
Received May 25, 2021, accepted June 8, 2021, date of publication June 21, 2021, date of current version June 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090834

Stock Ranking Prediction Using List-Wise
Approach and Node Embedding Technique
SUMAN SAHA , (Graduate Student Member, IEEE), JUNBIN GAO , AND RICHARD GERLACH
Discipline of Business Analytics, The University of Sydney Business School, The University of Sydney, Sydney, NSW 2006, Australia

Corresponding author: Suman Saha (s.saha@sydney.edu.au)

This work was supported by the Business School Research Scholarship of The University of Sydney.

ABSTRACT Traditional stock movement prediction tasks are formulated as either classification or regres-
sion task, and the relation between stocks are not considered as an input of prediction. The relative order or
ranking of stocks is more important than the price or return of a single stock for making proper investment
decisions. Stock ranking performance can be improved by incorporating the stock relation information in the
prediction task. We employ a graph-based approach for stock ranking prediction and use the stock relation
information as the input of the machine learning model. Investors might be interested in the prediction
performance of top-k stocks as they would bemore profitable than the others. Thus, the performancemeasure
for stock ranking prediction should be top-weighted and bounded for any value of k . Existing evaluation
measures lack these properties, and we propose a new measure named normalized rank biased overlap
for top-k (NRBO@k) stocks for stock ranking prediction. NRBO@k-based investment strategy generates
0.281% to 4.928% higher relative investment gain than the topmost stock-based strategy. We show that the
list-wise loss function can improve the stock ranking performance significantly in a graph-based approach. It
generates better NRBO@10 than the combination of point-wise and pair-wise loss in three out of four cases.
Node embedding techniques such as Node2Vec can reduce the training time of graph-based approaches
for stock ranking prediction significantly. Additionally, we improve the prediction performance through
hyperparameter tuning of Node2Vec when a sparse stock relation graph is applied.

INDEX TERMS Stock ranking prediction, Node2Vec, normalized rank biased overlap, list-wise loss.

I. INTRODUCTION
Predicting stock price movement is very challenging due to
the volatile nature of the stock market. There are different
schools of thought regarding the predictability of individual
stocks or the stock market. According to Efficient Market
Hypothesis (EMH), it is not economically viable to pre-
dict stock price as the current stock price reflects all the
available information in an efficient market [1]. However,
the stock market cannot be perfectly efficient all the time.
Irregularities and patterns emerge in markets for intermittent
periods [2], [3]. Thus, it can be worthwhile to predict stock
movement and use that prediction for making investment
decisions.

The stock price can be influenced by numerous factors such
as macro-economic factors [4], the past value of technical and
fundamental indicators [5], [6], or news and online search
data [7]–[9]. It is possible to predict the movement of a single
stock or the market as a whole [5]. Stock movement can be
predicted from multiple perspectives such as one day ahead

The associate editor coordinating the review of this manuscript and
approving it for publication was Ikramullah Lali.

up-down direction [5], [7], one day ahead actual stock price,
or top-k stocks on the basis of predicted return [10], [11].

Most existing studies consider the stock movement pre-
diction as a regression or classification task. In a regres-
sion task, the actual value of the stock index or the stock
price is predicted [12], [13]. In a classification task, one day
ahead up-down direction is predicted [5]. In both regres-
sion and classification tasks, only the features of a single
stock are considered. According to the Capital Asset Pricing
Model (CAPM), the individual stock return has a relation
with the market return [14]. Thus, the stock price is not
only influenced by its factors but also by its relationship
with other stocks. It is necessary to consider the prediction
task from a perspective different than simple regression or
classification if we want to take the relationship between
different stocks into account. It is also necessary to incor-
porate information about stock relations in the prediction
task.

In recent times, some studies consider the stock prediction
as a ranking task [9]–[11], [15]. In this case, the stocks are
ranked according to the predicted return. A major challenge
of the ranking task is to determine an optimal performance

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88981

https://orcid.org/0000-0002-9642-745X
https://orcid.org/0000-0001-9803-0256

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

measure. Existing studies measure the ranking performance
in terms of topmost stock prediction such as the mean recip-
rocal rank of the top stock (MRRT) [10], the accuracy of
outperforming cross-sectional median return [11], the accu-
racy of outperforming market return [15], or the normalized
discounted cumulative gain (NDCG) [9]. We argue that these
evaluation measures are suboptimal for the stock ranking
prediction, and each of them has its limitations. We pro-
pose a robust measure named normalized rank biased over-
lap (NRBO) based on the concept of rank biased overlap
(RBO) [16] for stock ranking prediction. NRBO is suitable
for measuring any finite stock ranking performance. We will
discuss the limitations of existing evaluation measures and
details of our proposed evaluation measure in the latter
sections.

Stock relations can be represented by graphs. It is pos-
sible to construct a stock market graph based on the rela-
tionship between stocks, such as whether the stocks are
in the same industry or not. Incorporation of graph infor-
mation can improve the stock ranking performance [10]
or prediction accuracy [17] significantly. While predicting
stock ranking using stock market graph information, it is
essential to choose the proper loss function for improved
performance. Traditional evaluation measures such as mean
squared error (MSE) focus on the performance of individual
stocks. They fail to capture relative performance, such as
the rank of stocks. While predicting stock ranking using the
graph-based approach, it is common to use a combination
of the point-wise and the pair-wise loss as the objective
function [10].We show that the combination of the point-wise
and pair-wise loss function is not optimal for stock ranking
prediction using the graph-based approach, and the list-wise
loss function results in better predictive performance in such
cases.

In general, the relations defined by a graph are represented
by the adjacency matrix. The adjacency matrix of the stock
market graph is used as input features of the predictive model
in a graph-based approach. As there are many stocks in a mar-
ket, the adjacency matrix can be large and sparse. Moreover,
two stocks can havemultiple types of relations between them,
which can result in a multi-graph. This multi-dimensional
and large adjacency matrix can make the training process
of the graph-based approach very slow. One way to speed
up the training process is to apply node embedding tech-
niques on the raw adjacency matrix. We show that a proper
embedding technique such as Node2Vec [18] can result in
significant improvement in the training time and comparable
ranking performance simultaneously. It is possible to uplift
the ranking performance to the baseline level for a sparse
stock market graph when the hyperparameters of Node2Vec
are tuned properly. Overall, the major contributions of this
study are as follows:

• This study proposes a new metric named normalized
rank biased overlap (NRBO) for measuring the stock
ranking prediction performance.

• This study demonstrates the effectiveness of the list-wise
loss function in a graph-based approach of stock ranking
prediction through improved performance.

• This study shows significant improvement in
training time of stock ranking prediction by incorporat-
ing Node2Vec. It generates comparable ranking perfor-
mance through hyperparameter tuning of Node2Vec.

The rest of the paper is organized as follows. Section II
discusses the existing works related to stock movement
prediction, loss function, performance measure, and node
embedding techniques. Section III details several theoretical
concepts related to the proposed model and evaluation mea-
sure. The rationale of the proposed performance evaluation
measure is discussed in Section IV. Section V describes the
methodology, and Section VI describes the experimental set-
ting. Detailed empirical results are presented in Section VII.
The paper is concluded in Section VIII.

II. LITERATURE REVIEW
Traditionally, researchers use econometric methods such as
the auto-regressive integrated moving average (ARIMA) [19]
or the auto-regressive fractionally integrated moving average
(ARFIMA) [20] for explaining or predicting stock move-
ment. Machine learning (ML) models have shown their effec-
tiveness in various fields such as image processing, speech
processing, and genetic engineering in recent times, and
their application for stock movement prediction is increasing
gradually [21].

Two dominant ML models for stock movement predic-
tion are artificial neural network (ANN) and support vector
machine (SVM) [21]. Technical indicators are used as input
features of ANN for predicting the next day direction of
stocks and indices [5]. ANN is also used with multiple fea-
ture selection techniques to predict the quarterly direction of
stocks [4]. ANN also works well when combined with differ-
ent optimization techniques such as genetic algorithms [22].
SVM is used with hybrid feature selection techniques for
predicting the next day direction of the NASDAQ index [23].
SVM can predict the next day direction of the high price,
and that prediction can be used to generate a reliable trading
strategy, even if the prediction accuracy is low [24].

The application of deep learning (DL) based models for
stock movement or financial time series prediction is on the
rise in recent times. DL based models are used for predicting
stock ranking [11] or one-day ahead close price [12]. They are
also capable of producing superior performance while pre-
dictingmomentum and reversal effects in the stockmarket [6]
or forecasting the actual value of a stock index [13]. They tend
to outperform ANN or SVM in the case of one step ahead
stock movement prediction [25]. In general, ML methods or
a combination of ML and statistical methods result in bet-
ter prediction performance compared to traditional statistical
methods [19], [26], [27].

Most studies consider stock movement prediction as a
regression or classification task and focus on individual stock

88982 VOLUME 9, 2021

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

or index. It is a common practice to predict the next day
closing price of a stock or value of an index in a regression
problem setting [12], [13], [25]. It is also possible to predict
the stock return of the next period as the outcome of the
regression task [28]. When stock movement prediction is
considered as a classification task, the most common out-
put is one day ahead up-down direction of stock price or
stock index [4], [5], [7], [27]. Researchers calculate the stock
movement direction by comparing the close price of two
consecutive days [5] or other price values such as the open
price of two consecutive days [7] or the high price [24].

