
Initial submission date March 15, 2021, revised submission May 31, 2021, accepted June 14, 2021, date of publication June 21, 2021,
date of current version June 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090998

Classification and Analysis of Android Malware
Images Using Feature Fusion Technique
JAITEG SINGH 1, DEEPAK THAKUR1, TANYA GERA1, BABAR SHAH 2, TAMER ABUHMED 3,
AND FARMAN ALI 4
1Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab 140401, India
2College of Technological Innovation, Zayed University, Abu Dhabi, United Arab Emirates
3Department of Computer Science and Engineering, College of Computing and Informatics, Sungkyunkwan University, Suwon 16419, Republic of Korea
4Department of Software, Sejong University, Seoul 05006, South Korea

Corresponding authors: Deepak Thakur (deepak.thakur@chitkara.edu.in) and Tamer Abuhmed (tamer@skku.edu)

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No. 2021R1A2C1011198). This research work was also supported by the Research Incentive Grant R20129 of Zayed University, UAE.

ABSTRACT The super packed functionalities and artificial intelligence (AI)-powered applications have
made the Android operating system a big player in the market. Android smartphones have become an integral
part of life and users are reliant on their smart devices for making calls, sending text messages, navigation,
games, and financial transactions to name a few. This evolution of the smartphone community has opened
new horizons for malware developers. As malware variants are growing at a tremendous rate every year,
there is an urgent need to combat against stealth malware techniques. This paper proposes a visualization
and machine learning-based framework for classifying Android malware. Android malware applications
from the DREBIN dataset were converted into grayscale images. In the first phase of the experiment,
the proposed framework transforms Android malware into fifteen different image sections and identifies
malware files by exploiting handcrafted features associated with Android malware images. The algorithms
such as Gray Level Co-occurrence Matrix-based (GLCM), Global Image deScripTors (GIST), and Local
Binary Pattern (LBP) are used to extract the handcrafted features from the image sections. The extracted
features were further classified using machine learning algorithms like K-Nearest Neighbors, Support Vector
Machines, and Random Forests. In the second phase of the experiment, handcrafted features were fused
with CNN features to form the feature fusion strategy. The classification performance was evaluated against
every malware image file section. The results obtained using the Feature Fusion strategy are compared with
handcrafted features results. The experiment results conclude to the fact that Feature Fusion-SVM model is
most suited for the identification and classification of Android malware using the certificate and Android
Manifest (CR + AM) malware images. It attained an high accuracy of 93.24%.

INDEX TERMS Handcrafted features, machine learning, malware, classification, visualization, android,
security, feature fusion.

I. INTRODUCTION
Smartphones nowadays are a virtual substitute for any generic
computing device. Smartphones have become an integral part
of life and users are reliant on their smart devices for making
calls, sending text messages, navigation, games, and financial
transactions to name a few. This evolution of the smartphone
community has opened new horizons formalware developers.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amir Masoud Rahmani .

There are more than thirty categories available on online
app stores like Google Playstore. Among those categories,
Games, Business, Lifestyle, Education, Entertainment, and
Health & Fitness are found to be the most popular. Users
make use of these applications to their maximum advan-
tage and tend to communicate, entertain, business, relax, and
educate themselves. The rapid adoption of such applications
has resulted in the generation and sharing of sensitive infor-
mation. Amongst the plethora of available mobile operating
systems, Android has managed to conquer more than 86% of

90102 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-2370-9384
https://orcid.org/0000-0002-5090-4695
https://orcid.org/0000-0001-9232-4843
https://orcid.org/0000-0002-9420-1588
https://orcid.org/0000-0001-8641-6119


J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

the total market. Android being a market leader has an open
marketplace and a huge community promulgating intensely
popular APIs.

The popularity of the Android operating system has
also attracted cybercriminals to develop malicious appli-
cations to exploit Android users for monetary benefits.
The cyber-attacks are commonly categorized as Malware,
Adware, and Potentially Unwanted Applications (PUA).
As per the annual threat report 2020, 57% of the total detected
attacks were due to malware. During the COVID-19 pan-
demic, a notable rise is observed in the number and the sever-
ity of cyber-attacks. The finding indicates that 68% of the
total reported attacks were related to financial gains. Further-
more, once the malware applications breach into the phone,
they can adversely affect the smooth flow of an activity lifecy-
cle paradigm. Activity lifecycle involves various stages such
as onCreate(), onStart(), onStop(), and onDestroy() to name
a few. These callbacks are important to preserve because
they do take care of the normal execution of an Android
application. Android-powered devices run the archive file
known as Android Package (APK). An APK can be writ-
ten in renowned languages such as java, C++, and kotlin.
The APKs which are of few megabytes (MBs) in size when
backed with malicious payloads can harm the user socially,
emotionally, and financially. Malware applications tend to
hijack the imperative building blocks of the APK known
as application components. These components are activities,
broadcast receivers, content providers, and services. Malware
authors take control of these components and compromise
the Android devices by establishing communication with
Command and Control (C&C) servers.

Automation and artificial intelligence are on the rise to
generate variants of malware families rapidly. Researchers
have realized that using signature-based methods, static
methods, and dynamic methods are not competing against
fast-growing malware variants. Signature-based detection
approaches are more prone to code obfuscation and trans-
formation techniques. These approaches also need to keep
their database updated every time by appending newmalware
variants into it. Plenty of time and expertise is invested in
manually analyzing the signatures and then extracting them.
The static analysis doesn’t stand even with trivial transforma-
tions [1]–[3]. On the other hand, dynamic analysis is heavy
on time and resources [4], [5]. Significant time is required
to extract the static and dynamic features for the detection
and classification of Android malware. The researchers have
proposed various algorithms to build a robust feature set to
solve the multiclass problem. Constructing the feature set
manually is a tedious task and hence requires more expertise
and time. There is a need to deploy better feature reduc-
tion techniques or other supplementary techniques to build
time-sensitive feature sets in Android malware research.

Visualization-based techniques do not let the application
to execute rather it extracts CNN features [6] and hand-
crafted features for the classification task. Handcrafted fea-
tures are used to extract the information from the images.

These features help to solve classification problems. The
algorithms such as GLCM, GIST, and LBP are also known
as texture or image descriptors. To perform classification,
the aforementioned algorithms must be used in linear com-
bination with machine learning classifiers such as Support
Vector Machine (SVM), K-Nearest Neighbor (KNN), and
Random Forest (RF). The image-based approaches based on
handcrafted features have gained an edge over traditional
approaches for malware identification as handcrafted features
refer to properties derived using various algorithms using the
information present in the image itself. The adopted method-
ology would study raw bytes of malware code visualized
as an image. Such consideration would eventually eliminate
the need for decryption, disassembly, reverse engineering,
and execution of code. Min-Max Normalization method is
considered to investigate the impact of data normalization on
the classification performance of malware images. Results
produced on normalized and un-normalized are also com-
pared. A total of fifteen unique combinations of the Android
malware file structure were used to generate the malware
images. This paper is the extension of the work presented by
authors in [7]. They have deployed the visualization-based
approach infusion with deep learning architecture to classify
the Android malware families. We are motivated to improve
the classification accuracy by proposing the model based on
feature fusion methodology. Feature fusion is constructed
by combining the rich features extracted from deep layers
of Convolutional Neural Network (CNN) with handcrafted
features such as Gray Level Co-occurrence Matrix (GLCM),
Global Image deScripTors (GIST), and Local Binary
Pattern (LBP).

