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ABSTRACT This paper proposes a novel blind adaptive array (BAA) interference suppression scheme
incorporated with a time-domain symbol spreading (TISS). It can expand an operational region of BAA irre-
spective of input signal-to-interference power ratio (SIR) conditions. Independent component analysis (ICA)
and constantmodulus algorithm (CMA) are expected as the promising BAA approaches to suppress unknown
interference which is extensively caused due to the small cell densification and spectrum superposing
between a plurality of wireless communication systems. These BAA algorithms basically require an input
SIR to be larger than 0 dB to suppress interference by capturing the desired signal appropriately. The
proposed scheme applies TISS to the transmission signal for the desired user and then de-spreads it at
the receiver side. It Gaussianizes statistical inherence of the interference signals and can bring beneficial
effects; reducing the kurtosis for ICA as well as collapsing the constant envelope properties for CMA. Such
intentional modification to the interference signals can improve the capture performance of the desired signal
and realize its effective identification even at SIR< 0 dB. Its fundamental effectiveness is presented through
various perspectives such as input SIR, symbol amount, and modulation orders.

INDEX TERMS Adaptive arrays, blind source separation, independent component analysis, constant
modulus algorithm, Gaussianization, time-domain inter-symbol spreading.

I. INTRODUCTION
Due to the rapid widespread of various mobile communi-
cation systems and the growth of user demands, exploding
mobile traffic should be dealt with efficiently. Small cell
densification is now seen to be a straightforward means to
enhance the areal system capacity [1], [2]. It can alleviate
traffic load to be supported by a per base station (BS) or
access point (AP) without enlarging the transmission band-
width. Especially, the microwave band faces severe spec-
trum resource exhaustion. It forces BSs to be deployed in
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approving it for publication was Wei Liu.

a single frequency reuse manner. Under such constraint,
inter-cell interference (ICI) dominates the system capacity
and thus dense BS deploymentmay conversely cause capacity
degradation.

The concept of effective use of spectrum resources is
extended to sharing among a plurality of systems so-called
cognitive radio [3], [4]. Under the constraint so as not to
interfere with the existing (i.e. primary) system, secondary
systems detect available radio resources for their communi-
cation. A recent practical trend is to build a database [5], [6]
which records statistical usage of spectrum resources such as
signal intensities with corresponding measurement points [7]
and secondary users can refer to it to dynamically access
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temporarily unused spectrum. It is premised on conservative
use, and the secondary systemmust communicate under strin-
gent power constraints. Further, such a white space-filling
approach cannot substantially enhance the spectral efficiency
beyond 100%. A more aggressive approach is investigated to
fully exploit an unlicensed spectrum. Its fundamental con-
cept was discussed as a licensed assisted access (LAA) [8]
and new radio-based access to unlicensed spectrum (NR-U)
[9], [10]. It aims a coexistence of cellular systems and wire-
less LANs in an unlicensed band originally resided by the lat-
ter ones. Although these systems should avoid the co-channel
inter-system interference in a distributed manner known to
listen before talk (LBT) mechanism, it has basically arisen
from the time-division principle; overall spectral efficiency
cannot be improved as well.

A. SPECTRUM SUPERPOSING
Spectrum superposing [11], [12], sharing the spectral
resources in a spatial domain, is believed to one of the promis-
ing conceptions to drastically enhance the spectral efficiency.
It can provide an open wireless environment where mobile
users will be able to enjoy more comfortable communication
without legal restrictions. Generally, spatially multiplexed
signals can be separated under the knowledge of channel
state information (CSI). CSI-aided pre/post coding is spe-
cialized for an intra-system interference suppression. Inter-
system interference suppression, however, is quite difficult
since the pilot sequence cannot be preshared and the signal
format basically differs depending on systems; CSI cannot
be obtained. We focused on blind adaptive array (BAA) or
blind source separation (BSS) which are well known and
effective approaches to suppress unknown interference sig-
nals without any a priori information such as CSI. It derives
the array weight via the received data signal in an unsuper-
vised manner. However, the target signal to be suppressed is
dependent on its derivation principle. Besides, the receiver
does not know which of the incoming signals is the desired
one or interference. The major challenge in the spectrum
superposing is to simultaneously resolve the above problems;
our interest is to control the weight derivation process to
appropriately suppress the interference using implicit knowl-
edge. The following part reviews various BAA algorithms
along with their weight optimization criteria and exposes the
key point of our proposal in this paper.

