of the algorithm is shown in Fig.1.

(1) Take radar signal features as input and do
normalization;

(2) Initialize the population parameters: the population
number N, the maximum number of iterations, the maximum
velocity of the particles, the position range of the particles,
and the individual historical best fitness value. Population
position initialization: one data is randomly selected as a
cluster center, and then the remaining cluster centers are
selected according to the Maxmin distance principle [27]. The
operation is repeated N times to produce N particles (each
particle is a K x D dimensional vector, where K is the number
of cluster clusters and D is the dimensionality of the data set),
and the distance is Euclidean distance;

(3) Each particle divides the dataset with its respective
position as the cluster center. The fitness value of each par-
ticle is calculated according to (7), and the center of each
cluster is used as the position of the particle;

(4) If the fitness value of the current particle is greater
than that of the previous, the optimal fitness value Fpe5 and
the optimal position Xppes: of the individual are updated; The
sub-steps are as follows:

@ According to (8), the GCI of each intra-class sample
(including the particle’s position) obtained by taking the
particle position as the clustering center is calculated, and
the position of the particle with the largest GCI is selected.
If the distance between the two samples is greater than 3 % 7,
and the gravity center index of the two samples is larger,
it can be used as a new position. Merge all the positions that
is close to each other until getting the required number of
clusters, namely, complete the position correction to obtain
the individual optimal position Xppes:;

@ Reclassify clusters and calculate individual fitness value
F, pbest s

(5) The highest individual fitness value is chosen as the
global optimal fitness value Fgpey. The corresponding parti-
cle position is taken as the global optimal position Xgpes:;

(6) According to Section 3.A, chaotic search is used to
randomly disturb the particle positions;

(7) Adjust the inertia weight and acceleration coefficients
adaptively according to (5)(6). Update the position and veloc-
ity of particles and make them fall into feasible region
according to (1);

(8) Determine whether the current population fitness vari-
ance is lower than a threshold (indicating that the population
has converged) or reaches the maximum number of iterations.
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Radar signal features

Set population parameters;
Initialize positions

Calculate the fitness value of
each particle

Use the GCI of each cluster as
the particle optimal position;
Update the particle optimal
fitness value of individuals

the current individual fitizss
value is lower than the individual
historical fitness value

Yes
¥

Select the largest fitness value as the
global optimal fitness value and the

No corresponding particle position as the
global optimal position

!

Using a new particle generated by chaos
search to replace the particle in the swarm
whose fitness value remains unchanged
and is not global optimal fitness

v

Update inertia weight and
acceleration coefficients:
Update particle position and velocity

Population fitness is below a threshold of
if the maximum number of iterations has
been reached

Yes

Sorting End

FIGURE 1. DMCPSO algorithm flow.

If yes, the entire algorithm process is completed. Otherwise,
turn to (3). The fitness variance is calculated as follows.

1< )
var = ~ ; (i — fave) (€))

E. TIME COMPLEXITY ANALYSIS

In this subsection, the time complexity of the DMCPSO
algorithm is obtained by analyzing the time consumed during
the operation of the algorithm. The K-means algorithm, PSO
algorithm, DPSOK [14] algorithm, MfPSO [22] algorithm,
and IPK-means [18] algorithm are also introduced for com-
parison and analysis.

The time complexity of K-means algorithm is O(T,,q X
N x K x D); the time complexity of PSO algorithm, DPSOK
algorithm, MfPSO algorithm is O(Tepng X N X K x D x P);
the time complexity of IPK-means algorithm is O(Tpq X N x
K x D x P x t); the time complexity of

DMCPSO algorithm is O(T¢pq X N x K x D x P xt). Where
Tena is the number of iterations terminated corresponding to
different algorithms; N is the number of data; K is the number
of clusters; D is the number of data attributes; P is the number
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of populations; ¢ is the number of iterations of chaotic search,
and ¢ is much smaller than 7,,;.