The manuscript is organized as: section 2 discusses the
related work of the study, section 3 lays the foundation for the
proposed methodology, section 4 elaborates the results and
findings, and section 5 concludes the study.

II. RELATED WORK
Authors in [8] implemented image-based approach to iden-
tify the malicious patterns in the code. They mapped the
sequence of API pairs to RGB images. After preprocessing
and preparation of the data for the neural network, it was
fed into the convolutional neural network. They worked on
the two-class problem i.e. detecting whether an application
is benign or malicious. The authors ran the experiment for
100 epochs with batch size 32. A disassembly process was
required to extract the API calls. Authors in [9] consider
a dataset of 144 Android permissions. They used the tools
such as androguard parser and smali disassembler for the
parsing and decompilation process of an APK. Further, they
extracted the requested permissions from the disassembled
manifest file and mapped it into 12 × 12 permission vectors
as an image. Their dataset contains a total of 2500 Android
applications in which 2000 applications were malware sam-
ples and 500 applications were benign samples. Further,
a deep learning model was applied to identify and classify
the malware samples. Authors in [10], first disassembled

VOLUME 9, 2021 90103



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

the APK file and extracted only the dex bytecode from
the file. They converted the dex bytecode into RGB image
format and fed it into a convolutional neural network for
automatic feature extraction and training. Authors in [11],
implemented their Android malware detection approach in
two phases. In the first phase, they extracted the dex byte-
code from the APK archive and transformed it into RGB
images. In the second phase, images were used to train the
convolutional neural network. They implemented eight hid-
den layers in the convolutional neural network and used the
softmax function to classify whether the sample is benign or
malicious. A better result of precision and recall was observed
for malware samples as compared to benign samples. Authors
in [12] used the convolutional neural network for detection
of Android malware. They had used the Rectified Linear
Unit (Relu) activation function as it overcomes the vanishing
gradient problem and shows better convergence performance.
Furthermore, they had employed the deep autoencoder to
reduce the training time by 83% of the convolutional neural
network. They had also compared their model with other
machine classifiers such as Support Vector Machine (SVM).
The accuracy of their proposed model was improved by 5%
when compared to the accuracy obtained using the SVM
classifier. Authors in [13] implemented multimodal deep
learning strategy for Android malware detection. They have
used publicly available dataset omnidroid and Knowledge
Discovery in Databases (KDD) for training and evaluation
of the proposed model. They utilized manual and automatic
feature engineering using deep learning architectures. They
have used convolutional neural network, deep neural net-
work, and transformer networks to perform feature learning
from grayscale images which are generated from dex byte-
code, static features i.e. intents and permissions, and dynamic
features i.e. system calls respectively. Authors in [14] utilizes
the GIST features for the classification of malware families.
The classifiers such as Support Vector Machines, K-Nearest
Neighbor, Random Forests, and Naive Bayes were used in the
experimentation. The results with Support Vector Machines
attain the highest accuracy of 92.7%. Authors in [15] trans-
formed the dalvik executable code into two dimensional
bytecode matrix. Further, convolutional neural network was
used for training and classification task. Convolutional neu-
ral network can automatically learn the features from the
bytecode files to recognize the malware. Various research
areas and trends in Android security domain were studied by
the authors using latent semantic analysis technique in [16],
[17]. Authors in [18] discusses the alarming challenges in the
field of Android security. Authors in [19], implemented the
tensorflow models i.e. GoogleNet and ResNet for malware
detection. In their work, ResNet proved to be more accurate
but consumed a lot of time. Authors in [20] proposed the
image texture-based approach to perform the analysis on the
code. They combine the image texture features and API calls
to train the Deep Belief Network (DBN). DBN is stacked
with Restricted Boltzmann Machines (RBN) and Back Prop-
agation (BP). Authors also compared their proposed model

with shallowmachine learningmodels such as Support Vector
Machine (SVM), K-Nearest Neighbor (KNN), and shallow
feed-forward network ANN (Artificial Neural Network) and
found that the proposed DBN model was more accurate.
Table 1 comprises of a summary of related literature.

The literature survey revealed that approaches of analyz-
ing malware include static analysis and dynamic analysis or
maybe the combination of both. The static analysis mainly
focuses on disassembling the code, followed by manual
investigation to search the malicious patterns in the code.
Conversely, dynamic analysis executes the code in the virtual
environment and analyzes its execution trace to observe the
malicious behavior of an application. The static analysis is
helpful in tracing original and full execution paths; therefore,
it provides complete code coverage but eventually it suffers
from code obfuscation. The sample has to be decrypted first to
perform static analysis. The problems of intractable complex-
ity hinder the analysis. Dynamic analysis is more efficient and
does not need the executable to be unpacked or decrypted.
The suspicious application is monitored in a controlled envi-
ronment. This process is time and resource consuming. It also
raises scalability issues. Moreover, some malicious behavior
might be unobserved because the environment does not sat-
isfy the triggering conditions. Furthermore, malware authors
make use of automation technology to generate a huge
amount of new malware variants, thus posing a big challenge
tomalware analysts. The present state of art demands the inte-
gration of existing primitive techniques with supplementary
techniques to achieve an effective solution. Supplementary
techniques such as visualization-based analysis should be
leveraged to complement the classification of fast-growing
Android malware families. It is proven to be effective in
determining abnormal modern malicious behavior or secu-
rity vulnerabilities. Deploying a visualization-based tech-
nique, a malware variant can be visualized as an image.
An image can capture even small changes. In this paper,
the visualization-based technique backed with feature fusion
strategy is proposed to reduce the influence of obfuscation
by transforming the malware‘s non-intuitive features into
fingerprint images followed by the classification of Android
malware families. The following section explains the adopted
methodology and to undertake a case analysis.

III. MATERIALS AND METHODS
We evaluated our experiments over the DREBIN [38] dataset.
This dataset has been adopted by many researchers investi-
gating Android malware. The count of samples of malware
families in DREBIN dataset is shown in the Figure 1. The
subsequent sections discuss the methodology of the proposed
work followed by results and findings. A graphical represen-
tation of the proposed methodology is illustrated in Figure 2.
The following subsections discusses the underlying steps in
proposed methodolgy.

A. DESCRIPTION OF FUNDAMENTAL CONCEPTS
With a slight change in malware code, the malware auth-
ors can generate numerous malware variants. Any type of

90104 VOLUME 9, 2021



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique
TA

B
LE

1.
Su

m
m

ar
y

of
th

e
re

la
te

d
w

or
k.

VOLUME 9, 2021 90105



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 1. Count of samples in each malware family in DREBIN dataset.

malware can be visualized as an image, which can capture
even the slightest of the changes. An image has the capa-
bility to retain the original semantics of the code. The basic
structure of an APK and the process of transforming malware
into images are defined in subsequent sections. All files and
folders that are contained in the ZIP archive of an APK.
These files are binded together to develop an application. The
literature survey indicated an inspection of four types of pri-
mary resources for identifying malware behaviour [5]. These
primary resources include classes.dex, resource, manifest,
and certificate files. There is a high propensity that malware
developers exploit these files to store malicious behavior.

