
Received May 2, 2021, accepted May 20, 2021, date of publication June 21, 2021, date of current version June 29, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090918

Gradient Descent Effects on Differential Neural
Architecture Search: A Survey
SANTANU SANTRA 1, JUN-WEI HSIEH2, AND CHI-FANG LIN1
1Department of Computer Science and Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
2College of Artificial Intelligence and Green Energy, National Chiao Tung University, Hsinchu 30010, Taiwan

Corresponding author: Jun-Wei Hsieh (jwhsieh@nctu.edu.tw)

This work was supported by the Ministry of Science and Technology (MOST), Taiwan, under Grant 109-2221-E-009-116-MY3.

ABSTRACT Gradient Descent, an effective way to search for the local minimum of a function, can minimize
training and validation loss of neural architectures and also be incited in an appropriate order to decrease
the searching cost of neural architecture search. In recent trends, the neural architecture search (NAS) is
enormously used to construct an automatic architecture for a specific task. Mostly well-performed neural
architecture search methods have adopted reinforcement learning, evolutionary algorithms, or gradient
descent algorithms to find the best-performing candidate architecture. Among these methods, gradient
descent-based architecture search approaches outperform all other methods in terms of efficiency, simplicity,
computational cost, and validation error. In view of this, an in-depth survey is necessary to cover the
usefulness of gradient descent method and how this can benefit neural architecture search. We begin our
survey with basic concepts of neural architecture search, gradient descent, and their unique properties. Our
survey then delves into the impact of gradient descent method on NAS and explores the effect of gradient
descent in the search process to generate the candidate architecture. At the same time, our survey reviews
mostly used gradient-based search approaches in NAS. Finally, we provide the current research challenges
and open problems in the NAS-based approaches, which need to be addressed in future research.

INDEX TERMS Gradient descent, neural architecture search, reinforcement learning, evolutionary algo-
rithm, back-propagation.

I. INTRODUCTION
Automatic machine learning (AutoML) has become a favor-
able solution for developing deep learning (DL) systems
without any human efforts. An AutoML system consists of
data preprocessing, feature generation, network model gen-
eration, and performance evaluation. Although an AutoML
system consists of several stages, the most critical stages are
model generation and performance estimation. The model
generation stage is either created by machine learning experts
or by an automatic design process. The automated architec-
ture design process is known as neural architecture search
(NAS). The rapid development and demand of NAS continue
to overwhelm the human experts designing architectures in
many applications.

Constructing an automatic architecture with different net-
work topologies is first explored in [1]. The pioneer-
ing frameworks developed in [2] and [3] have attracted

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang .

much attention, which bring many exciting ideas for
NAS with high-performance outputs. Unfortunately, most
NAS approaches require many GPU days and memory,
which make the NAS approaches fatally hindered. Hence,
advanced approaches that ensure low memory, low comput-
ing resources, and power requirements over neural architec-
ture search are obligatory.

Apart from satisfying low memory and computing
resources requirements of searching processes, NAS
approaches must include some features, such as scalability,
efficiency, reliability, and flexibility. Candidate architec-
ture searches in NAS can be performed by reinforcement
learning (RL), evolutionary algorithm (EA), gradient-based
(GB), or random search (RS) approaches. At present,
the gradient-based NAS approach [4]–[8] is considered one
of the better candidates for architecture search strategies.
Gradient descent has the ability to search for better architec-
tures with a local (or preferably global) minimum to satisfy
the requirements, including low memory and computational
loading. It is often adopted in back-propagation to repeatedly

89602 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-6710-4846
https://orcid.org/0000-0002-0917-2277

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

TABLE 1. Comparative study of different survey papers. Xand × are used
to indicated the covered topic or not covered, respectively.

update weight parameters, architecture parameters or both
to minimize expected functional loss. Usually, NAS method
can be divided into three sequential stages: search space con-
struction, architecture search, and performance evaluation.
The search space construction stage explores a large set of
possible network architectures that can match or outperform
expert-designed architectures. The architecture search stage
explores possible searching techniques to identify the better
(or best) architecture from search space. The last stage, i.e.,
performance evaluation calculates predictive performance on
some collected datasets. NAS significantly reduces lots of
human efforts over traditional deep Convolutional Neural
Networks (CNN) designing, either by tuning architecture
parameters, weight parameters, or both. As NAS has been
recognized as the core technology of neural architecture
designing in next-generation, researchers have focused on
extending their knowledge to automatic architecture design
processes. Along this line, Elsken et al. [9] presented a
survey on NAS, where they have addressed the elementary
ideas of NAS, different search approaches and performance
estimation strategies, and future directions of NAS.

A review highlighting reinforcement learning (RL) for
NAS is provided by Jaâfra et al. [10]. The survey [9] catego-
rized NAS into different classes such as Bayesian reasoning,
evolution, reinforcement learning, and gradient search.More-
over, an extensive study of NAS is presented in [11]. Latterly,
White et al. [12] have provided a survey of NAS for candidate
architecture generation. Table 1 shows detailed comparisons
among different survey papers [9]–[11], [13]–[15]. In this
study, we begin by summarizing the characteristics of differ-
ent state-of-art (SoTA) NAS approaches and their challenges.
We present an in-depth study that explores architecture opti-
mization strategies to generate candidate architectures with
good performance and helps readers obtain possible research
ideas and further directions, which inspires us to write this
survey article.

A. CONTRIBUTIONS
Our study provides an in-depth explanation that directs
towards gradient descent-based searching strategy in neu-
ral architecture search. Its contents are categorized into
two parts: (i) Detailed backgrounds on automatic architec-
ture search for readers, and (ii) Comparisons among sev-
eral GD-based architecture search strategies, including their
usability, efficiency, and stability. Significant contributions in
this article are summarized below.

• Our survey explores the basics of NAS, its work princi-
pal, and its associated search strategies.

• We discuss the usability and effect of the gradient
descent method in NAS strategies.

• Our survey defines the taxonomies for GD-based search
and discusses different evaluation strategies to generate
better candidate architectures.

• We evaluate different search strategies in terms of their
validation errors, their numbers of architecture parame-
ters, and computational costs (GPU days).

• Finally, we summarize different research challenges and
discuss their issues in NAS approaches that further
researches can be conducted.

B. ORGANIZATION
The remainder of this survey paper is organized as follows.
Section II discusses the elementary concept of NAS and the
gradient descent technique. Section III provides an overview
of various commonly used search spaces. Different searching
strategies in NAS to find out a better candidate architecture
are explored in Section IV. Section V explores different
gradient-descent problems which are occurred during archi-
tecture search process. Different tricks to regularize gradi-
ent descent method are explored in Section VI. Section VII
explores Differentiable Neural Architecture Search (DNAS)
techniques. The performance evaluations of various State-of-
The-Art (SoTA) GD-based NAS approaches are highlighted
in Section VIII. Different research challenges of DNAS are
discussed in Section IX. Finally, we summarize and conclude
this study in Section X.

II. BACKGROUND
A. OVERVIEW OF NAS
In last few decades, computer vision research attracts
much attention to find a well-performed structure that can
extract rich features for image or video understanding.
Although there are different feature extractors for image
and speech recognition, they can achieve only near 70%
and 80% accuracy. AutoML has taken the attention of most
researchers in the field of computer vision. Instead of man-
ually designing architectures (e.g., Alex-Net [16], VGG-Net
[17], Google-Net [18], Res-Net [19], Dense-Net [20]), NAS
explores the possibility of discovering unexplored architec-
tures with an automatic algorithm. NAS finds the best per-
forming neural network by exploring all possible candidate
architectures that can match or outperform hand-designed
architectures. NAS has become an essential step to auto-
mate neural architecture design and save a lot of expert
efforts for boring trial-and-error routines [3], [21] in var-
ious fields. The stick diagram of a NAS with its stages
is shown in Figure II-A. The search module extracts each
candidate architecture one by one from the search space,
and the evaluation module calculates the performance (in
terms of desired requirements) of each candidate architec-
ture. During the search loop, the performance is returned

VOLUME 9, 2021 89603

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

FIGURE 1. Basic building blocks of neural architecture search methods.

to the search module for finding next candidate with better
performance.

B. PRELIMINARY OF GRADIENT DESCENT METHOD
Gradient descent (GD)-based optimization approaches use
the gradient information and iteratively tune the parameters of
architecture, weight, or both to search for the best architecture
candidate based on the desire tasks. Let LossW denote the
loss function and its gradient be ∇WLoss(W) w.r.t. to the
parameters W ∈ Rd . During searching, the loss function
LossW is minimized by updatingW in the opposite direction
of ∇WLoss(W) with a learning rate η. η plays an important
role in the optimization loop but is often trapped at a local
minimum stationary point.

The GD methods can be divided to two stages, i.e., param-
eter updating and parameter scaling. For parameter updat-
ing, GD methods can be further categorized to four classes:
vanilla GD, stochastic GD, momentum GD, and adaptive
GD. For the stage of parameter scaling, GD methods can be
further divided to two stages i.e., batch GD and mini-batch
GD. The vanilla GD based approach calculates the gradient
∇WLoss(W) for each iteration and updates the weight param-
eters according to Eq.(1) as follows.

Wt = W(t−1) − η · ∇W(t−1)Loss(W(t−1)). (1)

It takes small steps towards the direction of the minima
by taking gradient of the cost function. The stochastic
GD (SGD) approach uses shuffle to randomly sample data
from training dataset, and in each iteration, the randomly
selected single data-point is used for gradient computation
and tuning the weight parameters by the following equation.

Wt = W(t−1) − η · ∇W(t−1)Loss(W(t−1); x(i); y(i)), (2)

where each training sample and its corresponding label is
indicated by x(i), and y(i), respectively. The frequent update
strategy of SGD can provide a pretty detailed rate of improve-
ment. However, a bigger learning rate may produce wrong
gradient updates, results in an inefficient learning path, and
slowly decreases loss function. The momentum GD method
works better and faster than the SGDone by considering some
kind ofmoving average gradient direction to the updating rule
as:

V = momentum ∗ PreviousUpdate;

Wt = W(t−1) + V − η · ∇W(t−1)Loss(W(t−1)). (3)

The SGD with momentum can accelerate the gradient
vectors in right directions as a result of faster converging.