B. RELATED WORK
There exist lots of BAA algorithms with a variety of opti-
mization criteria. Maximal ratio combining (MRC) aligns the
phase component of the received signal so as to extract the
dominant signal [13], i.e. having the largest signal power.
Power inversion (PI), as the name implies, reverses the
power ratio relationship of the received signal [14]. Eigen-
vector beamspace weighting can derive respective beams
to strengthen the power of incoming signals [15]. Constant
modulus algorithm (CMA) exploits the constant envelope
property of the modulated signal [16], [17]. It suppresses

interference by optimizing the signal amplitude distorted by
interference to be constant. Independent component analysis
(ICA), which is originally investigated for acoustic/speech
signal source separation [18], [19], is also widely applied to
wireless field such as blind spatial multiplexing [20]–[22].
Its optimization criterion is based on kurtosis or negentropy
which express a non-Gaussian property. Among them, CMA
and ICA have strong interference suppression capability [23].

Other algorithms are being developed actively for
BSS with exploiting the non-Gaussian property of signal
sources [24]. For spatially correlated signals, sparse compo-
nent analysis (SCA) is considered a challenging method [25].
This idea is close to compressed sensing, which has recently
been widely applied to the direction of arrival estimation
[26], [27]. Although it can alleviate an assumption on sta-
tistical independence of signal sources generally required
for other approaches, its computational simplification is
the main object of interest [28]. Further, the geometric
inherence is also available as the deterministic properties
of the transmitted signals, named boundary component
analysis (BCA) [29], [30]. It is claimed that signal separation
is possible with fewer symbols because the BCA does not
use statistical information. However, the above approaches
have not validated their effectiveness against the intensity of
the interference signal, which is an important measure for
considering the spectrum superposing scenario. The conven-
tional idea is to adaptively switch different algorithms upon
the understanding of signal-to-interference power ratio (SIR)
conditions. Since the SIR is also unknown, its blind esti-
mation before the interference suppression is also a major
challenge [31]. In addition to that, the above mentioned blind
approaches require to identify the desired signals after the
separation due to their blind nature. Unique words should be
inserted into each spatial signal stream for that purpose and
thus eventually causes an overhead.

C. CONTRIBUTION OF THIS WORK
The various approaches described above use the inherent
properties of signal sources as a weight derivation principle
and attempt to separate them. Key idea of our proposal is
to improve the signal source separation capability by delib-
erately modifying its nature, which is higher-order statistics
in this paper. Suppose a synchronized transmission such as
uplink multiple access (MA) channel for the intra-system, all
incoming signals have the same statistical inherence which
weakens the signal identification ability of ICA and CMA.
In this case, ICA or CMA attempts to capture the signal
having the dominant component, i.e. the largest signal power.
It indicates that the SIR at the antenna input should be larger
than 0 dB; it is the BAA requirement at the initial state.
Our approach attempts to eliminate such a limitation, that
is, to obtain the desired signal without fail irrespective of
interference conditions. It has not been considered so far.

This paper proposes a time-domain inter-symbol spread-
ing (TISS) for BAA in the synchronous interference sup-
pression scenario. A spreading matrix is multiplied to the
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FIGURE 1. System model.

desired transmission symbol sequences and de-spreading is
performed to the received signal which is the mixture of
desired and interference signals. It intentionally modifies
the statistical inherence of interference signals to follow the
Gaussian distribution without signal bandwidth enlargement.
ICA andCMA canwell capture the desired signal irrespective
of the input SIR and thus interference can be successfully
suppressed. It can also realize the signal identification with-
out any additional unique words since the spreading matrix
takes responsibility for that. From another perspective, BAA
interference suppression capability is generally weakened in
higher-order quadrature amplitude modulation (QAM) since
the signal statistics retrogress to Gaussian. Higher datarate
transmission is quite essential in the recent wireless commu-
nication and hence the spectrum superposing should also be
attained even in higher-order such as 1024QAM, for more
efficient spectrum resource utilization. The proposed scheme
can maintain improved interference suppression capability
under such various modulation conditions.

The main contribution of this paper is to present a novel
interference suppression scheme by applying its Gaussianiza-
tion which can expand the operational region of BAAs such
as SIR and QAM order. Its fundamental effectiveness is dis-
closed through a computer simulation. The rest of this paper
is organized as follows. Section II and Section III describe
system model and BAA algorithms of interest, respectively.
Section IV presents the proposed scheme. Section V then
shows the interference suppression performance provided
by our proposal through computer simulations. Section VI
concludes this paper.