From the above analysis, it can be seen that the time
complexity of the K-means algorithm is the lowest, which
also indicates that the K-means algorithm has the feature of
simple and fast. The time complexity of the PSO algorithm
is higher than that of the K-means algorithm, but it in return
has a better optimization effect than the K-means algorithm.
Although the DMCPSO algorithm proposed in this paper
increases the chaotic search time, the proportion of this time is
lower and the iteration termination time is shorter than other
latest PSO algorithms. Therefore the proposed algorithm is
advanced in terms of timeliness, and subsequent experiments
will also be performed to verify it by simulation.

IV. EVALUATION INDICATORS
In order to evaluate the performance of the DMCPSO algo-
rithm, the following clustering evaluation indicators will be
used in this paper. For the data set D = {x{,x2,...,xn},
it is assumed that the cluster division obtained by clustering is
Q = {wy, w2, ..., wg},and the cluster division given by the
reference model is C = {c1, c2, ..., cx}.

(1) Based on homogeneity criterion - Clustering Quality
CQ [28]

According to the literature [28], this paper proposes a
simplified measure of Clustering Quality (CQ), which is
calculated as follows:

o= Y Ni.

m

Vie K (10)

where, N; is the number of samples in w; that belong to
category c;, which is the homogeneity measure. When w;
contains only samples from the same category, CQ = 1,
thus indicating that the larger the clustering quality index,
the better the clustering effect, and the higher the correct rate.

(2) Based on the pair counting criterion - Adjusted Rand
Index ARI [29]

Let A, A* denote the vector of cluster markers correspond-
ing to 2, C, respectively. Consider the samples in pairs of
two, define:

a = |SS],
SSZ{(xi’xj)|)‘i:)‘j’)‘7:)‘7si<].}s
b =|SD|,
5D = {(xivx./)Mizlj’)»?#/\ﬂkj},
¢ = |DS|,
DS:{(x,-,x,-)|)\,-;éxj,x;.k=,\;,i<j},
d = |DD]|,
DD = (i) | 2 # 3,55 #2510 < ]
a+d
Rand Index(RT) : Rl = — 24
and Index(RI) itbhtctd
RI — ERI)
ARI = == (11)
| — E(RI)
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Among them, the value range of ARI is [—1,1]. In a broad
sense, ARI measures the degree of consistency between the
two data distributions. And the larger the value, the more
consistent the clustering results are with the real situation.

(3) Based on the mutual information criterion - Normalized
Mutual Information NMI [30]

The normalized mutual information NMI is calculated as
follows:

1(Q; C)
NMI(Q, C) =
(H(2)+ H(C))/2
) (wk ﬂcj)
(22 C) = ZZP we N ¢)) logP(W P ()
_ ZZ |Wk ﬂq,| logN |Wk mC/’|
ko N Wi |CJ’
H(Q) = =) P (w)log P (w)
k
_ _Z Wl | |Wk| (12)

where I denotes the increased class information €2 or the
decrease of uncertainty under the premise of given class
cluster information C. P (wk), P (c;), P (wk Ncj) can be
regarded as the probability that samples belong to cluster wy,
belongs to category c;, and belongs to both, respectively.
The larger the value, the higher the similarity with the real
category information.

(4) Based on matching criterion-centroid Index CI [31]

Centroid Index measures the difference between the two
categories by cluster centroids, and the calculation is as
follows:

K
CI(Q.C) = Y orphan(c))
j=1
1, qi #jVi
h N =
orphan(cj) 0, otherwise
gi < argmin ||w; — cj||2, Vie[l,K]
1<j<K
ClI = max {CI(R2, C), CI(C, Q)} (13)

where CI = 0 denotes that the two clusters have the same
structure. The larger the value, the more the number of clus-
ters is allocated, and the worse the clustering effect.