Researchers are also focusing on stock movement predic-
tion from other perspectives in addition to regression and
classification. One such perspective is stock ranking pre-
diction, where the considered stocks are ranked based on
the predicted returns [9]–[11], [15]. This ranking task is not
concerned about the actual performance, such as directional
accuracy for classification or mean squared error for regres-
sion. The ranking task focuses on the relative order of the
stocks, and that order is constructed based on the predicted
returns. This predicted rank can be helpful while selecting
stocks for portfolio construction. Investors can identify the
top-ranked stocks for long-only portfolios and bottom-ranked
stocks for short-only portfolios. Moreover, minimizing tradi-
tional evaluation measures such as mean squared error may
not always result in optimum stock selection [10]. Thus, stock
ranking prediction can be more beneficial from a pragmatic
investment perspective.

The performance of any ML model is highly influenced
by the choice of the input feature. Researchers use lagged
values of different prices, volumes, and technical indicators
as the input feature traditionally [5], [27], [29]. ML models
such as ANN, SVM, and decision tree (DT) perform well
when the input features come from disparate data sources
such as market data, technical indicators, Wikipedia traffic,
and Google news [7]. It is common to use different macroe-
conomic indicators as input features such as export amount,
national monetary supply, the interest rate of bonds, and
foreign exchange rate [4], [30]. Textual data such as online
news [8] and Twitter feed [31] are used as the input features
of ML models.

As stock ranking identifies the order of stocks, tradi-
tional input features such as price or technical indicators
are not sufficient for this task. It is possible to use features
based on investor sentiment to predict stock ranking [9].
Researchers use one-year close prices of stocks as the input
features for stock ranking prediction [11]. Company finan-
cial status-related features and accounting ratios are used
in addition to price, volume, and technical indicators for
stock ranking prediction [32]–[34]. It is possible to derive
stock intrinsic properties from mutual fund holdings and
combine that with the individual stock properties, such as
correlation with the market trend. This combination can be
used as the input features for stock ranking prediction [35].
However, stock ranking performance improves by using stock
relations as the input feature of the ML model [10], [36].

Stock relations are presented as a stock market graph, and
the adjacency matrix of that graph is used as input features of
subsequent ML models [10], [36].

While predicting the stock ranking using ML models, it is
necessary to use a suitable loss function as a guide or perfor-
mancemeasure. The loss function is optimized to improve the
prediction performance of the ML model. Researchers use
different loss functions for stock ranking prediction. Stock
ranking based on predicted returns can be considered as a
learning-to-rank task. The loss functions for learning-to-rank
can be classified broadly into three categories: the point-wise
loss, the pair-wise loss, and the list-wise loss [37]. In the
point-wise approach, the loss function is defined based on
an individual object, such as regression loss [37]. In the
pair-wise approach, the loss function is defined using each
pair of objects. One example is the pair-wise ranking-aware
loss, where loss is zero if actual and predicted rank orders
are the same and non-zero if they are different [10]. In
the list-wise approach, ranked lists are considered as the
instances in learning rather than individual elements or
pairs [38].

References [9] and [11] use cross-entropy as the loss
function. However, they differ in the approach of converting
the scores into a probability distribution for cross-entropy
calculation. Reference [11] uses the probability for each
stock to outperform the cross-sectional median return. On
the other hand, [9] uses two approaches to convert scores
into probability measures. One approach uses the logis-
tic function of scores according to Ranknet [39]. Another
approach is based on the top k probability of Listnet [38].
Reference [10] combines both point-wise regression loss and
pair-wise max-margin loss to formulate the loss function. The
regression loss is minimized to reduce the difference between
predicted return and actual return. The pair-wise max-margin
loss is minimized to ensure that each stock pair has the same
relative predicted order as the actual order [10].

Studies vary considerably in terms of the performance
measure for stock ranking prediction. Reference [11] uses
the accuracy of outperforming cross-sectional median return
as the performance measure. Reference [10] uses MRRT as
the performance measure, which reflects the performance of
topmost stock prediction only. It is common to use NDCG
or NDCG@k as a performance measure where k represents
the top-k stocks. A similar measure for stock ranking predic-
tion is the mean absolute precision (MAP) or MAP@k [35].
Researchers also use accuracy and precision of outperforming
benchmark return by the annualized ranking model return
while applying a trading strategy based on stock ranking
prediction [15]. Studies simulate various trading strategies,
and investment returns based on those trading strategies are
used as an evaluation measure [9]–[11], [34], [36]. Table 1
represents a summary of the evaluation measures used by
existing studies.

Node embedding can help to represent a graph from a
high dimensional space of the adjacency matrix to a low
dimensional space. Node embedding tries to learn a mapping

VOLUME 9, 2021 88983

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

TABLE 1. Evaluation measures used by existing studies for stock ranking
prediction.

from a high dimensional space to a low dimensional vector
space so that the geometrical relationships in embedding
space reflect the graph position and the structure of the local
graph neighborhood of nodes in the original graph [40]. The
learned low dimensional embedding can be used as the input
feature for subsequentML tasks such as stock ranking predic-
tion. Node embedding techniques can be classified broadly
into three categories: matrix factorization-based approaches,
random walk-based approaches, and deep learning-based
approaches [41].

Matrix factorization-based approaches try to factorize the
similarity matrix between the nodes to obtain the low dimen-
sional embedding. The similarity matrix can be constructed
using different variants such as the adjacency matrix or
the Laplacian matrix. Factorization-based approaches try to
minimize a loss function which is formulated based on the
assumption of the graph. For example, in local linear embed-
ding (LLE), node embedding is assumed to be the linear
combination of the embedding of neighboring nodes [42].
Thus, the loss between the embedding of a node and the
linear combination using the embedding of its corresponding
neighboring nodes is minimized. In graph factorization (GF),
the distance between two nodes is calculated as the inner
product in embedding space. The corresponding entry of the
adjacency matrix is considered as the distance in the original
space. Then embedding is constructed by minimizing the l2
norm of loss between these distances along with a regulariza-
tion term [43].

Two major random walk-based approaches are
Node2Vec [18] and DeepWalk [44]. These approaches try
to optimize node embedding so that the nodes with simi-
lar embedding tend to co-occur in the random walks over
the graphs. These approaches try to minimize the cross-
entropy, where the probability is calculated based on the
samples of a random walk. Node2Vec and DeepWalk vary
in terms of probability calculation methods as well as
how they define the random walk strategy (e.g., biased or
unbiased) [40].

III. PRELIMINARIES
This section discusses the relevant theoretical concepts which
are employed in this study.

FIGURE 1. LSTM cell.

TABLE 2. Weight matrix of a LSTM cell.

A. LSTM NETWORK
LSTM is proposed in [45] to capture temporal dependen-
cies and to overcome the barrier of vanishing or exploding
gradient. Fig. 1 shows the structure of a single LSTM unit
indicating information flow and mathematical operations.

A brief description of the symbols of Fig. 1 is as follows:
• Input vector at time t: xt
• Candidate cell state at time t: c̃t
• Cell state at time t: ct
• Output at time t: ht
• Output of the input gate at time t: it
• Output of the forget gate at time t: ft
• Output of the output gate at time t: ot
A single LSTM cell has three gates. They control the

information flow inside the cell. A brief description of these
three gates is as follows:
• Input gate: It determines the amount of information
added to the cell state.

• Forget gate: It determines which information to remove
from the cell state.

• Output gate: It determines which information of the cell
state will be used for calculating the final output of the
LSTM unit.

Each of the three gates and the calculation of candidate cell
state uses xt and ht−1 as inputs. These four calculations use
weights, biases, and different activation functions, which are
depicted in Table 2. The equations for calculating the output
of three gates and candidate cell state are as follows:

ft = σ (Wf ,xxt +Wf ,hht−1 + bf), (1)

it = σ (Wi,xxt +Wi,hht−1 + bi), (2)

88984 VOLUME 9, 2021

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

ot = σ (Wo,xxt +Wo,hht−1 + bo), (3)

c̃t = tanh(Wc,xxt +Wc,hht−1 + bc). (4)

Here, σ is the sigmoid function. After calculating the
output of different gates and candidate cell state, cell state
at time t, ct is calculated as follows:

ct = it ⊗ c̃t + ft ⊗ ct−1. (5)

Here, ⊗ denotes element-wise product. it will determine
what portion of candidate cell state c̃t will be added to the
current cell state, and ft will determine what portion of previ-
ous cell state ct−1 will be added to the current cell state. The
calculation of the final output at time t is as follows:

ht = ot ⊗ tanh(ct). (6)

Here, ot will determine what portion of cell state ct will be
transferred to output ht .