Due to its superior effect in convergence, many SoTAmodels
are trained using it.
The adaptive GD method performs small updates (i.e.,

low learning rate) for parameters associated with recurring
features and performs larger updates (i.e., higher learning
rates) for parameters associated with infrequent features; that
is,

Wt = W(t−1) −
η

√
Gt−1 + ε

· ∇W(t−1)Loss(W(t−1)), (4)

where Gt−1 is a diagonal matrix, and each diagonal element
is sum of squares of the past gradients to all parameters W ,
and ε is a smoothing term that avoids division by zero.

The SGD method uses only one sample to compute gradi-
ent direction and leads to lots of local maxima/minima. The
batch GD approach computes the gradient using the whole
dataset. It is computationally efficient with stable gradient
error and great for convex or relatively smooth error mani-
folds. However, it often leads to an over-fitting model. Thus,
in most conditions, the batch GDmethod uses a mini-batch of
several samples instead of the whole dataset to compute the
gradient direction. The mini-batch gradient descent approach
is the combination of both SGD and batch GD methods,
where the dataset is divided intomany batches, and each batch
is used to calculate the gradient errors and update weight
parameters (as shown in Eq.5), i.e.,

Wt = W(t−1) − η · ∇W(t−1)Loss(W(t−1); x(i:i+B); y(i:i+B)), (5)

where B represents the mini-batch size of the training sam-
ples. Hence it can generate better gradient errors while bal-
ancing the robustness like SGD and efficiency likes batch
gradient descent.

In GD methods, to make the learning process faster and
more stable, the inputs of a model should be re-centered and
re-scaled for parameter scaling; if the mean and variance
of each layer’s input are estimated from the whole dataset,
the GD method is categorized as the batch GD; otherwise,
it is named as the mini-batch GD. For the mini-batch GD
approach, the mean and variance are calculated as follows:

µB =
1
B

B∑
i=1

Xi and σ 2
t =

1
B

B∑
i=1

(Xi − µB)2, (6)

where the mini-batch size B is the whole dataset for the batch
GD method, the inputs Xi are then normalized as follows:

Xi =
Xi − µB√
σ 2
B + ε

. (7)

III. SEARCH SPACE
The search space includes all possible candidate architectures
generated or evolved with a supernet according to various
desired properties. A well-organized search space can reduce
the size, simplify the search strategies, and save the search
time for a specific task. However, there are some caveats
for representing good architecture. First, it requires manually

89604 VOLUME 9, 2021

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

defining criteria (sometimes with biases), which often pre-
vent producing good and stable architectures beyond human
knowledge. Second, it also needs prior knowledge about var-
ious types of datasets. Hence, it seldom works well for all
unknown domains.

There are two kinds of architecture search structures cre-
ated for NAS, namely, the macro and micro architectures
(shown in Figure 2). The macro architecture is usually used
for constructing the topological structure of a neural network,
and the micro architecture details the operations between
nodes (or cells) inside a neural network architecture. The
macro structure is represented by a supernet which is evolved
by an automata. The micro architecture is often referred to as
cell structure that are optimized according to different tasks.
Due to huge computational loading and search time, NAS
algorithms search for either macro or micro architectures
but not necessarily both of them together. In recent trends,
most of the NAS approaches consider a fixed macro archi-
tecture and investigate better micro architectures because
micro architecture search is cheap in computational resource
requirements and has much more flexibility in the search
space than macro architecture.

Some popular search spaces used for vision-based tasks
and their evolution are illustrated in Figure 3. A reinforcement
learning automata evolve the NAS-RL search space, and
each macro cell structure has n layers where each layer is
connected to its precursors and forms a densely connected
structure. A macro cell architecture from the NAS-RL search
space has a maximum 2(n−1)(n−2)/2 possible connections.
A layer in micro cell architecture also consists of other
hyperparameters, such as filter numbers and stride param-
eters. Clearly, the search space is huge, and impossible to
find the best architecture with only fewer GPU resources (or
days). As to the NASNet search space [21], two repeated
types of convolutional cells are used to construct a network
architecture, i.e., Normal Cell and Reduction Cell. As shown
in Figure 2(a), in the NASNet search space, each cell receives
bi-chain style inputs from two precursor layers or the input
image. Then, a child architecture is generated by a recurrent
neural network (RNN) controller, which repeats five predic-
tion steps to select two possible hidden inputs and their oper-
ations to construct the micro structure of each convolutional
cell.

DARTS search space adopts the same strategy as NASNet;
instead of 13 candidate operations, it only considers 7 candi-
date operations and a dummy zero operation, which is only
used during micro cell searching process but discarded in
the final architecture. The DARTS search space also limits
the intermediate hidden nodes to 4, and each hidden node
can receive the inputs from any preceding hidden nodes,
but only two of them will survive for the intermediate
operations; hence the time for finding micro cell structure
is reduced. The space for operations searching in DARTS
is continuous. MobileNet search space simplifies NAS-RL
search space; instead of using dense connections and bi-chain
styled connection in layers of macro cell, it uses chain-styled

FIGURE 2. Macro and micro cell structures for a search space. (a) Macro
structure. (b) Micro structure.

FIGURE 3. Relationships among four most popular search spaces.

connections between layers. Each micro cell structure should
be chosen from the MobileNet (MB) search space [22].

IV. STRATEGY FOR ARCHITECTURE SEARCH SPACE
GENERATION
A good strategy to generate a compact set of architecture
candidates can significantly impact search efficiency and
effectiveness of the final candidate architecture. Thus, select-
ing an appropriate generation strategy can ensure that the
generated space is good and small to be fully explored,
and the generated architectures are as close as possible to
the global best solution. There are three commonly-used
strategies for architecture generation, i.e., evolutionary algo-
rithm(EA), reinforcement learning(RL), and gradient-based
scheme. In what follows, their details are discussed.

A. EVOLUTIONARY ALGORITHMS
Inspired by a natural evolution process, evolutionary algo-
rithms effectively optimize a function via various muta-
tion, crossover, and selection operators. Due to its effective-
ness, the recent development of deep learning also adopts
EAs to optimize a neural network in various applications.
In EA, the gene contains information on how a problem
can be optimized by evolving both the neural architecture
and its parameters. However, evolving millions of weights
is hugely time-consuming and impractical for a target task.
Thus, more recent EA-based approaches solely optimize the
neural architectures and then use an SGD-based method to
optimize their weights via back-propagation. EA explores
large model-architecture search spaces starting with basic
initial architectures and evolving them by randomly selecting

VOLUME 9, 2021 89605

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

a parent from a population of models with size S to generate
different off-springs to promote the system with good per-
formance. Since ‘mutation’ is a local operator and cheap in
computation cost, most EAs adopt it to evolve next genera-
tions. In addition, EA tries to kill the worst model from the
population of S samples to keep the population size constant
throughout iterations. This non-aging evolution scheme will
result in worse models (not worst) that remain alive in the
population for a long time. In [23], Real et al. introduced an
age property to favor the younger genotypes and designed a
new EA-based model, i.e., AmoebaNet which outperforms
other RL-based approaches on several open datasets such
as CIFA10, CIFA100, and Imagenet. EA tends to evolve a
population of architectures that guarantees the diversity of
potential results on random uncontrollable mutations. The
random uncontrollable mutations make the evolution of EA
much slow, and its efficiency no guarantee.

B. REINFORCEMENT LEARNING
TheRL-basedNASmethods [3], [25] use an agent to generate
different candidate architectures by optimizing a reward func-
tion. The generation of a new neural architecture can be con-
sidered as an agent’s action, and the action space is identical
to the search space. Usually, the agent is an RNN controller.
The agent’s reward is based on an estimate of the perfor-
mance of the trained architecture on training data. Designing
a proper reward function is critical and important to guide
the optimization process to satisfy the requirements of a task.
Different RL approaches differ in how they represent the
agent’s policy and how they optimize it. For example, in [3],
Zoph et al. adopts an RNN controller to control convolution
operations between two cells. These cells are then stacked in a
predefined manner to find candidate architectures. Evolution
error of the architecture is used to be the reward and further
used to generate another better architecture. Although [3] is
the pioneering work of RL-based NAS, its searching time is
very expensive and results in poor performance of the finally
found architecture. Furthermore, in Efficient NAS (ENAS)
[25], a share weight strategy between sub-models is proposed
to improve the search time by using an RL-based controller to
select various subgraphs from a directed acyclic graph (DAG)
so that expected return on a validation set can be maximized.
Sharing parameters between sub-models enables ENAS to
save search time and provides powerful empirical perfor-
mance. In [26], Cai et al. introduces a Net2Net transform
strategy in ENAS, where an RL-based meta controller is used
to select each edge operation. The Net2Net strategy modi-
fies different existing architectures through a transformation
operation, hence no need to search and train the architecture
from scratch.

RL-based NAS uses an RL controller to search an
architecture layer by layer and calculates rewards for further
searching. Although RL-based NAS approaches can con-
struct a stable architecture for evolution, the RL-based con-
troller needs a huge number of tries to get a positive reward
for updating architectures. Hence, RL-based methods are

computationally expensive during training. At to EA, its evo-
lution progress relies heavily on random uncontrollablemuta-
tions and results in its inefficiency. Thus, in [27], Chen et al.
integrate the advantages of both of them and ensure the
search efficiency to propose a new neural architecture search
framework. It introduces a reinforced mutation controller to
efficiently explore the search space and benefits from the
nature of EA to make the child model inherit most parameters
from its parent, so the search for weight parameters becomes
more efficient. However, both EA- and RL-based methods
are very time-consuming since the search space is huge and
discrete.