(5) Based on internal evaluation guidelines

@ Davies Bouldin Index — DBI [32]

The index takes into account the average proportion of
tightness and isolation in all clusters and is calculated as
follows:

k

1 . .

DBI = — S “max (ﬂ) (14)
k — i#j d,',j

where ¢; and e; are the average Euclidean distances of all
samples i and j to their respective centroids, and d;; is the
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distance between centroids. The smaller the DBI is, the better
the clustering effect is.
@ Silhouette Index — SI [33]
The index is defined as:
N

1 b(i) — a(i)
St = ; max{a(i), b(i)} (15

where a(i) is the average Euclidean distance from sample i
to the remaining samples in the same cluster; b(i) is the
minimum average Euclidean distance between sample i and
the samples in the remaining clustering. The higher the Sl is,
the better the clustering scheme is.

V. SIMULATION EXPERIMENTS ANALYSIS

To verify the effectiveness of the DMCPSO algorithm,
the experiments compare the performance of the K-means
algorithm, PSO algorithm [34], DPSOK [14] algorithm,
MfPSO [22] algorithm, IPK-means [18] algorithm and
DMCPSO algorithm on different datasets. The simulation
experiment is coded using MATLAB®R2019b, running on
a portable computer with AMD Ryzen 7 4800H at 2.9GHz,
8 cores and 16 threads, 8G x 2 RAM and Windows 10 oper-
ating system. In the experiments, the parameters involved
include the maximum number of iterations fy,x; population
size P; maximum particle velocity vpmax; inertia weight w;
acceleration coefficients ¢; and c¢». To ensure the effective-
ness of each algorithm, based on the parameter descrip-
tions mentioned in the literature and simulation experiments,
the specific parameter settings involved in each algorithm are
shown in Table 1. below.

TABLE 1. Parameter settings.

Method Parameters
PSO . =50;P=10;v __ =08m/s;w =038;¢c, =c¢, =2.0;
ax max 1 2
t =50;P=10;v___ =08m/ s;,w =0.9;
max max max
DPSOK
min = 04’ Cmax =2 5;Cmin =0 5’
M{PSO t =50;P=10;v =0.8m /s
max max
IPK-means lonax =00 P=105v - =0.8m /s
DMCPSO ax —00:P=10;v  =0.8m /s

A. EXPERIMENT 1

In this experiment, the pulse description word (PDW), which
can characterize the signals, will be used for signal sort-
ing to verify the performance of the algorithm in the case
of a large overlap of pulse features. In PDW, pulse ampli-
tude (PA) has poor stability and is generally not used as a
clustering binning feature. Time of arrival (TOA) does not
directly reflect the characteristics of the intercepted signals
but is used to extract deeper PRI features to assist in the
sorting of the intercepted signals. Therefore, this paper uses
three parameters, namely, the direction of arrival (DOA),
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TABLE 2. Radar signal characteristic parameters.

Radar Pulse DOA (°) PW (uS) RF (MHz) Modulation mode
emitter number  measurement error: £3  variation range: +0.05 variation range: £100 & PRI (pS)
1 151 59 0.22 1200 Fixed; 355
2 85 66 0.29 1050 Fixed; 630
3 71 59 0.19 1050 Fixed; 753
4 138 60 0.20 1500 Jagged; 363/382/395/413
5 60 57 0.29 900 Fixed; 887
6 48 64 0.17 900 Fixed; 1123
7 354 64 0.22 1500 Jagged; 133/145/152/173
8 93 60 0.17 1350 Jitter; 550, Jitter ratio:10%

radio frequency (RF), and pulse width (PW), for sorting.
In order to effectively evaluate the signal sorting performance
of the DMCPSO algorithm in complex electromagnetic envi-
ronments, the construction of electromagnetic scenarios is
particularly important. In this section, sorting is performed
using eight sets of mixed sequences generated by the PDW
radar signal generator with different degrees of overlapping
characteristic parameters and varying pulse numbers. Among
them, the DOA is not affected by the radar emitter itself, and
the DOA value measured by the receiver is basically constant,
but sometimes affected by the measurement error. Therefore,
based on the DOA parameters of each radar signals, a random
number is added to make the deviation less than 3°. PW,
RF these two parameters have a certain range of changes. The
radar characteristics parameters are shown in Table 2.