B. Node2Vec
Node2Vec is an embedding technique for learning contin-
uous features representation of nodes in a network [18].
A low-dimensional mapping of nodes is learned by maximiz-
ing the likelihood of preserving the network neighborhoods
of nodes. Let us consider a graph G = (V ,E), consisting
of nodes V and edges E . The target of any node embedding
technique is to find out a mapping function F , which can
transform the nodes V to a lower-dimensional representation
Rv, given that v� |V |. Thus, F can be considered as a matrix
of size |V | × v [18].
To estimate the function F , it is required to find out the net-

work neighborhoodNS (u) for every node u ε V in the network
through a searching strategy S. This list of neighbors can be
considered as a sentence where each node is a word. All the
sampled sentences formulate a corpus. The next step is to
define an objective function and optimize that in the process
of estimating F from this corpus of neighborhood sentences.
Node2Vec applies the idea of Word2Vec algorithm [46] to
convert the sampled sentences to an embedding vector and
uses log probability as the objective function.

Node2Vec deploys a random walk-based searching strat-
egy to find out the network neighborhood NS (u). This ran-
dom walk-based strategy allows sampling neighboring nodes
with different structures by combining both breadth-first sam-
pling (BFS) and depth-first sampling (DFS) strategies [18]. In
pure BFS, NS contains mostly the immediate neighbors such
as first-order or second-order. Sampling using a pure BFS
strategy leads to an embedding that preserves the structural
equivalence [18]. In this case, nodes with a similar structural
role, such as hubs, remain closer in the embedding space.
In pure DFS, NS contains neighbors with increasing distance
from the source node. In this case, NS portrays a macro view
of the network, where the nodes from the same community
remain closer in the embedding space [18].

In Node2Vec, the structure of sampled neighbors (NS) is
controlled by two parameters: return parameter (p) and in-out
parameter (q). The likelihood of immediately revisiting a

node in the random walk searching strategy is controlled by
p [18]. The parameter q is used to distinguish between inward
and outward nodes [18]. Lower values of p compared to q
result in a sampling of neighbors from the local structure
and thus, simulates the BFS strategy. Higher values of p
encourage to travel away from an already visited node and
suitable for DFS strategy. On the other hand, if q > 1,
S would preserve the local view of the neighborhood and
would emulate the BFS strategy. If q < 1, S would sample
more nodes away from the source and would emulate the
DFS strategy. Controlling the values of p and q would help
to sample different neighbor combinations, and the optimal
(p, q) can be chosen through validation results.
Once the neighboring nodes are sampled in NS , the fol-

lowing log-probability is optimized to find out the mapping
function F [18]:

max
F

∑
uεV

log[Pr(NS (u)|F(u))]. (7)

Node2Vec assumes that the likelihoods of observing the
neighboring nodes are independent of each other [18], and
thus, the objective function can be represented as follows:

max
F

∑
uεV

log[
∏

ηiεNS (u)

Pr(ηi|F(u))]. (8)

The conditional likelihood of every source-neighborhood
node pair is modeled as a softmax function and defined using
the dot product of their corresponding features in embedding
space.

Pr(ηi|F(u)) =
exp(F(ηi).F(u))∑
µεV exp(F(µ).F(u))

. (9)

We can get the final objective function of the Node2Vec
algorithm by combing the equation (8) and (9).

max
F

∑
uεV

[− log(
∑
µεV

exp(F(µ).F(u)))

+

∑
ηiεNS (u)

exp(F(ηi).F(u))]. (10)

This objective function is optimized using a stochastic
gradient ascent algorithm. Apart from p and q, few other
hyperparameters can be varied to improve the performance
of Node2Vec. The first one is the length of the random walk
l, which controls the number of sampled neighbors in each
randomwalk. It is also possible to vary the number of random
walks (n) to explore different NS (u).

C. THE LIST-WISE LOSS
The list-wise loss is proposed in [38]. We will explain the
list-wise loss from the perspective of stock ranking predic-
tion. Let us assume that we want to rank N stocks based on
their predicted return r̂ . The actual return or ground truth is
r . We want to minimize the list-wise loss function L over the
entire training period.

T∑
τ=1

L(rτ , r̂τ). (11)

VOLUME 9, 2021 88985

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

Here, T is the length of the training period. In the list-wise
loss, r and r̂ are converted into probability distributions, and
then metrics such as cross-entropy or KL divergence are used
to generate a loss value. We can use the top k probability for
this purpose [38]. If we have N stocks, we can formulate N !
different permutations from them. At the same time, we have
the predicted return r̂i for each stock i. Any permutation is
possible from available N ! permutations for any predicted
score r̂ . However, different permutations will have different
probabilities. If we define π as a permutation of N stocks
and φ() as a strictly positive and increasing function, then
permutation probability can be defined as follows [38]:

Pr(π) =
N∏
i=1

φ(r̂π (i))∑N
j=1 φ(r̂π (j))

. (12)

Here, r̂π (i) denotes the predicted return of stock at the
position i of permutationπ .We can haveN ! such permutation
probabilities for N stocks. The top k probability of stocks
(ψ1, ψ2,ψk) means the probability of their being ranked
at the top k positions. We can define the top k subgroup
of permutations as the set of permutations where the top k
stocks are exactly (ψ1, ψ2,ψk). Let us denote this top
k subgroup as �k (ψ1, ψ2,ψk). The top k probability of
objects (ψ1, ψ2,ψk) is the sum of all permutation prob-
abilities which are in �k (ψ1, ψ2,ψk) and can be defined
as follows [38]:

Pr(�k (ψ1, ψ2,ψk)) =
∑
πε�k

Pr(π). (13)

According to [38], top k probability can be calculated
efficiently as follows:

Pr(�k (ψ1, ψ2,ψk)) =
k∏
i=1

φ(r̂ψ i)∑N
j=1 φ(r̂ψ j)

. (14)

For different �k , we can calculate Pr(�k) and thus, can
formulate a probability distribution. If we have r and r̂ , then
we can calculate the list-wise loss as follows using cross-
entropy:

L(rτ , r̂τ) = −
∑
∀sε�k

Prrτ (s) log(Prr̂τ (s)). (15)

D. RANK BIASED OVERLAP (RBO)
Rank biased overlap (RBO) is a similarity measure for com-
paring two infinite lists [16]. RBO gives more weight on
a higher rank than a lower rank, and thus, suitable as a
top-weighted measure. RBO ensures top-weightedness by
using a decreasing and convergent weight series. It can also
compare the list with different lengths and having different
constituent members.

Let us consider the actual rank as a list B and the predicted
rank as a list P. For stock ranking prediction, both B and P
have the same length and constituent stocks if the list consists
of all the stocks of the market. However, if we want to predict
the top k stocks, then B and P have the same length but not the

same constituent stocks unless the predicted ranks are 100%
correct.

Let us consider B:d as the actual rank and P:d as the
predicted rank up to depth d . The overlap up to depth d can
be considered as the size of the intersection between B:d and
P:d . We can define the agreement at depth d , AGd as the
overlapped proportion of B:d and P:d :

AGd =
|B:d ∩ P:d |

d
. (16)

RBO considers B and P as infinite lists and is defined as an
infinite weighted sum of agreement, AG [16]:

RBO(B,P,w) =
∞∑
d=1

wd .AGd . (17)

As stated earlier, the weight series is an infinite one, and
for RBO, it is defined as a geometric progression using a
probability parameter, ρ. The infinite sum of that geometric
series is defined as follows:

∞∑
d=1

ρd−1 =
1

1− ρ
. (18)

To ensure that the sum of the weight series is 1, wd is
defined as (1 − ρ)ρd−1. So, the final definition of RBO is
as follows [16]:

RBO(B,P, ρ) = (1− ρ)
∞∑
d=1

ρd−1AGd . (19)

The value of ρ determines the top-weightedness in the
evaluation measures. Smaller values of ρ result in more
top-weightedness in the evaluation measure. An extreme case
is ρ = 0 when only the top-ranked stock is considered.

E. SUMMARY STATISTICS OF A GRAPH
Different summary statistics are used to analyze the charac-
teristics of a graph. The first such statistic is the average node
degree (ḡ), which is a measure of connectivity in the graph.
If there are |V | nodes in the network, then ḡ can be defined
as follows, where g is the degree of individual node:

ḡ =
1
|V |

|V |∑
i=1

gi. (20)

Node degree g is the number of neighbors adjacent to a
node. If node i is connected to 4 adjacent neighbors, then the
degree gi will be 4.
The second statistic is the average clustering

coefficient (ζ). It can be defined as the portion of neighbors
that are connected. For each node i in an undirected and
unweighted graph, ζi can be defined as follows:

ζi =
2λi

gi(gi − 1)
. (21)

λi is the number of edges between the neighbors of node
i, and gi is the degree of node i. the average clustering

88986 VOLUME 9, 2021

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

coefficient of a network or graph is defined as follows:

ζ =
1
|V |

|V |∑
i=1

ζi. (22)

We can use network density (D) as the third statistic.
It measures the portion of possible connections in a network
and defined as follows for an undirected graph:

D =
2(Total number of edges)

|V |(|V | − 1)
. (23)

IV. THE RATIONALE OF A NEW PERFORMANCE
EVALUATION MEASURE FOR STOCK RANKING
In Sections I and II, we have identified several existing eval-
uation measures for stock ranking performance prediction.
However, each of those evaluationmeasures has its shortcom-
ings. MRRT focuses on the topmost stock only [10]. MRRT
will not change even if all the subsequent predictions from
the second rank onward are entirely incorrect. It is not suitable
for a practical investment strategy. There will be a significant
change in the cumulative investment return if the top two
stocks are swapped [10]. From an investment perspective, it is
always necessary to invest inmore than one stock for portfolio
diversification [47], [48]. Most stock ranking studies focus
on investment in more than one stock. Reference [9] takes a
long position for the top 25% stocks and a short position for
the bottom 25% stocks. Reference [11] uses top-k stocks for
a long position and bottom-k stocks for a short position. If
MRRT is used, then the investor might not get any idea about
the performance of the second best or the third best stock.
As a result, the investment performance will not be optimal
if stocks are selected based on MRRT. Thus, it is worthwhile
to propose an evaluation measure that focuses on the top-k
stocks rather than the topmost stock only.