The functionality and purpose of files and folders within
an apk as shown in Figure 3 are explained below:

a) Meta-Inf /: It contains the signature files such
as CERT.SF and CERT.RSA. It also contains the manifest file
i.e. MANIFEST.MF

b) Assets/: AssetManager object is used by the application
to retrieve the application assets detailed in assets folder.

c) Res/: This folder includes description of resources.
These resources are not compiled in resources.arsc folder.

d) Lib/: The software layer of a processor is associated
with a particular type of compiled code that is stored inside
this folder.

e) Resources.arsc : The compiled apk resources are con-
tained within this file. Strings, styles and the paths of
images/layout files are part of this content. Data is processed
in XML format only.

f) Classes.dex : Class files are generated after compilation
of the java code. These class files are merged into one single
dex file using some standard dex tool. Classes.dex contains
theDalvik bytecode. DalvikVirtualMachine executes the dex
file. Any change in dex file will affect the APK.

g) AndroidManifest.xml: It includes the set of permissions
required by an application, hardware or software components,
and linking of API libraries. It also reveals the SDK version.

B. CONVERTING MALWARE APK INTO GRAYSCALE
IMAGES
Primarily four types of files such as classes.dex, resource,
manifest, and certificate files constitute a stable APK

TABLE 2. Fixation of image width.

structure [39]. The malware binary bits are paired into 8-bit
vectors and in this manner converted over into grayscale
images. There are a couple of key advances associated while
transforming any malware binary samples into grayscale
images. The whole malware substring can be viewed as the
grouping of a few substrings. Every substring in a binary code
which is 8-length long termed as a pixel. The 8-bit length
number stream can be further converted to represent decimal
numbers within the range 0 to 255. After the computation of
unsigned decimal numbers, the malicious code matrix needs
to be generated. All malware executable substrings are further
split into 1D vectors of decimal numbers. A one-dimensional
vector space can be considered as linear vector space. It is fur-
ther processed to form a two-dimensional matrix of specific
width. Furthermore, some generalizations have been made
based on empirical observations. We have fixed the grayscale
image widths as indicated by the image size in Table 2 [40].
In this paper, we have used the DREBIN dataset for mal-
ware classification purposes. The malware executables of
twenty families were converted into grayscale images by
following the above-mentioned steps. The illustration of mal-
ware images of families such as FakeInstaller, DroidKungFu,
Plankton, and Opfake is depicted in Figure 4. These grayscale
images relate to various areas of the APK. We have created
the images using fifteen unique combinations of Android
file structures. Figure 6 summarizes the number of malware
images generated for every unique file structure combina-
tion. It can been visually interpreted from the figure that the
malware images are distributed familywise. CR stands for
the certificate file, AM, RS, CL stands for Android mani-
fest file, resources file, and classes.dex file of any malware
APK. In Figure 4, the malware images of the families are
generated using file combination CR and RS. In Figure 5,
the malware images of the families are generated using file
combination CR + AM + RS + CL. The variants of the
mentioned malware families were found to be dissimilar in
their texture. These images found to have different grayscale
image textures when generated using different file structure
combinations. The texture tends to change with the contents
of the malware APK. The malware images generated are dif-
ferent in size. The height of the images is adjusted according
to the file size of the malware sample. This motivates to
classify and analyze the malware based on malware images.

C. EXPERIMENT DESIGN
As depicted in Figure 4 and 5, we can see that malware
images have textures in it. The texture is the description of
the spatial arrangement of color, intensities, or a selected

90106 VOLUME 9, 2021



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 2. The proposed methodology.

FIGURE 3. Primary resources of an APK.

region in an image. Image texture is a function of spatial
variation in pixel intensity which reveals how the pixel values
are changing over an area. It eventually defines the visual
interpretation of an image. Nowadays, in the era of digital
image analysis, textures of the image are used for various
purposes such as image segmentation, image classification,
texture synthesis, and shapes that can be discriminated using
textures. Texture involves the spatial distribution of gray
levels. There are multiple uses of textures. Application areas
of textures are multidisciplinary such as the food process-
ing industry, biometrics analysis (matching fingerprint, iris,
or retina), medical image analysis, remote sensing data anal-
ysis (geographic information system), cybersecurity. The tex-
ture features are calculated using a statistical approach. The
statistical approach includes methods such as GIST, Gray
Level Co-occurrence Matrix-based (GLCM) features, and
Local Binary Pattern (LBP) features. The stated descriptors
are explained as below:

1) GRAY LEVEL CO-OCCURRENCE MATRIX-BASED
(GLCM FEATURES)
GLCM are one of the most popular texture features which
have been utilized widely for content-based image retrieval,

medical image classification, and object recognition. In this
approach, texture information from the image is extracted
from the spatial relationship between the pixels. This spa-
tial relation between the image pixels is defined in terms
of distance and orientation. Initially, the GLCM matrix is
calculated which estimates the probability density function
of the gray level pairs in an image with some specific spatial
relationship. The most common choice of distance is 1 in four
directions (0◦, 45◦, 90◦, and 135) [22], [37]. Then, several
statistics are calculated from this matrix to describe the tex-
ture in an image. In this work, only nineteen statistics are used
to represent the texture of malware images. These features
include contrast, correlation, energy, entropy, homogeneity,
sum of square, sum average, sum variance, sum entropy,
difference variance, difference entropy and Information mea-
sure of correlation. These features are measured for each
combination of distance and orientation which results in total
76 features.

2) LOCAL BINARY PATTERN (LBP)
Local Binary Pattern (LBP) [41], [42] texture descriptor
is calculated on malware grayscale images. In a small
patch/matrix of the image, the center pixel is surrounded
by the neighbors. If the neighbor has the value greater than
the center value, it would be replaced with 1 otherwise with
0. For example, consider the 3 × 3 matrix, there would be
8 neighbors around the center pixel and hence 8-bit sequence
would be generated. For every 8-bit sequence, there are 8 such
rotations and also there is an integer representation associated
with each rotation. LBP is typically defined as the integer
value of the minimum of rotations. The parametric value of
radius is taken to be 8.

3) GLOBAL IMAGE DESCRIPTORS (GIST)
GIST algorithm [43], [44] is known for its good accuracy in
computer vision tasks. GIST uses 8 orientation of parame-
ters per scale in 4 different blocks. It convolved the image
with 32 Gabor filter at 4 scales and 8 orientation to produce

VOLUME 9, 2021 90107



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 4. Malware images generated using files certificate (CR) and resource (RS) of an android
application.

FIGURE 5. Malware images generated using files android manifest (AM), certificate (CR), classes.dex (CL),
and resource (RS) of an android application.

32 feature maps of the same size of an input image. It divides
each feature map into 16 regions (4 × 4 grid) and then aver-
ages the feature values within each region. It then concate-
nates the 16 averaged values of all 32 feature maps resulting
in a 16 × 32 = 512 GIST descriptors.

Feature fusion has been widely adopted by researchers
for detection and classification tasks relevant to computed
vision [45]–[49].We have used GIST descriptors with default
value. Using default GIST values produced 512 features in
total. For GLCM and LBP, a total of 76 and 58 features
respectively are used. CNN architecture produces the vector
of length 4096 features. In our work, we have used the con-
catenation method for feature fusion [50], [51]. Features are
concatenated column-wise. Theworking of CNN architecture
has been elaborated in Figure 9.

IV. RESULTS
Top twenty classes with maximum number of instances in the
DREBIN dataset were included in this experiment. We have
used a handcrafted and CNN feature extraction approach
to solve the malware classification problem. The results
obtained from the experiments are discussed in the subse-
quent sections.