In order to simulate the distribution of characteristic
parameters of radar signals intercepted in the complex
electromagnetic environment, the radar signal characteristic
parameters constructed in this paper have different propor-
tions of overlap, as shown in Fig. 2. This phenomenon is
particularly evident in some radiation sources. For example,
for similar signal sources 4 and 7 with the same range of
RF variation, the ranges of DOA variation are 57.51°-63.31°
and 60.83°-67.05°, respectively, and the ranges of PW vari-
ation are 0.14uS-0.25uS and 0.17uS-0.28uS, respectively.
The overlap ratios of these two characteristic parameters
are 41.3% and 98.7%, respectively. At the same time, this
paper sets the PRI and modulation mode of the radar emitter
to adjust the number of pulses of the corresponding emitter
in the intercept time.

From Fig. 2, it is obvious that there are different degrees
of overlap between these three characteristic parameters for
radar pulse signals, and some data have serious overlap. The
number of pulse signals in each class is also different, and the
data are widely distributed and poorly aggregated, which may
be less effective using traditional clustering methods.

Fig. 3 below shows the graph of the clustering results
obtained using the DMCPSO algorithm, demonstrating the
effect of the radar signal features on the sorting results under
different overlaps. The red dots indicate misclassified data.
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FIGURE 2. Signal characteristics distribution.

TABLE 3. Running time of the algorithm.

PSO
0.79

DPSOK  MI{PSO IPK-Means
0.45 0.39 1.54

DMCPSO
0.33

Running Time

As can be seen from Fig. 3, most of the pulse data can
be correctly clustered, and only in the case of very serious
overlap and discrete distribution of few data does the incorrect
classification occur, and the algorithm has excellent perfor-
mance. To further demonstrate the superiority of the algo-
rithms, the convergence times of different algorithm iterations
are analyzed in Table 3, and the curve of fitness variance with
the number of iterations is plotted in Fig. 4.

As can be seen from Table 3 and Fig. 4, the fitness vari-
ance of all algorithms decreases as the number of iterations
increases, and the variation of the fitness values gradually
decreases towards stability. The algorithms find the opti-
mum by converging continuously during the iterative process.
However, there is a large gap between their running time and
convergence speed. Among them, the DMCPSO algorithm
has the fastest convergence speed and the smallest stable
variance, which is significantly better than other algorithms,
indicating that the group can quickly find the optimal position
in the iterative process, and then converge to a satisfactory
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TABLE 4. Clustering evaluation indexs under different algorithms.

Dataset  Method CQ ARI  NMI CI SI DBI

K-means 85.61% 0.7728 0.8627 2.0 0.5562 0.9139
PSO 88.55% 0.7774 0.8710 1.5 0.5788 0.8700
DPSOK  88.81% 0.7825 0.8697 1.4  0.5779 0.8859
MfPSO  89.40% 0.7753 0.8638 1.6 0.5844 0.8758
IPK-means 87.37% 0.7720 0.8639 1.8  0.6057 0.8318
DMCPSO 94.99% 0.7994 0.8929 0.0  0.6424 0.8116

Radar
feature

set

fitness value. The experiment also verifies the conclusions
of the time complexity analysis in Section 3.E, and the algo-
rithm’s timeliness can be well applied in the field of signal
sorting.

To further illustrate the effectiveness of the algorithm,
this paper will validate the algorithm with several clustering
evaluation indexes mentioned in Section 4. The simulation
is averaged over several experiments, and the specific results
are shown in Table 4.