It is possible to use evaluation measures such as accuracy
of outperforming cross-sectional median return or accuracy
of outperforming market return [11]. However, none of these
two evaluation measures has top-weightedness. Accuracy
gives equal weight to all the stocks by definition. It does not
differentiate between the first stock and the second stock, and
so on. As a result, the investors cannot get any idea about
the top-performing stocks using accuracy. We can consider a
hypothetical scenario to demonstrate the limitation of accu-
racy as an evaluation measure for stock ranking prediction.
Let us assume that we want to compare two methods for
predicting the ranks of 100 stocks. The first method correctly
predicts all the ranks except the 1st and the 52nd stock.
Their positions are interchanged in the predicted rankings.
The second method correctly predicts all the ranks except the
51st and the 52nd stock. The first method is worse as it fails
to identify the topmost profitable stock for a long position
investment strategy. However, the accuracy of both methods
will be the same, and we will not be able to identify the best
method.

The NDCG ensures top-weightedness by applying a dis-
counting factor such as logbase k to the cumulative gain,

where k is the rank of the stock [49]. We can divide the
cumulative gain of each rank by the discounting factor to
get the discounted cumulative gain (DCG). One shortcoming
of this measure is that we cannot discount the ranks which
are less than the base [49]. It will boost those ranks rather
than discounting them. For example, we can never discount
the first position as the logbase 1 is 0 always. If we use
base = 10, we cannot apply any discounting to the first ten
ranks. Moreover, to normalize DCG, it is required to define
the ideal gain value for each rank [9], [49]. However, the ideal
gain values are not automatic. They are user-defined and
can be the same for top k stocks. For example, the first k1
positions can be considered highly relevant, and the user can
give them an ideal gain value of 3. The ideal gain value can
be 2 for the subsequent k2 positions, 1 for the following k3
positions, and 0 for the rest. The ideal gain vector will vary
greatly depending on k1, k2, k3, and the associated ideal gain
values. This type of manual intervention makes NDCG less
robust. On the other hand, RBO has only one hyperparameter,
ρ. We can first decide the total weight of top-k stocks and
select the corresponding value of ρ. For example, if we set
ρ = 0.9, that will give 86% of the weight in the similarity
comparison to the top ten stocks [16]. Thus, RBO is more
flexible and requires less manual intervention than NDCG in
a stock ranking task.

Average precision is defined as the mean of the precision
for each position of a ranked list [35]. MAP is the mean of
average precision across multiple ranks [35]. We can calcu-
late average precision for all the trading days and then take the
average to get MAP. MAP is not top-weighted by definition
and thus, not an optimal choice for stock ranking prediction.

MSE calculates the mean of the squared difference
between the ground truth and the predicted return. It does
not use the predicted ranks in the calculation. Thus, it is
not a direct measure of ranking performance. In a ranking
task, we are concerned about the predicted ranks, not about
the underlying scores which are used to create the ranks [9].
Thus, MSE can be used as a loss function but not as an eval-
uation measure for stock ranking prediction. Moreover, MSE
is not top-weighted, and it does not differentiate between the
error of the top stocks and the bottom stocks. It is also sub-
optimal as an evaluation measure from the top-weightedness
perspective.

The above discussion identifies the limitations of exist-
ing evaluation measures for stock ranking prediction perfor-
mance evaluation, and thus, it is required to define a more
robust evaluation measure.

V. METHODOLOGY
A. TEMPORAL EMBEDDING LAYER
Historical price data and technical indicators of stocks are
considered as influential input features for stock movement
prediction [5], [11], [27]. Different technical indicators can
signal about the future stock trend. Those indicators are used
widely when stock movement prediction is considered as a
classification or regression task [5], [27]. These technical

VOLUME 9, 2021 88987

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

FIGURE 2. Overall network architecture.

indicators are hand-crafted features. It is also possible to
automatically extract features or embedding using variants
of recurrent neural network (RNN), such as LSTM [10],
[11], [17], and use that extracted features or embedding in
subsequent layers for stock movement prediction.

We use the LSTM network to extract the temporal embed-
ding of the stocks rather than using hand-crafted technical
indicators. LSTM network can capture long-term dependen-
cies, and their incorporation results in improved stock move-
ment prediction performance [11], [12]. The historical price
time series data of stocks at time step t (Xt) is used as the input
of the LSTM network. We apply min-max normalization to
Xt before using it as the input of the LSTM network. The last
hidden state of the LSTM network is taken as the temporal
embedding of stocks at time step t . We use all the stocks
together as the input of the LSTM network and minimize
the combined point-wise and pair-wise loss to extract the
temporal embedding according to [10]. We will denote this
temporal embedding as ξt of shape RN×z. We can consider
z as the dimension of the temporal embedding for a single
stock.

B. GRAPH EMBEDDING LAYER
In this layer, we use the stock market graph as the input and
extract node embedding from that graph using the Node2Vec
algorithm. Let us consider the stock market graph as a static
multi-graph with different types of relations between two
constituent stocks. If there are M types of relations between
the stocks, the adjacency matrix (A) will be a tensor of shape
RN×N×M . We first convert A from a three-dimensional tensor
to a two-dimensional matrix. The two-dimensional A has
value 1 in a position if two corresponding stocks have at least
one relation between them. We will apply Node2Vec on the
new A to extract node embedding (ξV) of shapeRN×v and use
that as features in the prediction task.

C. PREDICTION LAYER
After extracting features from the temporal embedding layer
and graph embedding layer, we will use them as input to
a fully connected layer. We will concatenate ξt and ξV to
formulate the input for the prediction layer. The concatenated
input will be of shape RN×(v+z). This fully connected layer
will predict the return of the stocks, and that will be used to
formulate the predicted ranking.

The overall network architecture is presented in Fig. 2.

D. EVALUATION MEASURES
1) NORMALIZED RANK BIASED OVERLAP (NRBO)
For stock ranking prediction, we need to find an evaluation
measure that should satisfy at least the following conditions.

1) It should give more weight to the top-ranked stocks
2) The maximum value of the measure should be 1, when

100% predicted ranks are correct
3) The minimum value of the measure should be 0, when

0% predicted ranks are correct
The first condition is necessary due to the nature of invest-

ment in the stock market. An investor is more likely to invest
in the top-ranked stocks. That is why, the evaluation measure
should focus more on top-ranked stocks. The second condi-
tion determines the maximum value, and the third condition
determines the minimum value of the evaluation measure.
These two conditions are necessary to have a bounded mea-
sure. These bounds should be the same every time, irrespec-
tive of the number of ranked stocks.

RBO is an overlap based measure where a convergent
series of weights is used to bias the proportional overlap [16].
The convergent weight series has higher weights for overlap
for the top ranks and lower weights for the bottom ranks.
Thus, it satisfies the first condition for the evaluation measure
of stock ranking. In this study, we measure the performance
of predicting top k stocks.

As stated in Section III-D, RBO is defined for an infinite
list. However, for stock ranking prediction, the major focus is
on top k or bottom k stocks. Investors can take a long position
for top k stocks or a short position for bottom k stocks. We
can calculate RBO for top k stocks as follows:

RBO@k = (1− ρ)
k∑

d=1

ρd−1AGd (24)

However, the definition of RBO@k according to the equa-
tion (24) does not satisfy the second condition of evaluation
measure for stock ranking. For example, if we set ρ = 0.8,
then RBO@5 will be 0.67 even if all the predicted ranks are
correct. Thus, we need to modify the definition of RBO@k to
ensure that it satisfies the second condition of an evaluation
measure. We propose a new measure named normalized rank
biased overlap (NRBO) to apply the concept of RBO for
finite lists of stock ranking. This proposed measure will have
a value between 0 to 1 for any arbitrary top k stocks. Our
proposed definition for NRBO@k is as follows:

NRBO@k =
k∑

d=1

ρd−1∑k
j=1 ρ

j−1
AGd (25)

The definition of equation (25) ensures that NRBO@k
satisfies all three conditions of evaluation measure for stock
ranking prediction. For this study, we are using NRBO@10
as the evaluation measure.

2) TRAINING TIME
The stock market graph can be quite large due to the pres-
ence of multiple relation types. If a fully connected neural

88988 VOLUME 9, 2021

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

network such as temporal graph convolution (TGC) [10] is
used, it might take a significantly longer time to complete
the training process. If a node embedding technique such
as Node2Vec is applied, this training time can be reduced
significantly. Thus, we use themedian training time per epoch
as an evaluation measure.