C. GRADIENT BASED METHOD
To make the search stage of DNAS more efficient, the search
space should be continuous so that the SGD method can
be applied to find the final architecture directly. DAS
[28] converts the discrete network architecture search space
into a continuously differentiable one from which gradi-
ent optimization can be applied for architecture search. In
[4], the framework ‘‘Differentiable ARchiTecture Search
(DARTS)’’ converts the combinatorial problem of searching
the optimal operations into a continuous and differentiable
search space, where a robust cell architecture can be effi-
ciently determined via gradient descent. DARTS [4] is a
cell-based neural architecture search approach and works on
a Directed Acyclic Graph (DAG) of nodes, where each node
represents a set of feature maps.

In DARTS, a supernet is constructed with a set of archi-
tectural parameters to form the search space. Two different
subnetworks or cells i.e. normal cell (operations have stride
one) and reduction cell (operations have stride two) itera-
tively updated through continuous relaxation. An essential
issue of DARTS is that easy-to-optimized operators (such
as skip-connections and pooling operations) may dominate
in early stages, hence hinder the selection of more powerful
operations (such as convolutions of large kernels). In [29],
P-DARTS enforces a strong prior to limit the number of
skip connections within a cell to a pre-determined value by
gradually increasing the depth of the network and reduc-
ing the candidate operations according to a mixed operation
weight. To address this issue, Fair-DARTS [30] is proposed
by relaxing the choice of operations, such that each operator
has an equal opportunity to balance the architecture strength.

Another issue of NAS optimization is the embedding of
the evaluation procedure into the search procedure, which is
not explicitly performed in the aforementioned frameworks.
Various methods are developed to alleviate this problem, e.g.,
early stopping [6], [31] and progressive optimization [29],
with an aim to overcome the issue of discretization gap
[6], [32]. The discretization gap means performance of the
derived architecture often collapses at the final evaluation
stage when discretizing the continuous architecture repre-
sentation into a discrete one [32]. To address this prob-
lem, SGAS [32] proposes a greedy strategy to prevent the
problematic skip connections or other weak operators from

89606 VOLUME 9, 2021

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

TABLE 2. NAS-based methods with search spaces, search strategies, and search types.

being often selected. However, potentially good operations
might be pruned out as well due to this greedy under-
estimation. Unlike SNAS, ProxylessNAS [33] constructs an
over-parameterized network with all operations in search
space and binarizes architecture parameters so that the over
parameterized network through gradient-based algorithm can
be better trained. DARTS-based methods prune operations on
every edge except the onewith the largest architecture weight.
A significant performance drop will happen in deriving the
discrete architecture from the continuous version after pro-
jection. Zela et al. [6] empirically point out that the stability
is highly correlated with the dominant eigenvalue λAmax of the
Hessian matrix of the validation loss function of an architec-
tureA . Other approaches, e.g., partial channel connection [5],
scheduled drop path [21], and regularization of architecture
parameters are proposed to address the stability of DARTS.
The stability and generalization of DARTS have become
an important issue in the research topics of differentiable
architecture search.

Table 2 summarizes different types of methods with
their search spaces (in Section III), search strategies (in
Section IV), and their search types proposed in the literature.

V. GRADIENT DESCENT PROBLEMS
Gradient descent-based approaches can solve an optimization
problem with limited computing resources, but they also
suffer from several issues. In this section, we explore different
issues and their tricks for tuning optimization functions.

A. VANISHING GRADIENT PROBLEM
In deep learning, architecture usually consists of more than
hundreds of layers. A lot of weight parameters are then
learned and updated with a back-propagation technique via
the SGD method for each layer. In this method, each of the
weight parameters receives an update proportional to partial
derivative of cost function concerning current weight in each
iteration during training. In some cases, the gradient value
becomes very small or vanishes, thus preventing the weight
from further changing its value. This vanishing gradient
problem may ultimately stop the neural network from fur-
ther training. This problem also makes architecture shallow
with few layers. In traditional neural network architectures,
the activation function is often designed as the Sigmoid func-
tion or hyperbolic tangent one whose gradient value ranges
(0, 1) or (−1,1). In this case, when the back-propagation

VOLUME 9, 2021 89607

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

technique uses the chain rule to compute the gradient of
each weight layer by layer, the gradient value will decrease
exponentially and lead to training failure.

To overcome this problem, two solutions can be proposed;
one is to change the activation function, and the other is to
change the link connections between network layers. For the
first one, most researchers chose the Rectified Linear Unit
(ReLU) [52] as the activation function. The ReLU function
maps x to max(0, x) to avoid vanishing gradient problem,
where the gradient of ReLU(x) is one if x is positive. Its
variants include LeakyReLU [53], Swish [54], andMish [55].
For the second solution to deal with the gradient vanishing
problem, in ResNet [56], He et al. proves that a skip connec-
tion in candidate architecture often passes gradient updates
directly to other layers and thus avoids the vanishing gradient
problem.

B. EXPLODING GRADIENT PROBLEM
Exploding gradient problem is another issue often happening
during the candidate architecture searching process. It is a
problem where large error gradients accumulate and result
in huge updates to neural network model weights during
training and the failure of architecture learning. Gradients
are used during searching to update both architecture and
weight parameters. The updating process can find a suitable
solution if the updates for parameter tuning are properly
controlled. Smaller magnitudes of gradients will cause the
vanishing gradient problem. Larger magnitudes of gradients
may make architecture unstable and cause poor (or over) pre-
diction results. It is useful to know how to identify exploding
gradients so that the searching process is corrected to find
the expected solution. The standard solution for an explosion
gradient is to normalize architecture and weight parameters
before propagating back through network via batch normal-
ization. Changing the link connections between network lay-
ers via skip connection in candidate architecture is another
solution to reduce gradient exploding issues. This connection
in candidate architecture often directly passes gradient values
to next layer through back-propagation so that the exploding
problem is avoided. Similar to the microphone exploding
effect, this exploding problem still is an essential issue in
recurrent networks.

C. LEARNING RATE
Learning rate is one of the most important hyper-parameters
for any gradient descent approach. It is used to control each
step size for updating candidate architecture and weight
parameters. In general, its default value is initialized with
a tiny positive value. A lower learning rate requires more
training epochs to optimize a candidate architecture for dif-
ferent tasks, whereas a larger learning rate quickly converges
with a suboptimal result with fewer epochs. A larger learning
rate often skips stationary points (local minimum) and pro-
duces deficient performance in the validation stage, whereas
a too small learning rate often gets stuck, as jumping step is
tiny. Hence a carefully chosen learning rate is necessary to

find optimal parameters for a candidate architecture. In what
follows, techniques for gradient updating (learning rate and
direction) will be discussed.

VI. GRADIENT DESCENT UPDATING TECHNIQUES
A. MOMENTUM
Gradient descent is an iterative algorithm for optimizing an
objective function with its negative gradient. One of its prob-
lems is: the search moves downhill towards the minima, but
during the progression, it maymove in another direction event
uphill due to the gradient of some specific (or noisy) points,
which slow down the progress of search. It can be improved
and accelerated by using momentum from past updates to
the search position. More precisely, a fraction of history (the
gradient encountered in the previous update) is added to the
parameter update equation as shown in Eq.(3). Let γ denote
the fraction of momentum term, and Vt−1 be the history or the
gradient encountered in the previous update. Then, the update
at the current tth iteration will add the change used at the
previous time weighted by the momentum term γ , as follows:

Vt = γVt−1 + η∇W(t−1)Loss(W(t−1)). (8)

Then, from Eq.(8), the set of current parameters Wt is
updated by

Wt = W(t−1) − Vt . (9)

In other words, the momentum rapidly moves towards
descent directionwhereas slowlymoves in opposite direction.
As a result, the SGD method with momentum can quickly
converge and decrease oscillation.

B. NESTEROV ACCELERATED GRADIENT (NAG)
Gradient descent with momentum can improve the perfor-
mance of loss function optimization, but still can be further
improved via extrapolation. In Eq.(8), we know that we will
use our momentum term to move next position. A smarter
version of momentum, i.e., Nesterov accelerated gradient
(NAG), is to extrapolate the gradient of next point, an approx-
imation to guess where our parameters W are going to be.
NAG looks ‘‘ahead’’ to where the parameters will be to
calculate the gradient as follows:

Vt = γVt−1 + η∇W(t−1)Loss(W(t−1) − γVt−1)). (10)

NAG first takes a larger step towards exponentially
accumulated gradient, measures gradient, and then updates
parameters. This ‘‘ahead’’ update prevents the optimization
function from going too fast and increases the performance
of the final candidate architecture. The NAG method uses
the new version Vt defined in Eq.(10) to update Wt based on
Eq.(9).

C. AdaGrad METHOD
In addition, to find a better gradient direction, another impor-
tant issue is to choose a proper learning rate to control the step
size of movement so that the performance of optimization can

89608 VOLUME 9, 2021

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

be improved. The early mentioned SGD methods use a fixed
learning rate to optimize the loss function. A small learning
rate will result in inefficiency of learning, and a large value
will cause an overfitting problem. Thus, the learning rate ηt,r
for the r th parameter Wt,r at the tth iteration in the Adaptive
gradient (AdaGrad) method is proportional to the inverse of
the sum of gradient magnitudes of all parameters during the
optimization process; that is,

ηt,r ∝
1√

t∑
t ′=1

(
∂Loss(Wt ′,r)
∂Wt ′,r

)2

+ ε

, (11)

where ε is used to discard the division zero problem. With a
predefined learning rate η, a new adjustable learning rate η′r
can be defined and used to update the parameter movements
of a loss function as follows:

η′t,r =
η√

t∑
t ′=1

(
∂Loss(Wt ′,r)
∂Wt ′,r

)2

+ ε

. (12)

With Eq.(12), the AdaGrad method updates Wt,r by

Wt,r = Wt−1,r − η
′
t,r ×

∂Loss(Wt,r)
∂Wt,r

, (13)

where η′r is adaptively scaled with the inverse of sum of
gradients of Wt,r from its past iterations.