It can be seen from Table 4 that although the K-means
algorithm is simple and converges quickly, its accuracy
and matching degree are different from those of the PSO
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series algorithms, which indicates that the PSO can well
deal with complex radar data. Compared with other latest
improved PSO algorithms, the DMCPSO algorithm has sig-
nificant advantages in various indicators: the CQ value of the
DMCPSO algorithm reaches 94.99%, indicating that the clus-
tering accuracy is the highest, and the classification data tend
to the label data most, which is hardly affected by discrete
data; ARI value is the largest, indicating that the clustering
results are more consistent with the real situation, and the
probability of correct decision is the largest; the NMI value
is the largest, which indicates that the uncertainty of the cat-
egory information is lowest, and the relationship between the
categorized data and the labeled data is closest; the CI drops
to 0, which indicates that there is a better match between
the classification data and the labeled data, with exactly the
same structure between the two; SI is the largest, indicating
that the cohesion and separation between samples have higher
values after clustering; DBI is the smallest, indicating that the
intra-class distance is the smallest and the inter-class distance
is the largest after clustering.

The above simulation results prove that the DMCPSO
algorithm obtains the best sorting results from all angles
for radar simulation data with high pulse overlap and small
number of some pulses.

B. EXPERIMENT 2

In this experiment, according to the features of the inter-
cepted emitter signals that are dense and the overlapping
characteristic parameters, several representative data similar
to the distribution of radar feature parameters are selected
for verifying the performance of the proposed algorithm in
the commonly used clustering data sets [35]. Although these
standard datasets have only two-dimensional features and
contain less information about the features compared to the
PDW streams used for radar sorting, these standard datasets
have high complexity and can simulate the distribution of
pulse signals in complex electromagnetic space to some
extent. The two-dimensional characteristics of the normal-
ized standard data sets in this experiment can be regarded as
PW and RF features of the same normalized radar features.
The following Table 5 shows the selected distribution features
for the different datasets.

TABLE 5. Data sets distribution.

Dataset  Varying Overlap Size Clusters Per cluster
Number of

A(al-a3) 20% 3000-7500 20,30,50 150
clusters

9%,22%.,41%,
S(sl-s4) Overlap 5000 15 333
44%
Unbalance Balance 0% 6500 8 100-2000

From the datasets al to a3, the number of clusters is gradu-
ally increasing, which can be characterized by the increasing
density of radar radiation source signals in electromagnetic
space. From the datasets s1 to s4, the degree of data overlap is
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FIGURE 5. (a)-(d) is the clustering results of different algorithms in the s1-s4 datasets. The first column is the distribution of the original data;
the second column is the clustering results of the DMCPSO algorithm proposed in this paper; the third column is the clustering results of the

DPSOK algorithm.

gradually increasing, which can characterize the overlapping
degree of pulse measurement parameters of each radiation
source signal. The dataset Unbalance can characterize the
uneven distribution of radiation source signals during the
interception time, resulting in quantitative imbalance.

This experiment compares the performance of the
K-means algorithm, PSO algorithm, DPSOK algorithm,
MIfPSO algorithm, IPK-means algorithm, and the DMCPSO
algorithm on this standard dataset. The following Fig. 5
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records the clustering results of the algorithm under the S
datasets and shows the clustering effect by taking the DPSOK
algorithm and DMCPSO algorithm as examples. Clusters
of different colors and shapes represent the set composed
of different emitter signal features. The red boxes indicate
the data with clustering errors, and the blue circles are the
clustering centers.