3) MEAN RECIPROCAL RANK OF TOP STOCK (MRRT)
The mean reciprocal rank of top stock (MRRT) is calculated
by taking the average reciprocal predicted rank of the topmost
stock. If the topmost stock is predicted closer to the top rank,
MRRT will be higher. It will be lower if the actual topmost
stock is predicted at the bottom of the ranks. We are using
MRRT as an evaluation measure to portray the prediction
performance for the topmost stock as our baseline model
in [10] uses this measure.

4) CUMULATIVE INVESTMENT RETURN RATIO (IRR)
We use the cumulative investment return ratio (IRR) as a
performance measure following [10] and [11]. NRBO@k
indicates whether the model can predict the top-ranked stocks
properly or not. We use IRR to show that using NRBO@k as
a performance measure can lead to better investment return
compared to usingMRRT .

Following [10], we simulate a daily buy-hold-sell trading
strategy. The trading strategy is simulated as follows:

• Trading day t: The trader buys the top k stocks accord-
ing to the predicted rank. The trader allocates an equal
amount of funds for each stock.

• Trading day t + 1: The trader sells the stocks purchased
at day t.

Reference [10] trades only a single stock. However,
we trade top k stocks. It is always better to trade top k stocks
than the topmost stock from an investment perspective. The
main reason behind this is the topmost stock may not always
be sufficiently liquid such that the buying order gets filled
at the closing price of day t , and the selling price is the
closing price of day t + 1. We also ignore transaction costs
following [10].

VI. EXPERIMENTAL SETTING
For temporal embedding, we use optimal embedding accord-
ing to [10]. In this case, the embedding dimension z for
NASDAQ is 64 and for NYSE is 32. LSTM networks consist-
ing of 64 LSTM cells for NASDAQ and 32 LSTM cells for
NYSE are used to generate these embeddings. The sequence
length or the look-back period of the input for the LSTM
network is 16 for NASDAQ and 8 for NYSE.

To demonstrate the superiority of the list-wise loss func-
tion, we run the experiments twice. Firstly, with the list-wise
loss and then with the combined point-wise and pair-wise
loss, which is used in [10]. The combined point-wise and
pair-wise loss is our baseline loss. We will refer this loss
to point pair loss in several places for brevity. We also run
experiments with andwithout Node2Vec. As a result, for each

stockmarket and relation graph pair, we run four experiments.
When Node2Vec is not used, we use a fully connected tem-
poral graph convolution (TGC) layer to generate relational
embedding according to [10]. Thus for each stock market and
relation graph combination (e.g. [NYSE, Industry]), we have
four embedding technique and loss function combinations
(e.g. [Node2Vec, list-wise]). We consider the model with a
fully connected TGC layer and the combined point-wise and
pair-wise loss as the baseline model. The TGC layer has 43
neurons for NASDAQ with Wikidata graph and 97 neurons
for NASDAQ with Industry graph. For NYSE, the number
of neurons is 33 with Wikidata graph and 108 with Industry
graph.

In the TGC method, temporal embedding extracted from
return time-series data is combined again (through a matrix
multiplication) with node embedding data to generate tempo-
ral relational embedding [10]. However, we are not using that
technique in our proposed method when applying embedding
from Node2Vec. The size of the fully connected prediction
layer is (v + z). This size is 128 for NASDAQ with TGC
embedding and 64 for NYSE with TGC embedding.

We use Adam optimizer [50] with a learning rate of 0.001,
a decay rate for the first momentum estimates of 0.9, and
a decay rate for the second momentum estimates of 0.999.
We use the leaky rectifier as the activation function for the
TGC layer and the prediction layer, according to [10]. Glorot
uniform initializer [51] is used to initialize the weights of the
layers. We run the training process for three different epochs:
5000, 10000, and 15000. Generally, the model performance
should improve with increased epochs.

To optimize the graph embedding performance, we vary
different hyperparameters of the Node2Vec algorithm. Ini-
tially, we apply Node2Vec with a fixed hyperparameter set-
ting. Then we apply hyperparameter tuning of Node2Vec if
the result is worse than the baseline result. We use p = 0.50,
q = 2, l = 8 and n = 10 as the default hyperparameters
for Node2Vec. We use v = 64 for NASDAQ and v = 32 for
NYSE as the default setting. The fully connected prediction
layer has a size of 128 for NASDAQ with Node2Vec and 64
for NYSE with Node2Vec. This size changes according to v
when we tune the hyperparameters of Node2Vec.

Aswe are using a train-validation-test split, it is also impor-
tant to decide the model selection criterion. As mentioned in
section V-D, we are using NRBO@10 andMRRT as the main
evaluation measures. For each experimental setting, we select
two models as the best models. One model is selected based
on the best validation NRBO@10, and the other is selected
based on the best validation MRRT . Then we are using
these two models to calculate the test set NRBO@10 and
MRRT .

VII. EMPIRICAL RESULTS
A. PRICE DATA
Wehave used stocks fromNewYork Stock Exchange (NYSE)
and NASDAQ stock exchange. The data has been collec-
ted from https://github.com/fulifeng/Temporal_Relational

VOLUME 9, 2021 88989

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

_Stock_Ranking, which is prepared by [10]. The price data
contains daily transactions from 01/02/2013 to 12/08/2017
for 1026 NASDAQ stocks and 1737 NYSE stocks. As the
target is to calculate stock ranking based on predicted return,
the one-day return is calculated as follows using the close
price:

r t =
Closet − Closet−1

Closet
. (26)

The price and return data is divided into three parts: train-
ing set (01/02/2013− 12/31/2015, 756 trading days), vali-
dation set (01/04/2016−12/30/2016, 252 trading days), and
testing set (01/03/2017− 12/08/2017, 237 trading days).

B. STOCK MARKET RELATION GRAPH DATA
Two types of static stock market graphs are formulated
according to [10]. The first type is based on whether a stock
pair comes from the same industry or not. If they are from
the same industry, then there will be a relation between them.
For example, Google and Facebook belong to the Computer
Software industry, and thus, there is a relation between them.
All such industry relations are extracted from the official
company list of NASDAQ,1 and two stocks can have more
than one industry relation [10]. As a result, the adjacency
matrix will be a tensor based on the unique industry types.
There are 108 unique industry relations between the stocks
of NYSE and 97 unique industry relations between the stocks
of NASDAQ. We refer to the appendix of [10] for details of
industry relations.

The second type of relation is extracted based on the
first-order and the second-order relations in the statements
of Wikidata [10]. There is a first-order relation between two
stocks if one of them is the subject and the other is the object
of a statement in Wikidata.2 Two stocks have a second-order
relation if both have a common object in two different state-
ments [10]. After analysis and cleaning of data, 43 types
of Wikidata relations are created for NASDAQ stocks, and
33 types of relations are created for NYSE stocks. We refer
to the appendix of [10] for details of Wikidata relations.

We calculate different statistics to analyze the stock market
graphs as described in Section III-E. These statistics are aver-
age node degree (ḡ), average clustering coefficient (ζ), and
network density (D). As the adjacency matrices are of dimen-
sion RN×N×M , we first convert them into a shape of RN×N

and then calculate the above statistics. If there exists at least
one relation out of M between two stock pairs, we consider
that there is an edge between them in the converted graph.
Thus, the final relation graph is an unweighted and undirected
one. The above summary statistics are then calculated on the
converted graphs and presented in Table 3.
The graphs formed based onWikidata are very sparse with

lower network density, average node degree, and clustering
coefficient. On the other hand, graphs formed based on indus-
try relations have relatively higher density and average node

1https://www.nasdaq.com/market-activity/stocks/screener
2https://doc.wikimedia.org/Wikibase/master/js/

TABLE 3. Summary statistics of stock market graphs.

TABLE 4. Best NRBO@10 and MRRT performance.

degree. The average clustering coefficients are almost close
to 1, reflecting a densely connected graph.

C. NRBO PERFORMANCE
We present the NRBO@10 performance for four different
experimental settings based on two different loss functions
and two different embedding techniques in Fig. 3 to Fig. 6
and in Table 4.

The NRBO@10 performance for NASDAQ with Wikidata
graph is presented in Fig. 3, and with Industry graph is
presented in Fig. 4. In both cases, Node2Vec is applied with
default parameter settings as described in section VI.

For NASDAQ with the Wikidata graph, the maximum
NRBO@10 is 0.368 when the list-wise loss is applied

88990 VOLUME 9, 2021

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

FIGURE 3. NRBO@10 of NASDAQ with Wikidata graph.

FIGURE 4. NRBO@10 of NASDAQ with Industry graph.

with Node2Vec, and the training is conducted up to 15000
epochs. It is a 2.65% relative gain compared to the baseline
NRBO@10 of 0.358 obtained using TGC embedding and the
combined point-wise and pair-wise loss. For NASDAQ with
the Industry graph, maximum NRBO@10 is 0.399 when the
list-wise loss is applied with TGC embedding and the training
is conducted up to 15000 epochs. Here, the relative gain is
6.7% compared to the baseline performance of 0.374. Thus,
for NASDAQ, incorporation of the list-wise loss results in
better NRBO@10 performance. Node2Vec performance is
also very close to the performance of the baseline model in
the case of the Industry graph with NASDAQ. The highest
NRBO@10 for Node2Vec is 0.369 when it is applied with the
list-wise loss. It is only 1.25% lower compared to the baseline
model.