A. CLASSIFICATION PERFORMANCE WITH
HANDCRAFTED FEATURES
Table 3 shows the classification results with classifiers SVM,
KNN, andRF formalware images using three texture descrip-
tors GLCM, GIST, and LBP. To identify the effectiveness of
the proposed solution, various evaluation measures such as
Accuracy, Precision, Recall, and Error Rate were explored.
We have used the default parameters of machine classi-
fiers - Support Vector Machines, K-Nearest Neighbor, and
Random Forest which are mentioned in the Scikit-Learn
library. The important findings from the outcomes are as
follows.

The performance of SVM classifier degrades for malware
images when used with GLCM and LBP texture descriptors.
As shown in Table 3, when features were extracted using
the GLCM algorithm and used SVM to perform classifica-
tion, the accuracy for 11 different combinations of image
sections lies only between 51% to 59%. For some combi-
nation of image sections, it is even worse. For combina-
tion RS, CR + RS, AM + RS, CR + AM + RS, it is
30.56%, 29.71%, 38.62%, 39.21% respectively. In LBP +
SVM classification results, the accuracy for 14 combinations
of image sections lies only between 54% to 63%. For RS

90108 VOLUME 9, 2021



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 6. Distribution of malware images across malware families (CR is
Certificate, AM is AndroidManifest, RS is Resource, CL is Classes.dex).
(a) Distribution of eight types of unique malware images across malware
families. (b) Distribution of eight types of unique malware images across
malware families. (c) Distribution of seven types of unique malware
images across malware families. (d) Distribution of seven types of unique
malware images across malware families.

combination, it is even poorer which is 46.62%. The per-
formance of the SVM classifier significantly improved when
used with GIST text descriptors. For 15 unique combinations
of image sections, the accuracy lies between 82% to 92%. The

highest accuracy of 91.29% was observed for combination
CR + AM. The lowest accuracy of 82.92% was observed for
combination CR.

When the KNN classifier was used to classify GLCM fea-
tures, a decent accuracy between 79% to 84% was observed
for most of the combinations of image sections. The high-
est accuracy of 83.36% was observed for the combina-
tion of CR + AM. The poor performance was seen against
only one combination i.e. CR with accuracy 56.05%. The
KNN classifier also performs well when used with LBP
descriptors. The accuracy for 14 out of 15 combinations
lies between 79% to 86%. For combination RS + CL mal-
ware images, the highest accuracy of 85.18% was recorded.
It is closely followed by malware images combination of
CR + RS + CL with an accuracy of 84.92%. The lowest
accuracy of 61.53% was observed for CR malware images.
The classification results using GIST-KNN, showed good
accuracy which is comparable to classification results of
GIST-SVM. For 14 combinations, accuracy lies between 85%
to 91%. The highest accuracy of 90.12% was observed for
combination CR+ AM. The lowest accuracy of 80.60% was
observed for CR.

The better performance was seen in the results when
GLCM features are extracted from malware images and
classified using RF. For most of the combination of image
file sections, the accuracy lies between 87% to 92%. The
highest accuracy of 91.74% was observed for the combina-
tion of CR + AM of malware images. The lowest accuracy
of 76.62% was observed for CR malware images. When
malware images are classified using GIST texture descrip-
tors + RF classifier, the classification results are decent but
not better than GIST-SVM and GIST-KNN. The accuracy
for all combinations of malware images lies between 83% to
89%. The highest accuracy of 88.69% was observed for the
combination of CR + AM of malware images. The lowest
accuracy of 83.42% was observed for CR.

When features were extracted using LBP texture descrip-
tors and classified using RF, it provided better classification
results than LBP-SVM and LBP-KNN.Most of the combina-
tions of malware image sections attain the accuracy between
84% to 86%.

The top average accuracy observed to be 88.05%, 87.99%,
87.44%, 85.32%, and 84.37% for GIST-SVM, GLCM-RF,
GIST-KNN, GIST-RF, LBP-RF respectively. The classifica-
tion results with all classifiers SVM, KNN, and RF on all
combinations of malware image sections using GIST algo-
rithm found to be maximum stable. GIST features are more
helpful in drawing the original semantics and analysis of
the malware image. GLCM features when classified with
SVM classifier shown poorer performance with an average
accuracy of 48.35%. LBP features performed well with clas-
sifiers KNN and RF with an average accuracy of 81.17% and
84.37% respectively. LBP texture descriptors did not perform
well with the SVM classifier and attain an average accuracy
of 55.87%. CR + AM malware images have attained the
maximum accuracy.

VOLUME 9, 2021 90109



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 7. a. Comparison of accuracy of GLCM-RF on fifteen combination of malware images of normalized and un-normalized dataset.
b. Comparison of accuracy of GLCM-RF on fifteen combination of malware images of normalized and un-normalized dataset. c. Comparison of
accuracy of GLCM-KNN on fifteen combination of malware images of normalized and un-normalized dataset.

TABLE 3. Accuracy of handcrafted features on fifteen combination of malware images.

B. IMPACT OF NORMALIZATION ON CLASSIFICATION
PERFORMANCE
In this work, the Min-Max Normalization method is consid-
ered to investigate the impact of data normalization on the
classification performance of malware images. The method
scales the un-normalized data to a predefined lower and upper
bounds linearly. The data is usually rescaled within the range
of 0 to 1 or−1 to 1. Table 4 shows the classification accuracy
for normalized using handcrafted features. The classification
performance on normalized data is discussed below.

The classification results produced using GLCM fea-
tures and classifiers SVM, KNN, and RF are depicted in

Figure 7(a), 7(b), and 7(c). The difference in the classification
results with normalized and unnormalized data can be seen
visually. Figure 7(a) shows that there is an improvement
in classification performance with normalized data. For all
combinations of the malware image section, the accuracy is
observed to be significantly improved using GLCM-SVM.
It is to be worth noted that GLCM-SVM showed the worst
performance on unnormalized data with an average clas-
sification accuracy of 48.35%. But with normalized data,
the average classification accuracy of GLCM-SVM improved
to 84.33%. The highest accuracy of 92.20% was observed
with GLCM-SVM using AM malware images. Therefore,

90110 VOLUME 9, 2021



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

min-max normalization proved to be substantial to make
GLCM-SVM a more stable model.

Normalization not always improve classification perfor-
mance. Incase of GLCM-RF, the classification accuracy is
observed to be declined for some combination of malware
image sections. But it also increased for some of the combi-
nations. Themaximum fall in accuracy is seen to be 0.85% for
combination CR + RS. The maximum increase in accuracy
is seen to be of 0.85% for RS + CL. Hence, we can say
that normalization does not have a significant impact on the
combination GLCM-RF as shown in Figure 7(b)

The classification results improved with normalized data
using GLCM-KNN. It got improved for all combinations of
image file sections. There is an increase in accuracy ranges
from the window of 6.57% to 8.39% for at least fourteen com-
binations as shown in Figure 7(c). It is observed that classi-
fication accuracy for CR malware images has been increased
by 22.55%. Earlier GLCM-KNNwith unnormalized data was
the worst performer on CR with an accuracy of 56.05% but
with normalized data, it got increased to 78.61%. The average
classification accuracy of GLCM-KNN got improved from
79.97% to 87.91% due to the impact of normalization.

There is no major impact of normalization was observed
on classification accuracy obtain using GIST features and
classifiers SVM, KNN, and RF.