D. ADADELTA
The AdaGrad method accumulates all past squared gradients
as the denominator to adaptively scale the learning rate. Since
each added term is positive, the accumulation will lead to an
infinitesimally small learning rate η′t,r ; that is, η

′
t,r→ 0 when

t → ∞. Hence, a modified version of AdaGrad (AdaDelta)
is used to avoid this problem. Instead of accumulating all
past squared gradients, in AdaDelta method, the sum of
gradients is recursively defined as a decaying average of all
past squared gradients. LetGt,r denote the average of all past
squared gradients for the parameter Wt,r as

Gt,r =
1
t

t∑
t ′=1

(
∂Loss(Wt ′,r)
∂Wt ′,r

)2

. (14)

In the AdaDelta method, the running average Gt,r at time
step t is calculated only depending on the previous average
Gt−1,r and current gradient:

Gt,r = γGt−1,r + (1− γ)
(
∂Loss(Wt,r)
∂Wt,r

)2

, (15)

where the ratio γ is often set to around 0.9. Then, in the
AdaDelta method, Eq.(13) is written as

Wt,r = Wt−1,r −
η√

Gt,r + ε

∂Loss(Wt,r)
∂Wt,r

. (16)

The main advantage of AdaDelta is that default learning
rate is not necessary for AdaDelta. It is tuned automatically
through the average gradient Gt,r .

E. ADAM
Another approach to calculate the adaptive learning rate
for parameter is the Adaptive Moment (AdaM) estimation
algorithm. It combines the advantages of momentum (see
Eq.(8)) and Adadelta (see Eq.(15)) to adaptively update the
parameters. In AdaM, the momentum termmakes the average
gradient Vt,r for Wt,r be recursively updated with a balance
ratio βV as

Vt,r = βVVt−1,r + (1− βV)∇W(t−1),rLoss(W(t−1),r). (17)

Similar to Eq.(15),Gt,r is recursively updated with another
ratio βG by

Gt,r = βGGt−1,r + (1− βG)
(
∂Loss(Wt,r)
∂Wt,r

)2

. (18)

The initial value of Vt,r andGt,r are recommended to 0 and
result in a bias of moment estimates towards zero. To over-
come this issue, they are bias-corrected as follows:

V̂t,r =
Vt,r

1− βV
,

Ĝt,r =
Gt,r

1− βG
. (19)

With Eq.(19), the Adam method updates Wt,r as Eq. (20)
below:

Wt,r = Wt−1,r −
η√

Ĝt−1,r + ε
V̂t−1,r . (20)

The Adam approach works well compared to other
gradient-based approaches but needs three parameters βV ,
βG, and η for updating the architecture weights.

F. ADAMAX
Adamax is a variant of Adam based on the infinity norm.
In Eq.(18), the current gradient term is generalized to the Ip
norm as

Gt,r = β
p
GGt−1,r + (1− βpG)

∣∣∣∣∂Loss(Wt,r)
∂Wt,r

∣∣∣∣p . (21)

When putting p → ∞, a modified version of Adam, i.e.,
AdaMax calculates Gt,r by the following equation:

G∞t,r = β
∞
G Gt−1,r + (1− β∞G)

∣∣∣∣∂Loss(Wt,r)
∂Wt,r

∣∣∣∣∞
= max(βG · Gt−1,r ,

∣∣∣∣∂Loss(Wt,r)
∂Wt,r

∣∣∣∣), (22)

where G∞t,r denotes the infinity norm of Gt,r . Then,
the AdaMax method updates the parameter Wt,r as follows:

Wt,r = Wt−1,r −
η

G∞t−1,r
V̂t−1,r , (23)

where V̂t−1,r is defined in Eq.(19).

VOLUME 9, 2021 89609

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

G. DATA ADJUSTMENT
Apart from the tricks mentioned above, in the following,
we discuss some mostly used tricks that can be combined
with any previously mentioned algorithms to enhance the
performance of SGD further.

1) SHUFFLING TRAINING DATA
It is common in NAS to shuffle data and normalize it before
every epoch for increasing data variance during the architec-
ture searching process. Different shuffling orders of training
data can reduce the risk of overfitting for training a candi-
date architecture. Shuffling a data point can create an ‘‘inde-
pendent’’ change in architecture. Most gradient-based NAS
methods have adopted this strategy to improve regularization
during architecture searching.

2) BATCH NORMALIZATION
In searching an architecture, both architecture and weight
parameters are updated to different extents and scales, which
will cause the vanishing or exploding gradient problem and
make the learning process unstable. To reduce the risk of
searching failure to find a well performing network archi-
tecture, parameters are often normalized with zero mean and
unit variance. For example, ENAS [25] applies this strategy
to prevent gradient explosion during the architecture search
process. Suppose the mean and variance of each layer’s
input are estimated from the whole dataset (see Eq.(6)),
the method named as batch normalization is inefficient and
time-consumed. Another method named as mini-batch nor-
malization is adopted to estimate the mean and variance from
a small set of randomly selected training data to enhance its
efficiency.

3) EARLY STOPPING
Searching processes often face challenges of how long to
search for good architecture. An architecture with fewer
searching epochs will be under-fitted; with more searching
epochs, it is often over-fitted on current training datasets and
performs poorly during inference. To make the searching
process more efficient and effective, it is better to contin-
ually observe the loss on a validation dataset; if the loss
does not decrease further, it is better early-stopped. Most
gradient descent-based search approaches such as DARTS+
[31], R-DARTS [6], Fair-DARTS [57], and so on, adopt this
early-stopping strategy to reduce searching time, and thus sig-
nificantly improve the performance of candidate architecture
searching.

4) GRADIENT NOISE
A dataset with less data often faces difficulties in find-
ing suitable parameters for architectures. Hence, adding
tiny values in parameters can make searching process more
suitable and decrease generalization errors. For example,
Neelakantan et al. [58] and Chu et al. [59] used a Gaussian
distribution to add random noise in parameters for each

gradient update to improve data regularization and reduce
computational cost for candidate architecture search.

VII. DIFFERENTIABLE NAS
Both RL- and EA-based methods create a discrete search
space to find the desired candidate architecture. Since the dis-
crete search space is enormous and evaluating each candidate
is both time- and resource-consuming, it is almost impos-
sible to finish the searching task with limited computation
devices during a few GPU days or weeks. Another approach
is to create a continuous and differentiable search space
from which a better candidate architecture can search via a
gradient-based optimizer in an end-to-end manner, and thus
the search efficiency can be significantly improved. Instead
of searching over a discrete set of candidate architectures,
the ‘‘DARTS’’ framework [4] applies continuous relaxation
that converts the categorical choice problem into a contin-
uous and differentiable search space in which two different
subnetworks (or cells), i.e. normal cell and reduction cell are
iteratively updated by gradient descent. There are different
issues for a gradient-based method to accelerate the search
process and find the desired candidate within a few hours on
limited GPU resources: (I) Supernet, (II) Parameter Sharing,
and (III) Stability and continuous Relaxation. Details of all
the issues are discussed as follows.

A. SUPERNET
The NAS-based approaches require substantial computa-
tional resources to find the best candidate architecture for
a targeted task. The architecture searching time can be
drastically reduced by encoding a search space into an
over-parameterized neural network (i.e., supernet) with a
weight-sharing strategy. The NAS methods like [25], [50],
[60] construct or adopt a controller, which can sample the
architecture to train the supernet and, through a heuristic
search method, generates the best performing architecture
for a specific task from the discrete search space. Instead of
training each architecture separately, the differentiable NAS
builds a supernet that assembles all the architectures as its
subnetworks to form a continuous space from which the can-
didate architecture can be found via a decent gradient method.
The supernet is an over-parameterized network that can be
categorized into two classes according to how the architec-
tures are modeled and elaborated; that is, parameter-based
and path-based. For parameterized architectures, a real-value
distribution is introduced to categorize the architectures and
then their weights are jointly learned such as DARTS [4],
FBNet [41] and MdeNAS [61]. Figure 4 shows an exam-
ple of a supernet constructed by DARTS. Figure 4(a) is a
searched architecture, and (b) is an expansion of normal cells.
Figure 4(c) represents hidden nodes and their connections
inside a micro cell. The micro cell structure is searched from
the supernet and stacked to obtain the desired architecture.
After training the supernet, the optimal architecture can be
found by sampling from the categorical distribution via a gra-
dient method. Besides accuracy, another very important issue

89610 VOLUME 9, 2021

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

FIGURE 4. DARTS based architecture searching process from the search
space.

is integrating some hardware constraints, e.g., FLOPS and
latency, for designing efficient neural network architectures
for hardware. However, since these constraints are not differ-
entiable, it is challenging to integrate a hard constraint into
the parameterized approaches during a search. For path-based
methods such as Greedy NAS [62], the searching process
is split into two consecutive stages, i.e., supernet training
and architecture sampling. For training supernet, only one
path consisting of a single operation choice is activated,
and thus the memory cost is less than parameterized meth-
ods and scales well on large-scale datasets, e.g., ImageNet.
After training, the supernet acts as a performance estimator
to greedily filter out weak paths so that potentially good
paths for generating good candidates architecture. In this way,
training efficiency can be much improved since weak paths
involving unnecessary weight optimizations are avoided.
Unlike the previous parameterized methods, the hard hard-
ware constraint can be easily integrated into the searching
process.