For NYSE with the Wikidata graph, the best NRBO@10 is
0.645 with the baseline model. The list-wise loss with TGC
embedding results in NRBO@10 of 0.644. Both models per-
form very close when the training is conducted up to 15000
epochs, as depicted in Fig. 5. However, we can observe sig-
nificant improvement in NRBO@10 when the Industry graph
is used, as observed in Fig. 6. The list-wise loss with TGC
embedding results in a 1.47% relative gain (0.685) compared
to the baseline NRBO@10 of 0.675. Node2Vec with default
parameter setting does not perform well for NYSE compared
to the baseline model.

FIGURE 5. NRBO@10 of NYSE with Wikidata graph.

FIGURE 6. NRBO@10 of NYSE with Industry graph.

Overall, it can be concluded that the list-wise loss results in
significantly better NRBO@10 compared to the combination
of the point-wise and the pair-wise loss. Empirical results jus-
tify the use of the list-wise loss for stock ranking prediction.
However, Node2Vec with default parameter setting does not
perform better than the baseline for NYSE. We will analyze
this issue further by tuning the hyperparameters of Node2Vec.

D. MRRT PERFORMANCE
We present the MRRT performance in Fig. 7 to Fig. 10 and
Table 4. Fig. 7 and Fig. 8 show the MRRT performance for
the NASDAQ stock exchange. When the Wikidata graph is
used, the baselinemodel shows the bestMRRT of 0.430.With
the list-wise loss, the best MRRT is 0.415, which is lower
compared to the baseline. However, we get a significantly
improved MRRT of 0.460 when the Industry graph is used
with the list-wise loss and TGC embedding. It again substan-
tiates the usefulness of the list-wise loss even when predicting
the topmost stock.

We represent the MRRT performance for NYSE in Fig. 9
and Fig. 10. When the Wikidata graph is used, the best
MRRT of 0.716 is obtained using the list-wise loss and TGC
embedding. This is a relative gain of 1.95% compared to
the baseline of 0.702. However, when the Industry graph is
applied, the baseline model performs the best with anMRRT
value of 0.755. We get the second-best MRRT of 0.733
when we use the list-wise loss with Node2Vec embedding.

VOLUME 9, 2021 88991

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

FIGURE 7. MRRT of NASDAQ with Wikidata graph.

FIGURE 8. MRRT of NASDAQ with Industry graph.

FIGURE 9. MRRT of NYSE with Wikidata graph.

So, the performance of the list-wise loss in terms ofMRRT is
not as evident as NRBO@10. The list-wise loss produces the
bestMRRT for NASDAQ, but not for NYSE. This is expected
as the list-wise loss focuses on the entire list, whereasMRRT
measures the performance of the topmost prediction only.

E. TRAINING TIME PERFORMANCE
Median training time per epoch varies significantly between
different combinations of node embedding techniques and
loss functions, as depicted in Table 5. The training time is sig-
nificantly lower for the same embedding technique when the
list-wise loss function is used compared to the combination
of point-wise and the pair-wise loss function. The training

FIGURE 10. MRRT of NYSE with Industry graph.

TABLE 5. Median training time per epoch (seconds).

time reduces significantly for a sparse graph such asWikidata
when the list-wise loss is applied. For NASDAQandWikidata
combination, the training time is 10.57% lower (1.73 sec-
onds compared to 1.94 seconds) when TGC embedding is
applied with the list-wise loss compared to the benchmark
loss function. It is 5.09% lower for NYSE and Wikidata
combination (3.34 seconds compared to 3.52 seconds) with
the list-wise loss compared to the benchmark loss function.
This portrays a significant advantage of the list-wise loss
for stock ranking prediction. The list-wise loss can result in
improved performance in terms ofNRBO@10 andMRRT and
reduce the training time simultaneously for a sparse graph
such as the Wikidata graph.

The difference in the training time is less obvious for a
denser graph such as the Industry graph. For NASDAQ and
Industry combination, the training time is almost identical
(2.25 and 2.23 seconds) between both loss functions with
TGC embedding. It is 3.63% lower for NYSE and Indus-
try combination (6.00 seconds compared to 6.22 seconds).
We can get improved performance for top k stock ranking
prediction (as evident in NRBO@10) and reduce the training
time to some extent by applying the list-wise loss for denser
graphs.

When Node2Vec is applied, we observe a significant gain
in the training time, especially for a denser graph like the
Industry graph. For NASDAQ and Wikidata combination,
the best training time is 1.40 seconds which is obtained
using the list-wise loss and Node2Vec. This is a 27.6%

88992 VOLUME 9, 2021

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

TABLE 6. IRR Performance for the best MRRT and the best NRBO@10 cases.

TABLE 7. NRBO@10 of NYSE Industry comparison.

reduction in the training time compared to the baselinemodel.
It comes with a 2.65% relative performance boost in terms of
NRBO@10 compared to the baseline model.

For NASDAQ and Industry combination, the training time
is reduced by 36.1% when Node2Vec is used along with
the combination of the point-wise and pair-wise loss. It is
reduced by 33.2% when Node2Vec is used along with the
list-wise loss function. This improvement in the training time
is obtained with comparable NRBO@10 performance (0.369
compared to 0.374).

The highest reduction in the training time is observed for
NYSE and Industry graph combination. With the combina-
tion of the point-wise and the pair-wise loss, the median train-
ing time is 1.58 seconds (74.6% relative reduction compared
to the baseline model). It is 1.64 seconds with the list-wise
loss, which is a relative reduction of 73.7% compared to the
baseline model.

F. INVESTMENT PERFORMANCE
We apply the daily buy-hold-sell trading strategy for the top
10 stocks. For each stock market and relation graph combina-
tion, we calculate the corresponding IRR for the best MRRT
and the best NRBO@10 cases. The IRR performance is pre-
sented in Table 6. In all four cases, the IRR corresponding to
the best NRBO@10 is higher than the IRR corresponding to
the bestMRRT .

The highest relative gain is 4.928% for the NASDAQ
and Wikidata combination. The NRBO@10-based trading
strategy generates 12.664% IRR, whereas the MRRT -based
strategy generates 12.069% IRR in this case. The second-best
gain in IRR has been observed for the NYSE and Industry
combination. The relative gain in IRR is 0.558% in this case.
The NRBO@10-based trading strategy generates 16.373%
IRR, whereas the MRRT -based strategy generates 16.282%
IRR. The lowest relative gain is 0.281% for the NYSE and
Wikidata combination (15.964% vs. 15.920%). This result
validates the effectiveness ofNRBO@k as an evaluation mea-
sure. If the investment decision is taken based on NRBO@k ,

TABLE 8. NRBO@10 of NYSE Wikidata comparison.

that will generate a higher investment return than the decision
based onMRRT .

G. HYPERPARAMETER TUNING OF Node2Vec
As mentioned in Section VI, we use some default hyperpa-
rameters of Node2Vec during training the models. We also
try to improve the performance of Node2Vec by tuning those
hyperparameters. The NRBO@10 performance for NYSE is
degraded compared to the baseline model when Node2Vec
is applied. So, we do hyperparameter tuning for NYSE with
both Industry and Wikidata relation graph. We start with
two hyperparameters p, and q, for the Industry graph. While
changing one of them, we keep the other fixed at a value of 1.
We use default values of all other Node2Vec hyperparameters
while varying p and q. We explore five different values for
each of p and q.

As evident from Fig. 11a, the maximum validation
NRBO@10 is 0.652 for NYSEwith the Industry graph, which
is obtained when p = 1 and q = 1.We use these two values as
the optimum value of p and q for NYSE with Industry graph.
After specifying optimum values of p and q, we explore
different values of embedding shape v while fixing p and q
to optimum values and l and n to default values. The highest
validation NRBO@10 remains the same as 0.652 while using
v as 16. After fixing the values of p, q and v, we vary the
value of the length of random walk, l, and the validation
result is presented in Fig. 11c. We get a slight improvement
of validation NRBO@10 (0.653) while using l as 8.
Finally, we vary the value of the number of random walks,

n, and according to Fig. 11d, the best n is 10. Thus, for NYSE
with the Industry graph, the optimal hyperparameter combi-
nation is l : 8, n : 10, p : 1, q : 1, and v : 16. The optimal
test set NRBO@10 is presented in Table 7. We can see that
the test NRBO@10 performance for NYSE Industry does not
improve even after hyperparameter tuning of Node2Vec. Test
NRBO@10 with optimized Node2Vec is 0.647, which is the
same as the NRBO@10 with default Node2Vec parameters
for NYSE and Industry graph combination.

VOLUME 9, 2021 88993

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

FIGURE 11. Varying hyperparameters of Node2Vec with list-wise loss for
NYSE Industry.