The significant improvement is observed in the classifi-
cation results when malware images were classified using
LBP-SVM as shown in Figure 8(a). At least an increase
of 21% to 27% in the accuracy has been observed in most
of the combinations of malware image sections. The average
classification accuracy increases from 55.87% to 80.37%.
Thus, normalization makes the LBP-SVM a more stable
model.

Normalization also improved the classification results of
LBP-KNN as shown in Figure 8(b). The average classifica-
tion results of LBP-KNN with normalized data observed to
be 84.34%.

There is no significant improvement observed in the results
of LBP + RF with normalized data as shown in Figure 8(c).

C. FEATURE FUSION OF CNN AND HANDCRAFTED
FEATURES ON NORMALIZED DATA
For feature fusion experiments, we have combined CNN fea-
tures and handcrafted features to perform Android malware
image classification. The CNN architecture used in this work
was adopted from [7]. The classification is performed using
SVM, KNN, and RF classifiers with normalized data. The
graphical representation of the CNN architecture is presented
in Figure 9. The grayscale images are fed into the CNN
architecture. CNN will extract the features from the mal-
ware images. Conv2D and MaxPooling2D are the other two
libraries imported to set up the environment for neural net-
works. MaxPooling will help to reduce the size of the image.
Other libraries imported are Activation, Dropout, Flatten, and
Dense.Malware grayscale images are in two dimensions. The
height, width, and depth of the input image are taken to be

FIGURE 8. a. Comparison of accuracy of LBP-SVM on fifteen combinations
of grayscale malware images of normalized and un-normalized dataset.
b. Comparison of accuracy of LBP-KNN on fifteen combinations of
grayscale malware images of normalized and un-normalized dataset.
c. Comparison of accuracy of LBP-RF on fifteen combinations of grayscale
malware images of normalized and un-normalized dataset.

108, 108, and 1 respectively. To build and train the CNN on
the malware images of different families, we added the three
convolutional layers to themodel which are represented as the
Conv2D (32,7,7), Conv2D (128,5,5), and Conv2D (256,3,3).
The first argument defines the number of output filters in the
convolution layer. The next two arguments define the kernel
size. Kernel size is a tuple of two integers that is specifying
the width and height of the two-dimensional convolutional
window. ReLu is used as the activation layer in the CNN
architecture. Max-pooling layer has been deployed with pool
size 3 × 2, 3 × 3, and 2 × 2 after each convolution layer.
To avoid the overfitting problem, a dropout layer with a value
of 0.5 was used. Three dense layers with 50, 100, 200 neurons

VOLUME 9, 2021 90111



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

TABLE 4. Accuracy of handcrafted features on fifteen combination of malware images (normalized dataset).

FIGURE 9. The CNN architecture.

were deployed in the network. The softmax activation func-
tion is added to the output layer of 20 neurons.

1) COMPARISON WITH GLCM-SVM, GIST-SVM, LBP-SVM
Feature Fusion with SVM classifier significantly improves
the classification accuracy when compared with the results
of GLCM-SVM. A decent hike of 7% to 10% was observed
for at least ten combinations of malware image sections as
depicted in Figure 10(a). These combinations are AM +
RS + CL, CR + AM + CL, CR + AM + RS + CL,
AM + CL, CL, AM + RS, RS + CL, CR + RS + CL,
CR + CL, and CR + RS with increased accuracy 6.70%,
6.96%, 7.02%, 7.35%, 7.35%, 7.35%, 7.61%, 8.13%, 8.45%,
and 9.23% respectively. For the rest of the combinations of
malware image sections, the classification accuracy increased
from at least 2% to the maximum of 7%. A slight decline
of 0.65% was observed in classification accuracy for mal-
ware images created using AM file. The highest accuracy
of 93.24% was observed for combination CR + AM using
Feature Fusion-SVM classifier.

The classification results of Feature Fusion-SVM are also
compared with GIST-SVM as shown in Figure 10(b). It has
been observed that classification results produced using Fea-
ture Fusion-SVM are better than the results of GIST-SVM
on various combinations of malware image sections. For at
least thirteen combinations, there is a hike in classification
accuracy between the range 1% to 4%.

Figure 10(c) revealed that Feature Fusion-SVM also out-
performed the combination LBP-SVM. For combinations

AM, AM+ RS, CR+ RS, RS, CR+AM+ RS the accuracy
increased by 11.25%, 12.81%, 13.59%, 14.69%, and 15.47%
respectively. For the rest of the combinations, there was an
increase in accuracy between the range 6% to 10%. The
average accuracy is observed to be 90.90% using Feature
Fusion-SVM whereas it was 80.37% using LBP-SVM.

2) COMPARISON WITH GLCM-KNN, GIST-KNN, LBP-KNN
The comparison results of Feature Fusion-KNN with
GLCM-KNN, GIST-KNN, LBP-KNN are shown in
Figure 11(a), 11(b), and 11(c). An increase of 0.39% to
2.86% in classification accuracy was observed when the
results of Feature Fusion-KNN are compared with GLCM-
KNN. On the other hand, an increase of 0.83% to 3.77%
in classification accuracy was observed when the results of
Feature Fusion-KNN are compared with GIST-KNN. KNN
outperformed the results of LBP-KNN when it was used
with feature fusion. It was observed that LBP-KNN showed
the worst performance against CR malware images with
an accuracy of 65.01%. KNN performance on CR malware
images got better with Feature Fusion and obtain an accuracy
of 81.43%. For the rest of the combinations, accuracy ranges
from 2% to 7%.

3) COMPARISON WITH GLCM-RF, GIST-RF, LBP-RF
The comparison results of Feature Fusion-RF with
GLCM-RF, GIST-RF, LBP-RF are depicted in
Figure 12(a), 12(b), 12(c). There is no significant difference
between the results which are produced by GLCM-RF and

90112 VOLUME 9, 2021



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 10. a. Comparison of accuracy of GLCM-SVM and feature
fusion-SVM on fifteen combinations of grayscale. b. Comparison of
accuracy of GIST-SVM and feature fusion-SVM on fifteen combinations of
grayscale. c. Comparison of accuracy of LBP-SVM and feature fusion-SVM
on fifteen combinations of grayscale.

Feature Fusion-RF. The variation in accuracy is observed
when results of GIST-RF are compared with classifica-
tion results of Feature Fusion-RF. An increase in accuracy
between the range of 0.17% to 4.16% was observed for RF
when used in linear combination with Feature Fusion. The
results of Feature Fusion-RF are also better than the results
of LBP-RF. The average classification result of LBP-RF is
recorded as 84.51% whereas it is 88.34% when RF is used
with handcrafted and CNN features.

The top five type of malware images against which hand-
crafted features and feature fusion strategy have attained

FIGURE 11. a. Comparison of accuracy of GLCM-KNN and feature
fusion-KNN on fifteen combinations of grayscale. b. Comparison of
accuracy of GIST-KNN and feature fusion-KNN on fifteen combinations of
grayscale. c. Comparison of accuracy of LBP-KNN and feature fusion-KNN
on fifteen combinations of grayscale.

maximum accuracy are depicted in Figure 13(a), 13(b),13(c),
13(d), 13(e). It revealed that classifiers have attained the
maximum accuracy on AM and CR + AM malware images.
It is observed that sharp spikes appear when using the fea-
ture fusion strategy for the classification of Android mal-
ware images. For CR + AM malware images, GLCM,
GIST, and LBP features attained an average accuracy
of 91.05%, 89.71%, and 84.89% respectively whereas fea-
ture fusion strategy attained an accuracy of 91.3%. For
AM malware images, GLCM, GIST, and LBP features
attained an average accuracy of 90.77%, 88.93%, and

VOLUME 9, 2021 90113



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 12. a. Comparison of accuracy of GLCM-RF and feature fusion-RF
on fifteen combinations of grayscale. b. Comparison of accuracy of
GIST-RF and feature fusion-RF on fifteen combinations of grayscale. c.
Comparison of accuracy of LBP-RF and feature fusion-RF on fifteen
combinations of grayscale.