It can be seen from Fig. 5, as the overlapping degree
of datasets from sl to s4 gradually increases, the difficulty
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FIGURE 6. (a)-(c) is the clustering results of different algorithms in the a1-a3 datasets. The first column is the distribution of the original data;
the second column is the clustering results of the DMCPSO algorithm proposed in this paper; the third column is the clustering results of the

DPSOK algorithm.

of clustering increases greatly, and many misclassified data
appear. However, unlike DPSOK, the DMCPSO algorithm
only fails to distinguish effectively on the discrete points
that are far from the center of the true class, and most of
the data belonging to one class can be correctly clustered.
Some of these discrete points are evenly distributed within
the range of other classes, so it is difficult to distinguish them.
Outliers can characterize the errors of radar characteristic
parameters in measurement, and these errors are allowed for
radar signal sorting. However, the DPSOK algorithm cannot
even classify accurately on the S datasets, and the increase
in CI values causes a significant decrease in the correct rate,
which can make the radar system misjudge radiation sources
with similar characteristics, leading to the subsequent signal
processing process using the wrong operation and making the
wrong strategic decisions.

Fig. 6 also shows the effect of algorithmic clustering under
A datasets using the DPSOK algorithm and the DMCPSO
algorithm as examples.
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As can be seen from Fig. 6, with the number of clusters
gradually increasing from al to a3 datasets, the DMCPSO
algorithm has been able to classify accurately, and only a
few points are incorrectly clustered, but the proportion is
negligible. It shows that the algorithm is insensitive to the
number of clusters and can achieve 100% clustering. For
the DPSOK algorithm, however, as the number of clusters
increases, the more data are clustered incorrectly, the worse
the result is, and the similarity to the true category is linearly
decreasing with the number of clusters.

Fig. 7 also shows the effect of algorithmic clustering
under Unbalance dataset using the DPSOK algorithm and the
DMCPSO algorithm as examples.

It can be seen from Fig. 7 that the class of Unbalance
dataset is extremely unbalanced and the separation between
clusters is large, which undoubtedly increases the difficulty
of clustering. Due to the improvement of the DMCPSO
algorithm, it always searches for the best clustering until the
best centroid is found. So the dataset can always achieve
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FIGURE 7. Clustering results of different algorithms under Unbalance dataset. The first column is the distribution of the original data;
the second column is the clustering results of the DMCPSO algorithm proposed in this paper; the third column is the clustering results of the

DPSOK algorithm.

excellent results without error classification. In contrast, for
the DPSOK algorithm, if the clustering center is chosen
incorrectly at the beginning of the iteration, it will be difficult
for the particles to find the correctly classified position by
shifting during the later iterations.

Therefore, by visually observing the graphs of the cluster-
ing results, it can be seen that the DMCPSO algorithm has
excellent performance and is able to solve a wide range of
datasets that are difficult to classify. Based on the analysis in
the previous subsection 5.A on the radar dataset, this experi-
ment will quantitatively analyze the clustering effect in terms
of various clustering indexes, as shown in Table 6 below.

In order to better show the performance of the DMCPSO
algorithm, this paper will intuitively illustrate the problem by
histogram based on the clustering quality CQ of radar signal
sorting technology concerned by the table above.

It can be seen from Table 6 and Fig. 8 above that on these
standard data, the DMCPSO algorithm proposed in this paper
can achieve good clustering results compared with other
particle swarm optimization algorithms. For the S datasets,
the performance of the algorithm decreases slightly as the
overlap of the data increases, but for the radar processing
system, separating the signal with a sufficiently high overlap
and the result with a small difference from the true category
can already be adapted to the complex electromagnetic envi-
ronment. For the A datasets, with the increase of the number
of clusters, the performance of other algorithms is declining.
While the DMCPSO algorithm has always maintained the
best effect, and the classification results are basically correct.
This undoubtedly solves a major problem of signal sorting for
the increasingly dense electromagnetic environment. For the
Unbalance dataset, due to the serious imbalance of categories
and the separation of each cluster, other algorithms do not
locate the center of the class correctly and will be distributed
in dense areas. However, the DMCPSO algorithm uses a new
fitness function and position correction to accurately classify
each cluster.