We follow the same procedure for tuning the hyperparam-
eter for NYSE and Wikidata graph. As depicted in Fig. 12a,
the best validation NRBO@10 (0.652) is obtained with p = 4
and q = 1 for NYSE and Wikidata graph. With these opti-
mum values, when v is varied, the best validation NRBO@10
remains the same with v = 32, as depicted in Fig. 12b.
With optimum values of p, q, and v, we vary l, and the val-

idation results are presented in Fig. 12c. The best validation
NRBO@10 of 0.654 is obtained when l is 56. Finally, we vary
the value of n, and the best validation NRBO@10 is obtained

FIGURE 12. Varying hyperparameters of Node2Vec with list-wise loss for
NYSE Wikidata.

with n = 10, as depicted in Fig. 12d. Thus, for NYSE
with Wikidata graph, optimal hyperparameter combination is
l : 56, n : 10, p : 4, q : 1, and v : 32. The optimal test set
NRBO@10 is presented in Table 8.We can see theNRBO@10
performance has improved significantly from 0.637 to 0.644
after hyperparameter tuning of Node2Vec. This performance
is almost equal to the NRBO@10 (0.645) of the baseline
model. It again shows that we can get close to optimal per-
formance using Node2Vec for sparse stock relation graphs if
the hyperparameters are tuned properly.

88994 VOLUME 9, 2021

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

VIII. CONCLUSION
In this paper, we apply a graph-based technique, use an
optimal loss function (e.g., the list-wise loss), propose a
new performance evaluation measure (e.g., NRBO@k), and
apply a node embedding technique (e.g., Node2Vec) for stock
ranking prediction. Our study has three key findings. Firstly,
the list-wise loss results in better NRBO@10 in three out of
four cases with the same embedding technique. NRBO@10
improves by 2.65% when the list-wise loss is used compared
to the combined point-wise and pair-wise loss for NASDAQ
with Wikidata graph. This gain is 6.7% for NASDAQ with
Industry graph and 1.47% for NYSE with Industry graph.
This study has demonstrated that the list-wise loss function
is the optimal choice over the combination of point-wise and
pair-wise loss function.

Secondly, the existing stock ranking performance evalua-
tion measures are suboptimal due to their limitations, such as
lack of top-weightedness or requirement for manual interven-
tion. NRBO@k overcomes these limitations, and it is also a
bounded measure for any value of k , which is necessary for
an objective measure of ranking prediction of finite lists. We
get better investment returns when the top stocks are selected
based on NRBO@10 compared to MRRT -based stock selec-
tion.We simulate a daily buy-hold-sell trading strategy for the
top 10 stocks. We get a higher investment return prior to the
transaction cost with the NRBO@10-based trading strategy
compared to MRRT -based trading strategy in all cases. The
relative gain in IRR ranges from 0.281% to 4.928%. It shows
the effectiveness of our proposed evaluation measure from a
pragmatic investment perspective.We have explored a simple
trading strategy in this study. Further investment strategies
can be explored using the predicted rankings. For example,
the ranking task can be modified to explore short-selling
strategies. It is also possible to explore different values of k
and compare the performances.

Thirdly, Node2Vec results in a significant reduction in the
training time, and it can achieve the same or better prediction
performance for sparse graphs with proper hyperparame-
ter tuning. We obtain the best NRBO@10 by applying the
list-wise loss with Node2Vec for NASDAQ and Wikidata.
It comes with an additional 27.6% reduction in the training
time than the baseline model. Node2Vec with the list-wise
loss shows the same NRBO@10 as the baseline model for
NASDAQwith the Industry graph. The reduction in the train-
ing time is 33.2% in this case. It also improves the perfor-
mance for sparse graphs when the hyperparameters are tuned
properly. We can get the same NRBO@10 for NYSE with
Wikidata graph when the hyperparameters of Node2Vec are
tuned. It also reduces the training time by 54.4%. However,
the performance of Node2Vec is slightly degraded than the
baseline model when the stock relation graph is dense such as
NYSE with Industry graph. We would like to consider this as
future research which can focus on the performance improve-
ment of Node2Vec with a dense stock market graph. It will be
an interesting idea to compare the stock ranking performance

of Node2Vec with other node embedding techniques such as
DeepWalk or GF.

Overall, we have demonstrated that the list-wise loss is a
better choice when a graph-based approach is used for stock
ranking prediction. Node2Vec can improve or achieve com-
parable prediction performance for sparse graphs. Further
research is required to improve its performance for denser
graphs. However, it can reduce the training time significantly
in all cases.NRBO@k is a better evaluation measure for stock
ranking prediction as it overcomes the limitations of existing
evaluation measures. NRBO@k based trading strategy can
generate higher investment return which validates its effec-
tiveness for stock ranking prediction.

REFERENCES
[1] E. F. Fama, ‘‘Efficient capital markets: A review of theory and empirical

work,’’ J. Finance, vol. 25, no. 2, pp. 383–417, May 1970.
[2] H. Jacobs, ‘‘What explains the dynamics of 100 anomalies?’’ J. Banking

Finance, vol. 57, pp. 65–85, Aug. 2015.
[3] B. G. Malkiel, ‘‘The efficient market hypothesis and its critics,’’ J. Econ.

Perspect., vol. 17, no. 1, pp. 59–82, Feb. 2003.
[4] C.-F. Tsai and Y.-C. Hsiao, ‘‘Combining multiple feature selection

methods for stock prediction: Union, intersection, and multi-intersection
approaches,’’ Decis. Support Syst., vol. 50, no. 1, pp. 258–269, Dec. 2010.

[5] J. Patel, S. Shah, P. Thakkar, and K. Kotecha, ‘‘Predicting stock and
stock price index movement using trend deterministic data preparation
and machine learning techniques,’’ Expert Syst. Appl., vol. 42, no. 1,
pp. 259–268, Jan. 2015.

[6] Z. Li and V. Tam, ‘‘A machine learning view on momentum and reversal
trading,’’ Algorithms, vol. 11, no. 11, p. 170, Oct. 2018.

[7] B.Weng,M. A. Ahmed, and F.M.Megahed, ‘‘Stock market one-day ahead
movement prediction using disparate data sources,’’ Expert Syst. Appl.,
vol. 79, pp. 153–163, Aug. 2017.

[8] S. Feuerriegel and H. Prendinger, ‘‘News-based trading strategies,’’ Decis.
Support Syst., vol. 90, pp. 65–74, Oct. 2016.

[9] Q. Song, A. Liu, and S. Y. Yang, ‘‘Stock portfolio selection using learning-
to-rank algorithms with news sentiment,’’ Neurocomputing, vol. 264,
pp. 20–28, Nov. 2017.

[10] F. Feng, X. He, X. Wang, C. Luo, Y. Liu, and T.-S. Chua, ‘‘Temporal
relational ranking for stock prediction,’’ ACM Trans. Inf. Syst., vol. 37,
no. 2, pp. 1–30, Mar. 2019.

[11] T. Fischer and C. Krauss, ‘‘Deep learning with long short-term memory
networks for financial market predictions,’’ Eur. J. Oper. Res., vol. 270,
no. 2, pp. 654–669, Oct. 2018.

[12] W. Bao, J. Yue, and Y. Rao, ‘‘A deep learning framework for financial time
series using stacked autoencoders and long-short term memory,’’ PLoS
ONE, vol. 12, no. 7, Jul. 2017, Art. no. e0180944.

[13] Y. Baek and H. Y. Kim, ‘‘ModAugNet: A new forecasting framework for
stock market index value with an overfitting prevention LSTMmodule and
a prediction LSTM module,’’ Expert Syst. Appl., vol. 113, pp. 457–480,
Dec. 2018.

[14] E. F. Fama and K. R. French, ‘‘The capital asset pricing model: Theory and
evidence,’’ J. Econ. Perspect., vol. 18, no. 3, pp. 25–46, 2004.

[15] C.-F. Huang, ‘‘A hybrid stock selectionmodel using genetic algorithms and
support vector regression,’’Appl. Soft Comput., vol. 12, no. 2, pp. 807–818,
Feb. 2012.

[16] W. Webber, A. Moffat, and J. Zobel, ‘‘A similarity measure for indefinite
rankings,’’ ACM Trans. Inf. Syst., vol. 28, no. 4, pp. 1–38, Nov. 2010.

[17] Y. Chen, Z.Wei, andX.Huang, ‘‘Incorporating corporation relationship via
graph convolutional neural networks for stock price prediction,’’ in Proc.
27th ACM Int. Conf. Inf. Knowl. Manage., Oct. 2018, pp. 1655–1658.

[18] A. Grover and J. Leskovec, ‘‘Node2vec: Scalable feature learning for
networks,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, Aug. 2016, pp. 855–864.

[19] A. F. Darrat and M. Zhong, ‘‘On testing the random-walk hypothesis:
A model-comparison approach,’’ Financial Rev., vol. 35, no. 3,
pp. 105–124, Aug. 2000.

VOLUME 9, 2021 88995

S. Saha et al.: Stock Ranking Prediction Using List-Wise Approach and Node Embedding Technique

[20] G. Bhardwaj and N. R. Swanson, ‘‘An empirical investigation of the use-
fulness of ARFIMA models for predicting macroeconomic and financial
time series,’’ J. Econometrics, vol. 131, nos. 1–2, pp. 539–578, Mar. 2006.