82.96% respectively whereas feature fusion strategy attained
an accuracy of 89.62%. For CR + CL malware images,
GLCM, GIST, and LBP features attained an average accu-
racy of 87.19%, 87.71%, and 85.80% respectively whereas
feature fusion strategy attained an accuracy of 90.75%. For
AM + CL malware images, GLCM, GIST, and LBP fea-
tures attained an average accuracy of 87.28%, 87.71%, and
85.89% respectively whereas feature fusion strategy attained
an accuracy of 90.42%. For CR+AM+CLmalware images,
GLCM, GIST, and LBP features attained an average accuracy
of 87.43%, 87.15%, and 86.02% respectively whereas feature
fusion strategy attained an accuracy of 90.31%.

The confusion matrix for the twenty malware families
is shown in Figure 14. The performance metrics such as
precision, recall, and error rate is also shown in Figure 15.

FIGURE 13. (a) Graphplot showing accuracy of handcrafted features and
feature fusion against CR + AM malware image. (b) Graphplot showing
accuracy of handcrafted features and feature fusion against AM malware
image. (c) Graphplot showing accuracy of handcrafted features and
feature fusion against CR + CL malware image. (d) Graphplot showing
accuracy of handcrafted features and feature fusion against AM + CL
malware image. (e) Graphplot showing accuracy of handcrafted features
and feature fusion against CR + AM + CL malware image.

As discussed earlier, Feature Fusion with SVM clas-
sifier achieved the highest accuracy of 93.24% using
CR + AM malware images. Among the total malware

90114 VOLUME 9, 2021



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

FIGURE 14. A confusion matrix.

FIGURE 15. Performance metrics obtained using feature fusion-SVM
classifier.

families, the families such as Kmin, GoldDream, FakeDoc,
Iconosys, Opfake, and FakeInstaller attain high precision
and recall. ExploitLinuxLootor, MobileTx, Gappusin, and
BaseBridge are the families against which low precision and
recall were observed. The performance degrades due to the
less number of samples in these families.

The error rate for the malware family ExploitLinuxLotoor
is found to be 65.21%, which is relatively high. ForMobileTx
and Imlog, it was 34.78% and 28.57% respectively. The
error rate for the families Adrd, SMSreg, DroidDream, and
Gappusin varies from 21% to 24%. All the samples for the

malware family Kminwere correctly classified. Even no sam-
ple of other class gets misclassified to Kmin malware family
class. Therefore, its error rate found to be zero. The family
Iconosys also attained the error rate of zero but achieve the
precision of 98.03%. Only one sample of FakeInstaller gets
misclassified into the Iconosys malware family. One sample
of Plankton class gets misclassified into SendPay class and
one sample of Sendpay gets misclassified into DroidKungFu
class. For this reason, malware family Iconosys attain an
equal precision and recall rate. The error rate of 2.91% and
2.95% was recorded for malware family Plankton and Fake-
Installer respectively. For Opfake family, it was observed to
be 0.49%.

V. CONCLUSION AND FUTURE SCOPE
A series of experiments were conducted for the analysis and
classification of Android malware images. The handcrafted
features used in this work are Gray Level Co-occurrence
Matrix (GLCM), Global Image deScripTors (GIST), and
Local Binary Pattern (LBP). LBP features do not contain
much information for malware classification. GIST features
with classifiers SVM, KNN, and RF showed good classifica-
tion accuracy. Min-max normalization on the dataset showed
a great impact on the proposed methodology. GLCM-SVM
achieved the highest classification accuracy of 92.20% on
AM malware images closely followed by the GLCM-RF and
GIST-SVM model that achieved an accuracy of 91.81% and
91.35% respectively on CR+ AMmalware images. Further-
more, CNN and handcrafted features were fused to form the
feature fusion strategy for the classification of Android mal-
ware images. The classification results obtained using hand-
crafted features are compared with results achieved using
feature fusion methodology. It was found that the classifi-
cation performance of all the classifiers eventually increased
when feature fusionwas deployed. Of the topmalware images
revealed in this work, feature fusion undoubtedly outperforms
handcrafted features in the classification of Android malware
images. The highest accuracy of 93.24% was observed for
malware image combination CR + AM using the Feature
Fusion-SVM classifier. Therefore, the efforts can be saved
in inspecting the entire APK structure for the classification
of Android malware. The proposed visualization technique
based on feature fusion will let the same work done with
lesser resources and time. The primary focus of this study,
was on the feature fusion technique to identify the descriptors,
which could help to differentiate between different types
of Android malware families. The study on the correlation
of features can be another interesting area to explore. The
features that are extractedmay contain irrelevant or redundant
features. Therefore, as future scope of this work, we tend to
deploy suitable feature extraction techniques to identify and
remove the redundant features by analyzing the correlation
between them. Moreover, the use of ensemble learning in
CNNs and other transfer learning models considering hyper-
parameters optimization sets the future scope of this work.

VOLUME 9, 2021 90115



J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

ACKNOWLEDGMENT
(Jaiteg Singh and Farman Ali are co-first authors.)

REFERENCES
[1] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, ‘‘RiskRanker: Scalable

and accurate zero-day Android malware detection,’’ in Proc. 10th Int.
Conf. Mobile Syst., Appl., Services (MobiSys), New York, NY, USA, 2012,
pp. 281–294.

[2] M. F. A. Razak, N. B. Anuar, R. Salleh, and A. Firdaus, ‘‘The rise of
‘malware’: Bibliometric analysis of malware study,’’ J. Netw. Comput.
Appl., vol. 75, pp. 58–76, Nov. 2016, doi: 10.1016/j.jnca.2016.08.022.

[3] S. Ni, Q. Qian, and R. Zhang, ‘‘Malware identification using visualiza-
tion images and deep learning,’’ Comput. Secur., vol. 77, pp. 871–885,
Aug. 2018.

[4] N. Xie, X. Wang, W. Wang, and J. Liu, ‘‘Fingerprinting Android malware
families,’’ Frontiers Comput. Sci., vol. 13, no. 3, pp. 637–646, Jun. 2019.

[5] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek, ‘‘A taxonomy and qualita-
tive comparison of program analysis techniques for security assessment of
Android software,’’ IEEE Trans. Softw. Eng., vol. 43, no. 6, pp. 492–530,
Jun. 2017, doi: 10.1109/TSE.2016.2615307.

[6] F. Rustam, M. A. Siddique, H. U. R. Siddiqui, S. Ullah, A. Mehmood,
I. Ashraf, and G. S. Choi, ‘‘Wireless capsule endoscopy bleeding
images classification using CNN based model,’’ IEEE Access, vol. 9,
pp. 33675–33688, 2021.