B. PARAMETER SHARING AND CONTINUOUS SEARCH
SPACE
To improve the efficiency of NAS, different architectures
are derived from the supernet and share the same weights.
The technique of parameter sharing can avoid many redun-
dant searches, exploration time and thus improve the effi-
ciency of architecture search. For example, in ENAS [25],
a sharing strategy is adopted to optimize weights between
sub-models by using an RL-based controller to select various
subgraphs from a directed acyclic graph (DAG). However,
the search space for convolutional architectures is still dis-
crete. As described in [25], if there are 6 operations avail-
able for deciding what feature function between two layers,
the number of possible networks in the search space will be
6L ×2L(L−1)/2, where L is the number of layers in a network.
If L = 12, the number of networks will become 1.6 × 1029.
Instead of searching over a discrete set of candidate architec-
tures, the operation sharing technique [4] relaxes the search
space to be continuous so that the architecture can be opti-
mized by gradient descent. It relaxes the categorical choice
of a particular operation as a set of mixing probabilities,
where operations are not binary in terms of their existence
and can be searched via a gradient descent-based method.

FIGURE 5. DARTS cell searching. (a) Unknown operations on edges.
(b) Continuous relaxation by placing a mixed operation on edge.
(c) Bi-level optimization and final architecture generation (best viewed in
color).

With orders of magnitude fewer computation resources,
the unique method ‘‘DARTS’’ [4] outperforms many existing
approaches.

DARTS [4] introduces a novel algorithm to transform the
categorical selection problem to a differentiable search space
by weighting all possible operations as a continuous function.
Let O = {ok}k=1,...,N be the set of all possible N candidate
operations (e.g., convolution, pooling, skip, identify, etc.).
Thus, given a network architecture represented by a directed
acyclic graph (DAG), there are N paths (operations) to be
chosen between two adjacent nodes. To make search space
continuous and differentiable, DARTS sets the choice to be
a mixed operation with N parallel paths instead of setting
the choice to be a definite primitive operation. Figure 5
shows the structure of micro cell and its intermediate node
connection used in DARTS [4]. Only two hidden nodes and
their connection instead of four hidden nodes in a micro cell
are shown for better understanding and a clear view. Here,
C(k − 1) and C(k − 2) represent two predecessor micro cells
(input features), Node 0 and node 1 are two hidden nodes, and
the current micro cell is C(k).
Given an input x, the output of a mixed operationM(i,j)

O for
an edge (i, j) in the DAG representation of network architec-
ture is obtained by mixing the N candidate operations with
Softmax:

M(i,j)
O (x) =

∑
ok∈O

exp(α(i,j)ok)∑
o∈O

exp(α(i,j)o)
ok (x), (24)

where α(i,j)ok is a real-valued weight parameter for the opera-
tion o(i,j)k . Then, themixingweights for operations on the edge
(i, j) are parameterized by an N -dimensional vector α(i,j).
The architecture search is then relaxed to learning a set of
continuous architecture variables, i.e., A = {α(i,j)}. With such
relaxation, NAS becomes a bi-level optimization problem:
optimizing the architecture A and its weights w(A) alterna-
tively. In real implementations, since the outputs of feature
map of all N paths should be calculated and stored in the
memory, DARTS easily exceeds the memory limits of hard-
ware on large-scale datasets. Despite being computationally
efficient, the stability and generalizability of DARTS have
been challenged recently [6], [63]. At the end of DARTS,
the continuous architecture should be projected onto a dis-
crete representation to derive the best discrete architecture.
Often this projection step can cause a significant performance

VOLUME 9, 2021 89611

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

drop between the mixture architecture and the obtained dis-
crete architecture. Other GD-based NAS approaches trans-
form discrete search space operations into a differentiable
objective by applying either continuous relaxation [4], [8] or
stochastic relaxation [25], [64] to improve searching perfor-
mance and enhance GPU resource engagement. Apart from
this, Lian et al. [65] propose a general transferability-based
learning approach (T-NAS) to train supernet, and some spe-
cialized candidate architectures are extracted to easily adapt
new tasks through a few gradient steps. As it takes fewer steps
to find a suitable architecture for targeted tasks, the computa-
tional cost is very low andmuchmore flexible. Yan et al. [66]
propose a hierarchical mask-based neural architecture search
approach to mask intermediate nodes, edges, and weights
parameters. Their multi-level encoding strategy enables an
architecture candidate to have arbitrary numbers of edges and
operations with different importance. This strategy reduces
the architecture search time since the supernet does not
require training. A different type of gradient-based NAS
approach, i.e., ISTA-NAS [67] formulates the searching prob-
lem as a sparse encoding problem that compresses the search
space and recovers sparse candidate architectures in an alter-
native way. The sparsity constraint is inherently satisfied
at each update, so the search is more efficiently performed
and consistent with evaluation. This strategy can improve
accuracy and reduce the searching time.

C. STABILITY AND CONVERGENCE ANALYSIS
Gradient descent is an iterative optimization approach applied
in NAS to minimize loss of a candidate architecture. A spe-
cific loss function is often defined and used to calculate the
performance of a current candidate architecture in its parame-
ters, and its gradients are used to tune architecture parameters
A, network parametersw, or both. LetLvalid andLtrain denote
the objectives estimated from the validation dataset and the
training dataset, respectively. DARTS aims to learn a set of
continuous variables A = {α(i,j)} by solving the following
bi-level optimization:

min
A

Lvalid (A,w∗(A)),

s.t. w∗(A) = argmin
w

Ltrain(A,w), (25)

where A represents the searched architecture in DARTS.
Finally, for the edge (i, j) in the DAG representation of an
architecture A, its mixed operation M(i,j)

O is replaced by the
most similar operation, and a discrete architecture is gener-
ated for further training from the equation:

o(i,j) = argmax
o∈O

α(i,j)o . (26)

Although the DARTS-based approach effectively reduces
computational cost, this bi-level optimization problem is
difficult to solve directly since both A and w parameters
are high dimensional. It suffers from several problems as it
alternatively optimizes (as shown in Eq.(25)) the architec-
ture parameters and weight parameters. After convergence,

DARTS removes operations with relatively weak atten-
tions (see Eq.(26)) and causes a performance gap between
the derived child networks and converged parent networks.
Hence, SNAS [8] searches for operations and architecture
topology simultaneously. It defines a matrix Z whose rows
indicate masks multiplied to edges (i, j) in the DAG, and
columns correspond to operations as a random variable to
sample architectures. Then, a single-level stochastic opti-
mization is used to optimize a generic loss via a Monte Carlo
estimate. However, single-level optimization will overfit the
architecture A and result in performance degradation during
the validation process. Then, a mixed-level optimization [68]
is proposed to deal with this problem and reduce gradient
errors; that is,

min
w,A

[Ltrain(w∗,A)+ λLval(w∗,A)], (27)

where λ is a non-negative regularization variable. When
λ = 0, Eq.(27) degrades to single-level optimization.
If λ ≈ ∞, Eq.(27) becomes a bi-level optimization (see
Eq.(25)).

While current differentiable NAS methods have achieved
impressive results, several works [6], [51] have cast doubt
on their stability and generalization. Firstly, the searched
architectures are often over-fitted and dominated by
parameter-free operations. Secondly, the differential NAS
methods work well often only on smaller datasets for
shallower and narrower networks due to the large memory
consumption of differentiable NAS approaches. Another
common shortcoming is: the differential NAS approaches
such as DARTS [4] often converge to a sharp region of
validation loss landscape, i.e., Lvalid , which results in signif-
icant performance drops in the final architecture. To tackle
the problem of memory consumption, in PC-DARTS [5],
Yan et al. proposed a partial connection strategy to randomly
sample a subset of all channels in each step while bypassing
the rest directly in a shortcut. The channel sampling task
brings a tremendous reduction in memory and computation
costs and thus can not only accelerate the network search but
also stabilize the process, particularly for large-scale datasets.
In RDARTS [6], Zela et al. pointed out that the approach
adopted in DARTS, keeping only one operation with the
largest weight in every edge and removing all operations
from the edge, will make the final architecture converge
into a sharp region of loss landscape. They also found that
such stability is highly correlated with the dominant eigen-
value λAmax of the Hessian matrix ∇2

αLvalid of the estimated
architecture, and thus proposed an early stop strategy to
prevent λAmax from exploding. However, an early stop will
fail if the convergence occurs from the beginning of the
search process. For other approaches, e.g., scheduled drop
path [21], a new regularization of architecture parameters
was proposed to address the stability of DARTS. Further-
more, to overcome the discretization gap, Fair-DARTS [57]
observed that the amount of weak operators (such as skip
connections) increases as the search process proceeds and

89612 VOLUME 9, 2021

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

will cause unfair competition among the operators. Then, this
issue is addressed by relaxing the choice of operations, such
that each operator has an equal opportunity to develop the
architecture strength. In [8], Xie et al. used a concrete distri-
bution to relax and make the discrete search space continuous
and differentiable. In addition, Noy et al. [69] proposed an
annealing-based soft pruning strategy to gradually prune out
weaker operations so that the final candidate architecture can
be efficiently searched and found. The comparisons among
different gradient descent-based architecture search approach
addressed in the study are summarized in Table 3.

VIII. PERFORMANCE EVALUATION
The commonly used performance evaluation metrics are:

(i) Accuracy and efficiency, which can be calculated during
the learning process or inference stage. In order to select
different optimization strategies during search procedures,
it is necessary to measure the performance of each selected
candidate architecture by comparing intermediate results and
the expected ones. However, the evaluation of candidate
architectures is usually computationally expensive and dom-
inates the main computation cost. There have been different
frameworks proposed for reducing the computational loading
of performance evaluation during the search process in liter-
ature. One of the most effective ways to significantly reduce
search cost in an evaluation process is to train an architec-
ture with few epochs. It is often adopted in different SoTA
architecture search approaches [4], [6], [23], [31], [33], [78]
with useful performance metrics. However, Zela et al. [79]
mentioned that the searching and training epochs do not differ
drastically. Kyriakides and Margaritis [80] pointed out there
is a positive correlation between the searching and training
epochs. Actually, the absolute performance of each candidate
architecture in search process is not very useful. In order
to determine the quality of a candidate architecture, another
way to speed up the efficiency of architecture evaluation
is to evaluate architectures on small datasets during search
and finely tune their real architecture parameters on large
datasets. For example, DARTS [4], SmoothDARTS [51], and
FairDARTS [57] search the cell structures on small dataset,
i.e., CIFAR10, construct architectures using these cells and
estimate the performance on same dataset. Then the best cell
structure is used to construct the final architectures on large
targeted dataset, i.e., ImageNet. Invariant of this to speed
up the searching process, Stamoulis et al. [44] proposes a
single path supernet that encodes architectures with sharing
convolutional kernel parameters.