[21] B. M. Henrique, V. A. Sobreiro, and H. Kimura, ‘‘Literature review:
Machine learning techniques applied to financial market prediction,’’
Expert Syst. Appl., vol. 124, pp. 226–251, Jun. 2019.

[22] M. Qiu and Y. Song, ‘‘Predicting the direction of stock market index
movement using an optimized artificial neural network model,’’ PLoS
ONE, vol. 11, no. 5, May 2016, Art. no. e0155133.

[23] M.-C. Lee, ‘‘Using support vector machine with a hybrid feature selection
method to the stock trend prediction,’’ Expert Syst. Appl., vol. 36, no. 8,
pp. 10896–10904, Oct. 2009.

[24] M. G. Novak and D. Velušček, ‘‘Prediction of stock price movement
based on daily high prices,’’ Quant. Finance, vol. 16, no. 5, pp. 793–826,
May 2016.

[25] J. Cao, Z. Li, and J. Li, ‘‘Financial time series forecasting model based
on CEEMDAN and LSTM,’’ Phys. A, Stat. Mech. Appl., vol. 519,
pp. 127–139, Apr. 2019.

[26] L.-J. Kao, C.-C. Chiu, C.-J. Lu, and C.-H. Chang, ‘‘A hybrid approach
by integrating wavelet-based feature extraction with MARS and SVR
for stock index forecasting,’’ Decis. Support Syst., vol. 54, no. 3,
pp. 1228–1244, Feb. 2013.

[27] Y. Kara, M. A. Boyacioglu, and Ö. K. Baykan, ‘‘Predicting direction of
stock price index movement using artificial neural networks and support
vector machines: The sample of the istanbul stock exchange,’’ Expert Syst.
Appl., vol. 38, no. 5, pp. 5311–5319, May 2011.

[28] E. Chong, C. Han, and F. C. Park, ‘‘Deep learning networks for stock
market analysis and prediction: Methodology, data representations, and
case studies,’’ Expert Syst. Appl., vol. 83, pp. 187–205, Oct. 2017.

[29] K. Chen, Y. Zhou, and F. Dai, ‘‘A LSTM-based method for stock returns
prediction: A case study of China stock market,’’ in Proc. IEEE Int. Conf.
Big Data (Big Data), Oct. 2015, pp. 2823–2824.

[30] H. Y. Kim and C. H. Won, ‘‘Forecasting the volatility of stock price index:
A hybrid model integrating LSTM with multiple GARCH-type models,’’
Expert Syst. Appl., vol. 103, pp. 25–37, Aug. 2018.

[31] A.Mittal and A. Goel, ‘‘Stock prediction using twitter sentiment analysis,’’
Standford Univ., Stanford, CA, USA, Tech. Rep. CS229, 2012.

[32] Y. Gu, T. Shibukawa, Y. Kondo, S. Nagao, and S. Kamijo, ‘‘Prediction of
stock performance using deep neural networks,’’ Appl. Sci., vol. 10, no. 22,
p. 8142, Nov. 2020.

[33] N. K. Avkiran andH.Morita, ‘‘Predicting japanese bank stock performance
with a composite relative efficiency metric: A new investment tool,’’
Pacific-Basin Finance J., vol. 18, no. 3, pp. 254–271, Jun. 2010.

[34] X. Yang, W. Liu, L. Wang, C. Qu, and J. Bian, ‘‘A divide-and-conquer
framework for attention-based combination of multiple investment strate-
gies,’’ in Proc. IEEE Global Conf. Signal Inf. Process. (GlobalSIP),
Nov. 2019, pp. 1–5.

[35] C. Chen, L. Zhao, J. Bian, C. Xing, and T.-Y. Liu, ‘‘Investment behaviors
can tell what inside: Exploring stock intrinsic properties for stock trend
prediction,’’ inProc. 25th ACMSIGKDD Int. Conf. Knowl. Discovery Data
Mining, Jul. 2019, pp. 2376–2384.

[36] X. Ying, C. Xu, J. Gao, J. Wang, and Z. Li, ‘‘Time-aware graph relational
attention network for stock recommendation,’’ in Proc. 29th ACM Int.
Conf. Inf. Knowl. Manage., Oct. 2020, pp. 2281–2284.

[37] W. Chen, T.-Y. Liu, Y. Lan, Z.-M. Ma, and H. Li, ‘‘Ranking measures and
loss functions in learning to rank,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2009, pp. 315–323.

[38] Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li, ‘‘Learning to rank: From
pairwise approach to listwise approach,’’ in Proc. 24th Int. Conf. Mach.
Learn. (ICML), 2007, pp. 129–136.

[39] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and
G. Hullender, ‘‘Learning to rank using gradient descent,’’ in Proc. 22nd
Int. Conf. Mach. Learn. (ICML), 2005, pp. 89–96.

[40] W. L. Hamilton, R. Ying, and J. Leskovec, ‘‘Representation learning on
graphs: Methods and applications,’’ 2017, arXiv:1709.05584. [Online].
Available: http://arxiv.org/abs/1709.05584

[41] P. Goyal and E. Ferrara, ‘‘Graph embedding techniques, applications,
and performance: A survey,’’ Knowl.-Based Syst., vol. 151, pp. 78–94,
Jul. 2018.

[42] S. T. Roweis, ‘‘Nonlinear dimensionality reduction by locally linear
embedding,’’ Science, vol. 290, no. 5500, pp. 2323–2326, Dec. 2000.

[43] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and
A. J. Smola, ‘‘Distributed large-scale natural graph factorization,’’ in Proc.
22nd Int. Conf. World Wide Web (WWW), 2013, pp. 37–48.

[44] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of
social representations,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Aug. 2014, pp. 701–710.

[45] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[46] T.Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘‘Distributed
representations of words and phrases and their compositionality,’’ in Proc.
Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 3111–3119.

[47] H. Markowitz, ‘‘Portfolio selection,’’ J. Finance, vol. 7, no. 1, pp. 77–91,
1952.

[48] C. B. Kalayci, O. Ertenlice, and M. A. Akbay, ‘‘A comprehensive review
of deterministic models and applications for mean-variance portfolio opti-
mization,’’ Expert Syst. Appl., vol. 125, pp. 345–368, Jul. 2019.

[49] K. Järvelin and J. Kekäläinen, ‘‘Cumulated gain-based evaluation of IR
techniques,’’ ACM Trans. Inf. Syst., vol. 20, no. 4, pp. 422–446, Oct. 2002.

[50] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
in Proc. 3rd Int. Conf. Learn. Represent., (ICLR), 2015, pp. 1–15.

[51] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 19th Int. Conf. Artif. Intell. Statist.,
vol. 9, 2010, pp. 249–256.

SUMAN SAHA (Graduate Student Member,
IEEE) received the B.Sc. degree in electrical and
electronic engineering from the Bangladesh Uni-
versity of Engineering and Technology, Dhaka,
Bangladesh, in 2009, and the M.B.A. degree in
finance from the Institute of Business Administra-
tion, University of Dhaka, Dhaka, in 2015. He is
currently pursuing the Ph.D. degree with the Dis-
cipline of Business Analytics, The University of
Sydney Business School, NSW, Australia. From

2010 to 2018, he worked with leading telecommunication operators in
Bangladesh and an expert of end to end mobile network performance man-
agement. His research interests concentrate on the application of machine
learning and graph theory for analyzing financial market.

JUNBIN GAO received the B.Sc. degree in
computational mathematics from the Huazhong
University of Science and Technology (HUST),
Wuhan, China, in 1982, and the Ph.D. degree
from the Dalian University of Technology, Dalian,
China, in 1991. From 1982 to 2001, he was an
Associate Lecturer, a Lecturer, an Associate Pro-
fessor, and a Professor with the Department of
Mathematics, HUST. From 2001 to 2005, he was a
Lecturer of computer science with the University

of New England, Armidale, NSW, Australia, where he was a Senior Lecturer.
He was a Professor of computer science with the School of Computing and
Mathematics, Charles Sturt University, Australia. He is currently a Professor
of big data analytics with The University of Sydney Business School, The
University of Sydney, Sydney, NSW, Australia. His current research interests
include machine learning, data analytics, Bayesian learning and inference,
and image analysis.

RICHARD GERLACH received the Ph.D. degree
in statistics from the University of New South
Wales, Sydney, NSW, Australia, in 2001. He was
a Lecturer in statistics with the University of New-
castle, NSW, Australia, from 2001 to 2005. From
2006 to 2009, he worked as a Senior Lecturer
in econometrics and business statistics with The
University of Sydney, Sydney, where he was as an
Associate Professor in econometrics and business
statistics, from 2010 to 2013. He is currently a Pro-

fessor of business analytics with The University of Sydney Business School,
The University of Sydney. His research interests lie mainly in financial
econometrics and time series. His work has concerned developing time series
models for measuring, forecasting, and managing risk in financial markets
and computationally intensive Bayesian methods for inference, diagnosis,
forecasting, and model comparison for these models.

88996 VOLUME 9, 2021