[7] J. Singh, D. Thakur, F. Ali, T. Gera, and K. S. Kwak, ‘‘Deep feature extrac-
tion and classification of Android malware images,’’ Sensors, vol. 20,
no. 24, p. 7013, Dec. 2020.

[8] P. Zegzhda, D. Zegzhda, E. Pavlenko, and G. Ignatev, ‘‘Applying deep
learning techniques for Android malware detection,’’ in Proc. 11th Int.
Conf. Secur. Inf. Netw., Sep. 2018, pp. 1–8.

[9] M. Ganesh, P. Pednekar, P. Prabhuswamy, D. S. Nair, Y. Park, and H. Jeon,
‘‘CNN-based Android malware detection,’’ in Proc. Int. Conf. Softw. Secur.
Assurance (ICSSA), Jul. 2017, pp. 60–65.

[10] T. H.-D. Huang and H.-Y. Kao, ‘‘R2-D2: ColoR-inspired convolutional
NeuRal network (CNN)-based AndroiD malware detections,’’ in Proc.
IEEE Int. Conf. Big Data (Big Data), Dec. 2018, pp. 2633–2642.

[11] X. Xiao and S. Yang, ‘‘An image-inspired and CNN-based Android mal-
ware detection approach,’’ in Proc. 34th IEEE/ACM Int. Conf. Automated
Softw. Eng. (ASE), Nov. 2019, pp. 1259–1261.

[12] W. Wang, M. Zhao, and J. Wang, ‘‘Effective Android malware detec-
tion with a hybrid model based on deep autoencoder and convolutional
neural network,’’ J. Ambient Intell. Humanized Comput., vol. 10, no. 8,
pp. 3035–3043, Aug. 2019.

[13] A. S. de Oliveira and R. J. Sassi, ‘‘Chimera: An Android malware detection
method based onmultimodal deep learning and hybrid analysis,’’ TechRxiv,
Dec. 2020, doi: 10.36227/techrxiv.13359767.v1.

[14] D. Thakur, ‘‘Classification of Android malware using its image sections,’’
Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 4, pp. 6151–6155,
Aug. 2020.

[15] Y. Ding, X. Zhang, J. Hu, andW. Xu, ‘‘Android malware detection method
based on bytecode image,’’ J. Ambient Intell. Humanized Comput., vol. 11,
pp. 1–10, Jun. 2020.

[16] J. Singh, T. Gera, F. Ali, D. Thakur, K. Singh, and K.-S. Kwak, ‘‘Under-
standing research trends in Android malware research using informa-
tion modelling techniques,’’ Comput., Mater. Continua, vol. 66, no. 3,
pp. 2655–2670, 2021.

[17] T. Gera, J. Singh, D. Thakur, and P. Faruki, ‘‘A semi-automated approach
for identification of trends in Android ransomware literature,’’ inMachine
Learning for Networking, É. Renault, S. Boumerdassi, and P. Mühlethaler,
Eds. Cham, Switzerland: Springer, 2021, pp. 265–283.

[18] D. Thakur, T. Gera, and J. Singh, ‘‘Android anti-malware techniques and
its vulnerabilities: A survey,’’ in Smart Innovations in Communication and
Computational Sciences. Singapore: Springer, 2019, pp. 315–328.

[19] R. U. Khan, X. Zhang, and R. Kumar, ‘‘Analysis of ResNet and GoogleNet
models for malware detection,’’ J. Comput. Virol. Hacking Techn., vol. 15,
no. 1, pp. 29–37, Mar. 2019.

[20] L. Shiqi, T. Shengwei, Y. Long, Y. Jiong, and S. Hua, ‘‘Android malicious
code classification using deep belief network,’’ KSII Trans. Internet Inf.
Syst., vol. 12, no. 1, pp. 454–475, 2018.

[21] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, ‘‘Malware
images: Visualization and automatic classification,’’ in Proc. 8th Int. Symp.
Visualizat. Cyber Secur. (VizSec), 2011, pp. 1–7.

[22] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen, ‘‘Detection
of malicious code variants based on deep learning,’’ IEEE Trans. Ind.
Informat., vol. 14, no. 7, pp. 3187–3196, Jul. 2018.

[23] J.-S. Luo and D. C.-T. Lo, ‘‘Binary malware image classification using
machine learning with local binary pattern,’’ in Proc. IEEE Int. Conf. Big
Data (Big Data), Dec. 2017, pp. 4664–4667.

[24] A. Makandar and A. Patrot, ‘‘Malware analysis and classification using
artificial neural network,’’ in Proc. Int. Conf. Trends Autom., Commun.
Comput. Technol. (I-TACT), Dec. 2015, pp. 1–6.

[25] S. K. Dash, G. Suarez-Tangil, S. Khan, K. Tam, M. Ahmadi, J. Kinder,
and L. Cavallaro, ‘‘DroidScribe: Classifying Android malware based on
runtime behavior,’’ in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2016, pp. 252–261.

[26] F. Martinelli, F. Marulli, and F. Mercaldo, ‘‘Evaluating convolutional neu-
ral network for effective mobile malware detection,’’ Procedia Comput.
Sci., vol. 112, pp. 2372–2381, Jan. 2017.

[27] A. Makandar and A. Patrot, ‘‘Wavelet statistical feature based malware
class recognition and classification using supervised learning classifier,’’
Oriental J. Comput. Sci. Technol., vol. 10, no. 2, pp. 400–406, Jun. 2017.

[28] S. Seok and H. Kim, ‘‘Visualized malware classification based-on convo-
lutional neural network,’’ J. Korea Inst. Inf. Secur. Cryptol., vol. 26, no. 1,
pp. 197–208, Feb. 2016.

[29] A. Makandar and A. Patrot, ‘‘Malware class recognition using image
processing techniques,’’ in Proc. Int. Conf. Data Manage., Analytics Innov.
(ICDMAI), Feb. 2017, pp. 76–80.

[30] B. N. Narayanan, O. Djaneye-Boundjou, and T. M. Kebede, ‘‘Perfor-
mance analysis of machine learning and pattern recognition algorithms
for malware classification,’’ in Proc. IEEE Nat. Aerosp. Electron. Conf.
(NAECON), Ohio Innov. Summit (OIS), Jul. 2016, pp. 338–342.

[31] S. Choi, S. Jang, Y. Kim, and J. Kim, ‘‘Malware detection using malware
image and deep learning,’’ in Proc. Int. Conf. Inf. Commun. Technol.
Converg. (ICTC), Oct. 2017, pp. 1193–1195.

[32] K. Kancherla and S. Mukkamala, ‘‘Image visualization based malware
detection,’’ in Proc. IEEE Symp. Comput. Intell. Cyber Secur. (CICS),
Apr. 2013, pp. 40–44.

[33] X. Zhou, J. Pang, and G. Liang, ‘‘Image classification for malware detec-
tion using extremely randomized trees,’’ inProc. 11th IEEE Int. Conf. Anti-
Counterfeiting, Secur., Identificat. (ASID), Oct. 2017, pp. 54–59.

[34] H. Naeem, F. Ullah, M. R. Naeem, S. Khalid, D. Vasan, S. Jabbar, and
S. Saeed, ‘‘Malware detection in industrial Internet of Things based on
hybrid image visualization and deep learning model,’’ Ad Hoc Netw.,
vol. 105, Aug. 2020, Art. no. 102154.

[35] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and
F. Iqbal, ‘‘Malware classification with deep convolutional neural net-
works,’’ inProc. 9th IFIP Int. Conf. New Technol., Mobility Secur. (NTMS),
Feb. 2018, pp. 1–5.