(ii) Latency, apart from accuracy, hardware-friendly con-
volutional neural networks are also necessary for differ-
ent devices. Generally, latency time and the number of
parameters inside an architecture are used to measure the
performance of a hardware-friendly architecture. In archi-
tecture search on latency constraint, instead of searching
for the best performing architecture, the architecture that
satisfies the latency constraints with less latency (or better
efficiency) must be extracted from a supernet. In this line,

ProxylessNAS [33] defines a supernet with binary variables
and combines the cross-entropy with latency constraints to
finely tune weight parameters and architecture parameters
during the searching stage. FBNet [41] also uses the same
strategy as ProxylessNAS; instead of binary parameters in
a supernet, it uses SGD to define the parameters. Based on
the theory of prediction with expert advice, in XNAS [47],
a suitable architecture is predicted and extracted from the
supernet, and the Exponentiated-Gradient (EG) algorithm is
adopted for mitigating the hard pruning.

Another way is to train a supernet as a performance esti-
mator without further training. For example, GreedyNAS
[62] constructs a supernet using a chain-based search space
and adopts an evolution-based heuristic approach to find
architectures with less latency on targeted devices. This pro-
gressive search space reduction strategy can significantly
speed up the entire search process to find the final target
architecture. Furthermore, SGNAS [81] proposes an archi-
tecture generator that can find out different architectures
with different latency constraints in only one search itera-
tion. In contrast, other one-shot approaches such as Gree-
dyNAS [62] find out one architecture with only one latency
constraint. To sum up, different NAS approaches propose
different varieties of architectures for satisfying different
constraints and purposes. Some of them can improve per-
formance, but computational cost is still high. Another kind
can be light-weighted (for mobile devices) with low latency
or power, etc. So we only highlight their accuracy and effi-
ciency (model parameters and computational costs) in Table 4
on different image classification datasets (i.e., CIFAR-10,
CIFAR-100, and ImageNet).

IX. RESEARCH ISSUES AND CHALLENGES
So far, we have discussed many interesting GD-based
search strategies, their working principles, and how they can
improve the search process performance in NAS. This section
will discuss different challenging issues in NAS that need to
be further explored. Although GD-based NAS can achieve
impressive performance on different datasets with fewer com-
puting resources (less than 0.5 GPU days on CIFAR10 dataset
to search a candidate architecture [4]), it is difficult to predict
why some approaches work well and how we can expand
generalized structures for different datasets. Apart from this,
gradient-based NAS suffers from the following issues: (i) the
discretization nature making performance gap, (ii) challeng-
ing to support data-parallel technique, and (iii) searched
candidate architectures being precarious and unstable. Most
differential NAS approaches such as ProxylessNAS [33],
DARTS [4], and SNAS [8] focus only on reducing the val-
idation errors, which might not be good enough for searching
a stable and generalized architecture. It is also unclear why
NAS methods adopt a ‘‘Concatenation’’ operation instead of
an element-wise addition operation for each block or cell
[37].Most explanations to results aremore likely to hindsight,
and there is no mathematical evidence [6], [84]. Many param-
eters in SoTA approaches need to be finely tuned through

VOLUME 9, 2021 89613

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

TABLE 3. Gradient based NAS innovations.

expert’s advice during searching. However, more details are
not mentioned about these parameters, such as in DARTS
[4] why 8 cells are stacked together during searching for
preferred cell structures (i.e., normal and reduction cells),
and 20 cells are stacked to construct the supernet for a target
dataset. Usually, more cells to construct shallow and large
networks can improve accuracy and increase the computa-
tional cost, but most SoTA approaches do not try to improve
their architectures using more cells.

Another interesting study is that a labeled dataset is often
with a limited scale; hence it is difficult to conclude whether
a searched architecture will work well for real-world prob-
lems. Liu et al. [85] scoured the question, ‘‘can we find
high-quality neural architecture without human-annotated
labels ?’’ and demonstrated a new idea called Unsuper-
vised Neural Architecture Search (UnNAS). Furthermore,
a NAS-based approach must learn features from new data
without discarding old learning, but when some pretrained

89614 VOLUME 9, 2021

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

TABLE 4. Performance analysis of gradient based architecture search approaches on Cifar10, Cifar100, and ImageNet datasets.

architectures are adapted for new data, their performances
often degrade significantly on old datasets. To deal with this
issue, in [86], Li et al. proposed the Learning without Forget-
ting (LwF) approach to training architecture only for new data
without forgetting old learning. Although GD-based NAS
approaches can produce imperial performance, they cannot
explain why a specific candidate architecture produces better
solutions and how similarly derived candidate architectures
are in independent runs. Identifying these common issues
and understanding what elements are essential for designing
architecture with high performance may need to be studied in
the future. Better mathematical interpretation of NAS will be
good for future research.

X. CONCLUDING REMARKS
A. LESSONS LEARNED
This study has reviewed various GD-based NAS approaches
from different directions, and here we summarize the lessons
learned from this survey. Gradient descent is a better solution
for architecture search in NAS approaches and ignoring it
will increase architecture search cost in terms of GPU days.

The working principle of NAS is divided into three stages:
search space, search strategy, and performance estimation.
In search strategy, different methods are used to optimize the
candidate architectures, such as evolutionary algorithm (EA),
reinforcement learning (RL), gradient-based (GD), and ran-
dom method. Among these optimization approaches, random
method is treated as a baseline for architecture search, and
gradient-based methods require low computational cost and
improve validation accuracy. Various types of search spaces
and their search strategies are also explored in this survey.
In Table 4, we have evaluated and compared significant per-
formance matrices in terms of a validation error, number of
architecture parameters, and computational costs (GPU days)
for different GD-based NAS approaches.

B. CONCLUSION
NAS has become one of the main steps for Auto-ML in the
current era. Automatic generation of neural architecture goes
through search space, search strategy, and performance evolu-
tion stages. However, the demand for automatic architectures
is gradually increasing as data increases continuously at an

VOLUME 9, 2021 89615

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

exponential scale. GD-based architecture search approaches
are typically used to reduce computing costs and increase
the efficiency of architecture searching. This survey has dis-
cussed different GD-based architecture search techniques and
their management approaches.

We started with a simple discussion of NAS and listed
its unique properties of GD approaches. We also discussed
different impacts of gradient descent during the search pro-
cess and compared their pros and cons. We compared dif-
ferent gradient descent-based architecture search approaches
in terms of their representation, accuracy, search costs, and
parameters on CIFAR-10, CIFAR-100, and ImageNet clas-
sification datasets. Finally, we addressed the research chal-
lenges, and open issues on NAS approaches.

REFERENCES
[1] K. O. Stanley and R. Miikkulainen, ‘‘Evolving neural networks through

augmenting topologies,’’ Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002.

[2] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural network
architectures using reinforcement learning,’’ in Proc. Int. Conf. Learn.
Represent., (ICLR), 2017, pp. 1–16.

[3] B. Zoph and Q. V. Le. (2017). Neural Architecture Search With Reinforce-
ment Learning. [Online]. Available: OpenReview.net

[4] H. Liu, K. Simonyan, and Y. Yang. (2019). Darts: Differentiable Architec-
ture Search. [Online]. Available: OpenReview.net

[5] Y. Xu, L. Xie, X. Zhang, X. Chen, G.-J. Qi, Q. Tian, and H. Xiong. (2020).
Pc-Darts: Partial Channel Connections for Memory-Efficient Architecture
Search. [Online]. Available: OpenReview.net

[6] A. Zela, T. Elsken, T. Saikia, Y. Marrakchi, T. Brox, and F. Hutter, ‘‘Under-
standing and robustifying differentiable architecture search,’’ in Proc. Int.
Conf. Learn. Represent., 2020, pp. 1–28.

[7] H. Zhou, M. Yang, J. Wang, andW. Pan, ‘‘Bayesnas: A Bayesian approach
for neural architecture search,’’ in Proc. Int. Conf. Mach. Learn., vol. 97,
K. Chaudhuri R. Salakhutdinov, Eds. LongBeach, CA,USA: PMLR, 2019,
pp. 7603–7613.

[8] S. Xie, H. Zheng, C. Liu, and L. Lin, ‘‘SNAS: Stochastic neural archi-
tecture search,’’ in Proc. 7th Int. Conf. Learn. Represent., (ICLR), 2019,
pp. 1–17.

[9] T. Elsken, J. H. Metzen, and F. Hutter, ‘‘Neural architecture search: A sur-
vey,’’ J. Mach. Learn. Res., vol. 20, pp. 55:1–55:21, Mar. 2019.

[10] Y. Jaafra, J. Luc Laurent, A. Deruyver, and M. Saber Naceur, ‘‘Rein-
forcement learning for neural architecture search: A review,’’ Image Vis.
Comput., vol. 89, pp. 57–66, Sep. 2019.

[11] P. Ren, Y. Xiao, X. Chang, P.-Y. Huang, Z. Li, X. Chen, and X. Wang,
‘‘A comprehensive survey of neural architecture search: Challenges and
solutions,’’ CoRR, vol. abs/2006.02903, 2020.

[12] C. White, W. Neiswanger, S. Nolen, and Y. Savani, ‘‘A study on encodings
for neural architecture search,’’ in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2020, pp. 1–17.