In summary, from the various clustering index parameters,
the DMCPSO algorithm has the highest clustering quality,
matching, similarity, and coincidence with the real classes
among all algorithms. And the intra-class cohesion and the
inter-class separation make the clustering effect closer to
the real cluster distribution. The increase in the number of
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FIGURE 8. Clustering results of different algorithms under different
datasets.

clusters, the overlap in the distribution of feature parameters,
the imbalance in the distribution, and the presence of outliers
and the data distribution have no significant impact on the
algorithm.

In addition to the excellent clustering effect, we hope that
in the case of better clustering indexes, the algorithm can also
have a short running time to deal with the electromagnetic
environment that has more stringent real-time requirements.
Table 7 compares the running time of different algorithms.

It can be seen from Table 7, the running time of
the DMCPSO algorithm is relatively short under different
datasets with high enough accuracy, which can meet the
real-time requirements well.

Given the specificity of the application scenario of the
radar signal sorting algorithm, we hope that the excellent
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performance of the algorithm is not a coincidental phe- clustering quality CQ curve of the algorithm after 15 runs of
nomenon. A single sorting error is likely to bring about the program.
an inestimable strategic loss, so the stability and robustness As shown in Fig. 9, under different datasets, the DMCPSO

of the sorting algorithm are important factors that must be algorithm shows strong stability and robustness while main-
considered in practical applications. Fig. 9 below records the taining the accuracy advantage compared to the substantial
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TABLE 6. Clustering evaluation indexs under different algorithms.

Dataset  Method ~ CQ ARI NMI (I SI DBI

PSO 94.25% 0.9305 0.9663 1.4  0.8304 0.4738

DPSOK  96.27% 0.9334 0.9778 1.0  0.8532 0.4358

sl MfPSO  94.02% 0.9291 0.9684 1.1  0.8175 0.5161
IPK-means 97.27% 0.9347 0.9790 0.4  0.8555 0.4250
DMCPSO 99.36% 0.9374 0.9863 0.0  0.8805 0.3655

PSO 91.67% 0.9264 09280 1.7 0.7561 0.5693

DPSOK  90.61% 0.9249 0.9202 1.5 0.7284 0.6223

s2 MfPSO  90.44% 0.9248 0.9222 2.0 0.7471 0.5898
IPK-means 94.10% 0.9296 0.9356 1.0  0.7684 0.5371
DMCPSO 97.00% 0.9336 0.9465 0.0  0.8009 0.4654

PSO 81.76% 0.9140 0.7841 1.6  0.6441 0.7126

DPSOK  80.59% 0.9115 0.7787 1.8 0.6310 0.7379

MfPSO  80.56% 0.9195 0.7756 1.8  0.6252 0.7345

IPK-means 75.93% 0.8991 0.7560 3.3  0.5982 0.7765
DMCPSO 85.54% 0.9193 0.7945 0.0 0.6672 0.6432

PSO 75.24% 09062 0.7082 1.5 0.6161 0.7190

DPSOK  77.24% 0.9185 0.7142 1.0  0.6338 0.6758

s4 MIfPSO  76.54% 0.9104 0.7194 13  0.6346 0.6953
IPK-means 77.41% 0.8928 0.6829 3.1  0.5771 0.7723
DMCPSO 79.02% 0.9132 0.7174 0.2 0.6339 0.6705

PSO 92.25% 0.9449 09458 22  0.7127 0.6313

DPSOK  90.50% 0.9432 0.9471 3.0 0.7223 0.6236

al MfPSO  91.08% 0.9440 0.9438 2.6 0.7166 0.6248
IPK-means 91.24% 0.9461 0.9567 1.0  0.7543 0.5859
DMCPSO 97.60% 0.9503 0.9627 0.0 0.7563 0.5726