[36] A. F. Agarap, ‘‘Towards building an intelligent anti-malware system:
A deep learning approach using support vector machine (SVM) for
malware classification,’’ 2017, arXiv:1801.00318. [Online]. Available:
http://arxiv.org/abs/1801.00318

[37] E. M. Karanja, S. Masupe, and M. G. Jeffrey, ‘‘Analysis of Internet of
Things malware using image texture features and machine learning tech-
niques,’’ Internet Things, vol. 9, Mar. 2020, Art. no. 100153.

[38] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, ‘‘Drebin:
Effective and explainable detection of Android malware in your pocket,’’
in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[39] Y.-S. Yen and H.-M. Sun, ‘‘An Android mutation malware detection based
on deep learning using visualization of importance from codes,’’ Micro-
electron. Rel., vol. 93, pp. 109–114, Feb. 2019.

[40] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng,
‘‘IMCFN: Image-based malware classification using fine-tuned convolu-
tional neural network architecture,’’ Comput. Netw., vol. 171, Apr. 2020,
Art. no. 107138.

[41] C. Zhu, C.-E. Bichot, and L. Chen, ‘‘Multi-scale color local binary patterns
for visual object classes recognition,’’ in Proc. 20th Int. Conf. Pattern
Recognit., Aug. 2010, pp. 3065–3068.

[42] C. Zhu, C.-E. Bichot, and L. Chen, ‘‘Image region description using
orthogonal combination of local binary patterns enhanced with color infor-
mation,’’ Pattern Recognit., vol. 46, no. 7, pp. 1949–1963, Jul. 2013.

[43] A. Oliva and A. Torralba, ‘‘Modeling the shape of the scene: A holistic
representation of the spatial envelope,’’ Int. J. Comput. Vis., vol. 42, no. 3,
pp. 145–175, 2001.

90116 VOLUME 9, 2021

http://dx.doi.org/10.1016/j.jnca.2016.08.022
http://dx.doi.org/10.1109/TSE.2016.2615307
http://dx.doi.org/10.36227/techrxiv.13359767.v1


J. Singh et al.: Classification and Analysis of Android Malware Images Using Feature Fusion Technique

[44] A. Oliva and A. Torralba, ‘‘Building the gist of a scene: The role of global
image features in recognition,’’ Prog. Brain Res., vol. 155, pp. 23–36,
Oct. 2006.

[45] N. Antropova, B. Q. Huynh, and M. L. Giger, ‘‘A deep feature fusion
methodology for breast cancer diagnosis demonstrated on three imaging
modality datasets,’’Med. Phys., vol. 44, no. 10, pp. 5162–5171, Oct. 2017.

[46] Y. Ren, J. Yang, Q. Zhang, and Z. Guo, ‘‘Multi-feature fusion with con-
volutional neural network for ship classification in optical images,’’ Appl.
Sci., vol. 9, no. 20, p. 4209, Oct. 2019.

[47] S. L. Lee, M. R. Zare, and H. Muller, ‘‘Late fusion of deep learning and
handcrafted visual features for biomedical image modality classification,’’
IET Image Process., vol. 13, no. 2, pp. 382–391, Feb. 2019.

[48] S. U. Amin, G. Muhammad, W. Abdul, M. Bencherif, and M. Alsulaiman,
‘‘Multi-CNN feature fusion for efficient EEG classification,’’ in Proc.
IEEE Int. Conf. Multimedia ExpoWorkshops (ICMEW), Jul. 2020, pp. 1–6.

[49] Y. Filali, H. E. L. Khoukhi, M. A. Sabri, and A. Aarab, ‘‘Efficient fusion
of handcrafted and pre-trained CNNs features to classify melanoma skin
cancer,’’ Multimedia Tools Appl., vol. 79, nos. 41–42, pp. 31219–31238,
Nov. 2020.

[50] C.-J. Lin, C.-H. Lin, and S.-Y. Jeng, ‘‘Using feature fusion and parameter
optimization of dual-input convolutional neural network for face gender
recognition,’’ Appl. Sci., vol. 10, no. 9, p. 3166, May 2020.

[51] J.-A. Almaraz-Damian, V. Ponomaryov, S. Sadovnychiy, and
H. Castillejos-Fernandez, ‘‘Melanoma and nevus skin lesion classification
using handcraft and deep learning feature fusion via mutual information
measures,’’ Entropy, vol. 22, no. 4, p. 484, Apr. 2020.

JAITEG SINGH is currently pursuing the Ph.D.
degree in computer science and engineering with
the Institutes of Higher Technical Education, with
more than 15 years of experience in research,
development, training, and academics. His areas of
expertise are software engineering, business intel-
ligence, data, opinion mining, cartography, cur-
riculum design, and pedagogical innovation and
management. His research interests include sus-
tainable software engineering, education technol-

ogy, offline navigation systems, and cloud computing.

DEEPAK THAKUR is currently pursuing the Ph.D.
degree in computer science with Chitkara Univer-
sity, Chandigarh. He has more than six years of
teaching experience as an Assistant Professor in
computer science and engineering at Chitkara Uni-
versity. His research interests include computer
vision, malware classification, Android security,
and deep learning.

TANYA GERA is currently pursuing the Ph.D.
degree in computer science from Chitkara Univer-
sity, Chandigarh. She has more than six years of
teaching experience as an Assistant Professor in
computer science and engineering at Chitkara Uni-
versity. Her research interests include Web review
mining, ransomware detection, Android security,
and machine learning.

BABAR SHAH is currently an Associate Pro-
fessor with the College of Technological Inno-
vation, Zayed University, Dubai, United Arab
Emirates. His professional services include but
are not limited to guest editorships, university
services, the workshops chair, a technical program
committee member, and a reviewer of several
reputed international journals and conferences.
His research interests include WSN, WBAN,
the IoT, churn prediction, security, real-time com-

munication mobile P2P networks, and M-learning.

TAMER ABUHMED received the Ph.D. degree in
information and telecommunication engineering
from Inha University, in 2012. He is currently an
Assistant Professor with the College of Comput-
ing, Sungkyunkwan University, South Korea. His
research interests include biomedical applications,
information security, network security, Internet
security, and machine learning and its application
to medical, security, and privacy problems.

FARMAN ALI received the B.S. degree in com-
puter science from the University of Peshawar,
Pakistan, in 2011, the M.S. degree in computer
science from Gyeongsang National University,
South Korea, in 2015, and the Ph.D. degree in
information and communication engineering from
Inha University, South Korea, in 2018. He worked
as a Postdoctoral Fellow at the UWB Wireless
Communications Research Center, Inha Univer-
sity, from September 2018 to August 2019. He is

currently an Assistant Professor with the Department of Software, Sejong
University, South Korea. He has registered over four patents and pub-
lished more than 50 research articles in peer-reviewed international journals
and conferences. His current research interests include sentiment analy-
sis/opinion mining, information extraction, information retrieval, feature
fusion, artificial intelligence in text mining, ontology-based recommendation
systems, healthcare monitoring systems, deep learning-based data mining,
fuzzy ontology, fuzzy logic, and type-2 fuzzy logic. He has been awarded
with the Outstanding Research Award (Excellence of Journal Publications-
2017) and the President Choice of the Best Researcher Award during his
Graduate Program at Inha University.

VOLUME 9, 2021 90117