[13] M. Wistuba, A. Rawat, and T. Pedapati, ‘‘A survey on neural architec-
ture search,’’ 2019, arXiv:1905.01392. [Online]. Available: https://arxiv.
org/abs/1905.01392

[14] R. E. Shawi, M. Maher, and S. Sakr, ‘‘Automated machine learning:
State-of-the-art and open challenges,’’ 2019, arXiv:1906.02287. [Online].
Available: https://arxiv.org/abs/1906.02287

[15] X. He, K. Zhao, and X. Chu, ‘‘AutoML: A survey of the state-of-the-art,’’
Knowl. Based Syst., vol. 212, Jan. 2021, Art. no. 106622.

[16] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and
K. Keutzer, ‘‘SqueezeNet: AlexNet-level accuracy with 50x fewer param-
eters and <0.5MB model size,’’ 2016, arXiv:1602.07360. [Online]. Avail-
able: http://arxiv.org/abs/1602.07360

[17] L. Wang, S. Guo, W. Huang, and Y. Qiao, ‘‘Places205-VGGNet mod-
els for scene recognition,’’ 2015, arXiv:1508.01667. [Online]. Available:
http://arxiv.org/abs/1508.01667

[18] P. L. Ballester and R. M. de Araújo, On the Performance of GoogleNet
and AlexNet Applied to Sketches, D. Schuurmans M. P. Wellman, Eds.
Palo Alto, CA, USA: AAAI Press, 2016, pp. 1124–1128.

[19] S. Targ, D. Almeida, and K. Lyman, ‘‘ResNet in ResNet: Generaliz-
ing residual architectures,’’ 2016, arXiv:1603.08029. [Online]. Available:
http://arxiv.org/abs/1603.08029

[20] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, ‘‘DenseNet: Implementing efficient ConvNet descriptor
pyramids,’’ 2014, arXiv:1404.1869. [Online]. Available: http://arxiv.org/
abs/1404.1869

[21] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, ‘‘Learning transferable
architectures for scalable image recognition,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., Jun. 2018, pp. 8697–8710.

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,
M. Andreetto, and H. Adam, ‘‘MobileNets: Efficient convolutional neu-
ral networks for mobile vision applications,’’ 2017, arXiv:1704.04861.
[Online]. Available: http://arxiv.org/abs/1704.04861

[23] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, ‘‘Regularized evolution
for image classifier architecture search,’’ in Proc. 33rd AAAI Conf. Artif.
Intell., (AAAI). Palo Alto, CA, USA: AAAI Press, 2019, pp. 4780–4789.

[24] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan, Q. V. Le,
and A. Kurakin, ‘‘Large-scale evolution of image classifiers,’’ in Proc. Int.
Conf. Mach. Learn., 2017, pp. 2902–2911.

[25] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, ‘‘Efficient neural archi-
tecture search via parameters sharing,’’ in Proc. Int. Conf. Mach. Learn.,
2018, pp. 4095–4104.

[26] H. Cai, T. Chen, W. Zhang, Y. Yu, and J. Wang, ‘‘Efficient architecture
search by network transformation,’’ in Proc. AAAI Conf. Artif. Intell.,
vol. 32, no. 1, 2018, pp. 1–8.

[27] Y. Chen, G. Meng, Q. Zhang, S. Xiang, C. Huang, L. Mu, and X. Wang,
‘‘RENAS: Reinforced evolutionary neural architecture search,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4787–4796.

[28] R. Shin, C. Packer, and D. Song. (2018). Differentiable Neural Network
Architecture Search. [Online]. Available: OpenReview.net

[29] X. Chen, L. Xie, J. Wu, and Q. Tian, ‘‘Progressive differentiable archi-
tecture search: Bridging the depth gap between search and evalua-
tion,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019,
pp. 1294–1303.

[30] X. Chu, B. Zhang, R. Xu, and J. Li, ‘‘FairNAS: Rethinking eval-
uation fairness of weight sharing neural architecture search,’’ 2019,
arXiv:1907.01845. [Online]. Available: http://arxiv.org/abs/1907.01845

[31] H. Liang, S. Zhang, J. Sun, X. He, W. Huang, K. Zhuang, and
Z. Li, ‘‘DARTS+: Improved differentiable architecture search with early
stopping,’’ 2019, arXiv:1909.06035. [Online]. Available: http://arxiv.
org/abs/1909.06035

[32] G. Li, G. Qian, I. C. Delgadillo, M. Muller, A. Thabet, and B. Ghanem,
‘‘SGAS: Sequential greedy architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1620–1630.

[33] H. Cai, L. Zhu, and S. Han, ‘‘Proxylessnas: Direct neural architecture
search on target task and hardware,’’ in Proc. 7th Int. Conf. Learn. Rep-
resent., (ICLR), 2019, pp. 1–13.

[34] A. Brock, T. Lim, J.M. Ritchie, andN.Weston, ‘‘SMASH:One-shot model
architecture search through hypernetworks,’’ in Proc. 6th Int. Conf. Learn.
Represent., 2018, pp. 1–5.

[35] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, ‘‘Neural optimizer search
with reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2017,
pp. 459–468.

[36] K. Kandasamy, W. Neiswanger, J. Schneider, B. Póczos, and E. P. Xing,
‘‘Neural architecture search with Bayesian optimisation and optimal trans-
port,’’ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2018, pp. 1–25.

[37] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, ‘‘Practical block-wise
neural network architecture generation,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 2423–2432.

[38] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le, ‘‘Under-
standing and simplifying one-shot architecture search,’’ in Proc. Int. Conf.
Mach. Learn., 2018, pp. 550–559.

[39] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei,
A. Yuille, J. Huang, and K. Murphy, ‘‘Progressive neural architecture
search,’’ in Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 19–34.

[40] R. Luo, F. Tian, T. Qin, E. Chen, and T.-Y. Liu, ‘‘Neural architecture
optimization,’’ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2018,
pp. 7827–7838.

[41] B. Wu, K. Keutzer, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian,
P. Vajda, and Y. Jia, ‘‘FBNet: Hardware-aware efficient ConvNet design
via differentiable neural architecture search,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019, pp. 10734–10742.

89616 VOLUME 9, 2021

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

[42] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, ‘‘MnasNet: Platform-aware neural architecture search for
mobile,’’ inProc. IEEE/CVFConf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 2820–2828.

[43] X. Dai, Y. Jia, P. Vajda,M. Uyttendaele, N. K. Jha, P. Zhang, B.Wu, H. Yin,
F. Sun, Y. Wang, M. Dukhan, Y. Hu, and Y. Wu, ‘‘ChamNet: Towards
efficient network design through platform-aware model adaptation,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 11398–11407.

[44] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu,
and D. Marculescu, ‘‘Single-path NAS: Device-aware efficient Con-
vNet design,’’ 2019, arXiv:1905.04159. [Online]. Available: http://arxiv.
org/abs/1905.04159

[45] X. Dong and Y. Yang, ‘‘Searching for a robust neural architecture in four
GPU hours,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 1761–1770.

[46] M. Tan and Q. Le, ‘‘EfficientNet: Rethinking model scaling for con-
volutional neural networks,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 6105–6114.

[47] N. Nayman, A. Noy, T. Ridnik, I. Friedman, R. Jin, and L. Zelnik, ‘‘XNAS:
Neural architecture search with expert advice,’’ in Proc. Adv. Neural Inf.
Process. Syst. (NeurIPS), 2019, pp. 1977–1987.

[48] Y. Guo, Y. Zheng, M. Tan, Q. Chen, J. Chen, P. Zhao, and J. Huang, ‘‘NAT:
Neural architecture transformer for accurate and compact architectures,’’
in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2019, pp. 1–31.

[49] X. Dong and Y. Yang, ‘‘One-shot neural architecture search via self-
evaluated template network,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis.
(ICCV), Oct. 2019, pp. 3681–3690.

[50] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, and J. Sun, ‘‘Single
path one-shot neural architecture search with uniform sampling,’’ in Proc.
Eur. Conf. Comput. Vis. Glasgow, U.K.: Springer, 2020, pp. 544–560.

[51] X. Chen and C.-J. Hsieh, ‘‘Stabilizing differentiable architecture search via
perturbation-based regularization,’’ in Proc. Int. Conf. Mach. Learn., 2020,
pp. 1554–1565.

[52] V. Nair and G. E. Hinton, Rectified Linear Units Improve Restricted
Boltzmann Machines, J. Fürnkranz and T. Joachims, Eds. Madison, WI,
USA: Omnipress, 2010, pp. 807–814.

[53] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. ICML, vol. 30, no. 1. Princeton,
NJ, USA: Citeseer, 2013, p. 3.

[54] P. Ramachandran, B. Zoph, and Q. V. Le, ‘‘Searching for activation func-
tions,’’ in Proc. 6th Int. Conf. Learn. Represent., (ICLR), 2018. [Online].
Available: https://openreview.net/forum?id=SkBYYyZRZ

[55] D.Misra, ‘‘Mish: A self regularized non-monotonic neural activation func-
tion,’’ 2019, arXiv:1908.08681. [Online]. Available: https://arxiv.org/abs/
1908.08681

[56] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[57] X. Chu, T. Zhou, B. Zhang, and J. Li, ‘‘Fair darts: Eliminating unfair advan-
tages in differentiable architecture search,’’ in Proc. Eur. Conf. Comput.
Vis. Glasgow, U.K.: Springer, 2020, pp. 465–480.

[58] A. Neelakantan, L. Vilnis, Q. V. Le, I. Sutskever, L. Kaiser, K. Kurach,
and J. Martens, ‘‘Adding gradient noise improves learning for very
deep networks,’’ 2015, arXiv:1511.06807. [Online]. Available: http://arxiv.
org/abs/1511.06807

[59] X. Chu, B. Zhang, and X. Li, ‘‘Noisy differentiable architecture
search,’’ 2020, arXiv:2005.03566. [Online]. Available: http://arxiv.org/abs/
2005.03566

[60] L. Li and A. Talwalkar, ‘‘Random search and reproducibility for neural
architecture search,’’ in Proc. Uncertainty Artif. Intell., 2020, pp. 367–377.