PSO 89.92% 0.9666 0.9546 6.1 0.7078 0.6503

DPSOK  92.17% 0.9680 0.9624 4.5 0.7343 0.6080

a2 MfPSO  91.61% 0.9669 0.9574 4.8 0.7136 0.6410
IPK-means 93.94% 0.9702 0.9734 4.4  0.7546 0.5757
DMCPSO 98.90% 0.9718 0.9838 0.0  0.7754 0.5432

PSO 88.85% 09760 0.9617 9.0 0.6936 0.6771

DPSOK  92.32% 0.9775 0.9720 7.0  0.7293 0.6343

a3 MIPSO 91.44% 0.9772 0.9686 7.5 0.7223 0.6529
IPK-means 95.71% 0.9793 0.9883 3.8 0.7669 0.5653
DMCPSO 99.55% 0.9803 0.9939 0.0 0.7939 0.5186

PSO 98.26% 0.8089 0.9903 2.0 0.8574 0.5127

DPSOK  85.02% 0.8091 0.9917 1.5 0.8528 0.5079

unb MIPSO 91.48% 0.7589 0.9508 0.8  0.9022 0.4290
IPK-means 65.12% 0.5570 0.7704 2.0  0.8209 0.5221
DMCPSO 100.00% 0.8095 1.0000 0.0  0.9585 0.3578

s3

TABLE 7. Running time of different algorithms with different datasets.

Method SI  S2  S3 S4 Al A2 A3 Unb
PSO  26.71 26.46 24.81 25.84 15.29 71.07 190.99 23.11
. DPSOK 18.18 18.01 15.32 15.43 10.73 47.05 13091 15.65
Running
Time(s) MfPSO 6.78 11.49 3.61 2.77 5.06 41.76 13535 9.44
IPK-

1.05 228 8.63 10.58 0.75 241 5.14 225
means

DMCPSO 0.86 091 1.14 3.16 0.64 1.40 16.02 3.67

fluctuations in the performance of other algorithms, which
is of great significance for the practical application of radar
signal sorting algorithms.

VI. CONCLUSION
The main difficulty of signal sorting technology is that the
intercepted pulse signals have a large density, complex form,
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and variable parameter distribution. The traditional sorting
methods based on clustering cannot get good results. There-
fore, this paper applies the PSO algorithm to the field of
radar signal sorting and proposes a DMCPSO sorting algo-
rithm in view of the shortcomings of the PSO algorithm,
such as premature convergence and insufficient optimiza-
tion ability. In the iterative process, chaotic disturbance is
added to replace the individuals whose performance remains
unchanged in the particle swarm, which increases the diver-
sity of the population and improves the ability of the algo-
rithm to jump out of local solution. The inertia weight and
acceleration coefficients are adaptively adjusted to update the
position and velocity of the particles, allowing the particles to
perceive the change of the population in real-time and find a
balance in global search and local search. Besides, on this
basis, the algorithm adopts a new fitness function. In the
construction of the fitness function, the influence of sample
distribution and the distance between the sample and its corre-
sponding center are considered, which reduces the possibility
of wrong clustering because of the sample distribution. At the
same time, the dynamic correction of particle position is
carried out, so that the individual can continuously find the
optimal clustering center through clustering analysis, and
avoid the interference caused by the distribution of feature
parameters to obtain better performance.

To evaluate the performance of the proposed algorithm,
the mixed sequence with different degrees of overlapping
characteristic parameters and varying number of pulses is
used for sorting. Compared with several other improved PSO
algorithms, it has great advantages in the accuracy and effi-
ciency of sorting. In addition, several datasets with a similar
distribution of characteristic parameters of radar pulse signals
are also selected from the benchmark datasets for simulation
validation in this paper. The same comparison with other
algorithms in several common and new clustering perfor-
mance indexes is performed to verify the convergence speed
and accuracy of the algorithm and to analyze the stability
and robustness of the algorithm. All these simulation results
show that the DMCPSO algorithm has faster convergence
speed, higher sorting accuracy, and stronger stability, which is
suitable for complex electromagnetic environment perception
and has high application value.
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