[61] X. Zheng, R. Ji, L. Tang, B. Zhang, J. Liu, and Q. Tian, ‘‘Multinomial
distribution learning for effective neural architecture search,’’ in Proc.
IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 1304–1313.

[62] S. You, T. Huang,M. Yang, F.Wang, C. Qian, and C. Zhang, ‘‘GreedyNAS:
Towards fast one-shot NAS with greedy supernet,’’ in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 1996–2005.

[63] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, ‘‘Evaluating the
search phase of neural architecture search,’’ in Proc. 8th Int. Conf. Learn.
Represent., (ICLR), 2020, pp. 1–16.

[64] S. Shirakawa, Y. Iwata, and Y. Akimoto, Dynamic Optimization of Neural
Network Structures Using Probabilistic Modeling. Palo Alto, CA, USA:
AAAI Press, 2018, pp. 4074–4082.

[65] D. Lian, Y. Zheng, Y. Xu, Y. Lu, L. Lin, P. Zhao, J. Huang, and S. Gao,
‘‘Towards fast adaptation of neural architectures with meta learn-
ing,’’ in Proc. Int. Conf. Learn. Represent., 2020. [Online]. Available:
https://openreview.net/forum?id=r1eowANFvr

[66] S. Yan, B. Fang, F. Zhang, Y. Zheng, X. Zeng, M. Zhang, and H. Xu,
‘‘HM-NAS: Efficient neural architecture search via hierarchical masking,’’
in Proc. IEEE/CVF Int. Conf. Comput. Vis. Workshop (ICCVW), Oct. 2019,
pp. 1942–1950.

[67] Y. Yang, H. Li, S. You, F. Wang, C. Qian, and Z. Lin, ‘‘ISTA-NAS:
Efficient and consistent neural architecture search by sparse coding,’’ 2020,
arXiv:2010.06176. [Online]. Available: http://arxiv.org/abs/2010.06176

[68] C. He, H. Ye, L. Shen, and T. Zhang, ‘‘MiLeNAS: Efficient neural archi-
tecture search via mixed-level reformulation,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 11993–12002.

[69] A. Noy, N. Nayman, T. Ridnik, N. Zamir, S. Doveh, I. Friedman, R. Giryes,
and L. Zelnik, ‘‘Asap: Architecture search, anneal and prune,’’ in Proc. Int.
Conf. Artif. Intell. Statist., 2020, pp. 493–503.

[70] C. J. Maddison, A. Mnih, and Y. W. Teh, ‘‘The concrete distribution:
A continuous relaxation of discrete random variables,’’ in Proc. 5th Int.
Conf. Learn. Represent., (ICLR), 2017, pp. 1–19.

[71] G. Li, X. Zhang, Z. Wang, Z. Li, and T. Zhang, ‘‘StacNAS: Towards
stable and consistent optimization for differentiable Neural Architec-
ture Search,’’ CoRR, vol. abs/1909.11926, 2019. [Online]. Available:
http://arxiv.org/abs/1909.11926

[72] Y.-C. Gu, L.-J. Wang, Y. Liu, Y. Yang, Y.-H. Wu, S.-P. Lu, and
M.-M. Cheng, ‘‘DOTS: Decoupling operation and topology in differen-
tiable architecture search,’’ 2020, arXiv:2010.00969. [Online]. Available:
http://arxiv.org/abs/2010.00969

[73] F. P. Casale, J. Gordon, and N. Fusi, ‘‘Probabilistic neural architecture
search,’’ 2019, arXiv:1902.05116. [Online]. Available: http://arxiv.org/
abs/1902.05116

[74] M. Zhang, H. Li, S. Pan, X. Chang, and S. Su, ‘‘Overcoming multi-
model forgetting in one-shot NAS with diversity maximization,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 7809–7818.

[75] W. Hong, G. Li,W. Zhang, R. Tang, Y.Wang, Z. Li, and Y. Yu, ‘‘DropNAS:
Grouped operation dropout for differentiable architecture search,’’ in Proc.
29th Int. Joint Conf. Artif. Intell., Jul. 2020, pp. 1–7.

[76] X. Chu, X. Wang, B. Zhang, S. Lu, X. Wei, and J. Yan, ‘‘DARTS-:
Robustly stepping out of performance collapse without indicators,’’
in Proc. Int. Conf. Learn. Represent., 2021. [Online]. Available:
https://openreview.net/forum?id=KLH36ELmwIB

[77] X. Chen, R. Wang, M. Cheng, X. Tang, and C.-J. Hsieh, ‘‘DRNAS: Dirich-
let neural architecture search,’’ in Proc. Int. Conf. Learn. Represent., 2021.
[Online]. Available: https://openreview.net/forum?id=9FWas6YbmB3

[78] R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon,
B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, and B. Hodjat, ‘‘Evolving
deep neural networks,’’ in Artificial Intelligence in the Age of Neural
Networks and Brain Computing. Amsterdam, The Netherlands: Elsevier,
2019, pp. 293–312.

[79] A. Zela, A. Klein, S. Falkner, and F. Hutter, ‘‘Towards automated
deep learning: Efficient joint neural architecture and hyperparame-
ter search,’’ 2018, arXiv:1807.06906. [Online]. Available: http://arxiv.
org/abs/1807.06906

[80] G. Kyriakides and K. Margaritis, ‘‘The effect of reduced training in
neural architecture search,’’ Neural Comput. Appl., vol. 32, no. 23,
pp. 17321–17332, 2020.

[81] S.-Y. Huang and W.-T. Chu, ‘‘Searching by generating: Flexible
and efficient one-shot NAS with architecture generator,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2021. [Online]. Available:
https://pythonrepo.com/repo/eric8607242-SGNAS

[82] J. Chang, Y. Guo, G. Meng, S. Xiang, and C. Pan, ‘‘Data: Differen-
tiable architecture approximation,’’ in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), vol. 32, 2019, pp. 876–886.

[83] X. Dong and Y. Yang, ‘‘Network pruning via transformable architec-
ture search,’’ in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2019,
pp. 759–770.

[84] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, ‘‘Understand-
ing data augmentation for classification: When to warp?’’ in Proc. Int.
Conf. Digit. Image Computing: Techn. Appl. (DICTA), Nov. 2016, pp. 1–6.

[85] C. Liu, P. Dollár, K. He, R. Girshick, A. Yuille, and S. Xie, ‘‘Are labels
necessary for neural architecture search,’’ in Proc. Eur. Conf. Comput. Vis.
Glasgow, U.K.: Springer, 2020, pp. 798–813.

[86] Z. Li and D. Hoiem, ‘‘Learning without forgetting,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

VOLUME 9, 2021 89617

S. Santra et al.: Gradient Descent Effects on Differential Neural Architecture Search

SANTANU SANTRA received the B.Sc. and
M.Sc. degrees from Vidyasagar University,
India, in 2004 and 2006, respectively, and the
M.Tech. degree from West Bengal University of
Technology, India, in 2009. From 2009 to 2014,
he was an Assistant Professor with the Bengal
Institute of Technology and Management, India.
He is currently a Research Scholar with the
Department of Computer Science and Engineer-
ing, Yuan Ze University, Taoyuan, Taiwan. His

research interests include computer vision, image processing, and VLSI
backend design.

JUN-WEI HSIEH was an Associate Professor
with the Department of Electrical Engineering,
Yuan-Ze University, and a Visiting Researcher
with the MIT AI Laboratory. Since August 2009,
he has been a Professor and theDean of theDepart-
ment of Computer Engineering, National Taiwan
Ocean University. Since August 2019, he has
been a Professor with the College of AI, National
Chiao-Tung University. He hosted or co-hosted a
lot of large-scale AI projects from different com-

panies and governments in the past. He has a lot of successful experiences
in industrial-academic cooperation and technology transferring, especially
in ITS. He finished more 30 technology transferring projects, from 2013 to
2020. His research interests include AI, deep learning, smart farming, video
surveillance, intelligent transportation systems, image and video processing,
object recognition, machine learning, 3D printing, medical image analysis,
and computer vision. InMay 2019, he received the First Prize of theMinistry
of Science and Technology Best Display Award and the Third Place of
the AI Investment Potential Award. Due to his contributions in traffic flow
estimation, he helped the Elan company received the GoldAward fromTaipei

International Computer Show, in 2019. He also received the Outstanding
Research Award of National Taiwan Ocean University, in 2012, 2016, 2017,
and 2019, the Outstanding Research Award of Yuan Ze University, in 2006.
He and his students received the Silver Medal of 2019 National College
Software Creation Competition, the Silver Medal of 2018 National Micro-
computer Competition, the Best Paper awards of Information Technology
and Applications in Outlying Islands Conference, in 2013, 2014, 2016, 2017,
and 2018, respectively, and the Best Paper Award of Tanet 2017. He also
received the Best Paper Award of CVGIP Conference, in 1999, 2003, 2005,
2007, 2014, 2017, and 2018, the Best Paper Award of DMS Conference,
in 2011, the Best Paper Award of IIHMSP 2010, and the Best Patent Award of
Institute of Industrial Technology Research, in 2009 and 2010, respectively.

CHI-FANG LIN was born in Taiwan, Republic of
China, in 1960. He received the B.S. degree in
transportation engineering and management from
National Chiao Tung University, in 1983, and the
M.S. and Ph.D. degrees from the Institute of Com-
puter Engineering and Science, National Chiao
Tung University, in 1986 and 1991, respectively.
From 1987 to 1989, he was an Instructor with the
Lien Hu Junior College of Technology. He joined
the Department of Computer Science and Engi-

neering, Yuan Ze University (YZU), in August 1991, where he is currently
a Professor. From 1999 to 2002, he was the Chairman of the Department
of Information Networking Technology. He was the Director of the Infor-
mation Technology Research Center. From 2005 to 2008, he was the Chief
Information Officer of YZU, where he is also the Head of the Department
of Computer Science and Engineering, and also the Head of the Graduate
Program in Biomedical Informatics.

89618 VOLUME 9, 2021