II. SYSTEM MODEL
Throughout the paper, normal letters represent scalar quan-
tities, bold lowercase letters indicate vectors and uppercase
letters indicate matrices. |.|, (.)T , (.)H and E(.) indicate abso-
lute values, transpose, conjugate transpose and expectation
(ensemble averaging), respectively. Let Nt, Nr and Ns denote
the number of transmitters, receiving antenna elements and
modulated data symbols. Transmitter is assumed to have one
antenna. Fig. 1 depicts a system model of interest. Suppose
a narrow band single-carrier transmission, si ∈ C1×Ns , X ∈
CNr×Ns and H ∈ CNr×Nt denote the transmission signal from
the i-th (i = 1, 2, . . . ,Nt) transmitter, the array input at the
receiver side, and the channel matrix, respectively. Based on
the spatial multiplexing conception, these relationship can be

mathematically expressed as follows [23], [32].

X = HGS+ N, (1)

S =



s1
...

si
...

sNt

 =


s1,1 . . . s1,k . . . s1,Ns
...

. . .
...

si,1 si,k si,Ns
...

. . .
...

sNt,1 . . . sNt,k . . . sNt,Ns

,
(2)

H =
(
h1 . . . hi . . . hNt

)
=


h1,1 . . . h1,i . . . h1,Nt

h2,1 h2,i h2,Nt
...

...
. . .

...

hNr,1 . . . hNr,i . . . hNr,Nt

 , (3)

G =


g1 0 . . . 0

0 g2
...

...
. . . 0

0 . . . 0 gNt

 , (4)

where the diagonal matrix, G ∈ CNt×Nt , provides a strength
for each transmission signal.N ∈ CNr×Ns denotes the additive
white Gaussian noise (AWGN) each element of which fol-
lows CN (0, σ 2). Note the transmission symbols, si, is a row
vector, and the channel vector, hi, that si experiences is a col-
umn vector. BAA weight, w = (w1,w2, . . . ,wNr )

T
∈ CNr×1,

is then derived by respective algorithms to be presented later,
and is multiplied to the received signal, X, to obtain the array
output, y ∈ C1×Ns :

y = wHX

=
(
y1 . . . yk . . . yNs

)
. (5)

As mentioned in the Section I-C, the array output is not
always the desired signal. It conventionally depends on the
conditions of the interference level. It is the key challenge of
the completely blind interference suppression, that is, how to
derive an optimal weight so as to obtain the desired signal
regardless of the interference condition.

III. BLIND ADAPTIVE ARRAY ALGORITHMS
A. INDEPENDENT COMPONENT ANALYSIS (ICA)
ICA generally utilizes a non-Gaussian inherence of signal
sources known to kurtosis or negentropy. This study mainly
focuses on kurtosis representing the higher order signal statis-
tics. The kurtosis of complex random variables can be defined
as follows [33],

K(wICA(m))

=

1
Ns

∑Ns
k=1 |yk |

4
−2

(
1
Ns

∑Ns
k=1 |yk |

2
)2
−

∣∣∣ 1
Ns

∑Ns
k=1 y

2
k

∣∣∣2(
1
Ns

∑Ns
k=1 |yk |

2
)2

=
Ns (y� y) (y� y)H − 2

(
yyH

)2
−
∣∣yyT ∣∣2(

yyH
)2 . (6)
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� indicates the Hadamard product, i.e. element-wise
multiplication. Kurtosis often represents tailedness and
peakedness of the random variables distribution. Its recent
interpretation is understood as tailedness rather than peaked-
ness [34]. When the complex random variables have a
non-Gaussian inherence, the value of kurtosis goes neg-
ative. The kurtosis value of zero, on the contrary, indi-
cates that the signal has a completely Gaussian distribution.
Through various kinds of algorithms for ICA have been
conceived, they generally require preprocessing known as
centering and whitening. Meanwhile, RobustICA, eliminat-
ing the above preprocessing with a straightforward steepest
descent approach, has been developed [19]. It also necessi-
tates searching the optimal step size, µopt ∈ R1, for each
iteration stage so that the kurtosis can be minimized. Robus-
tICA can exhibit superior convergence for weight derivation
as well as stable interference suppression capabilities better
than other ICA derivatives such as FastICA [23]. We treat
RobustICA attracted its possibility and aims to improve its
blind interference suppression performance.

The following steps attain BAA weight derivation on
RobustICA [19];

y = w H
ICA(m) X, (7)

eICA =
4(

yyH
)2 [NsyyH

(
XyT

)
− X

(
y� y� y∗

)
−

{
Ns (y� y) (y� y)H −

∣∣yyT ∣∣2}XyH
yyH

 , (8)

µopt = arg min
µ

(
K(wICA(m)− µeICA)

)
, (9)

wICA(m+ 1)

= wICA(m)− µopteICA. (10)

eICA ∈ CNr×1 in (8) is the error component to update the
weight vector. The value of kurtosis is uniquely determined
for respective QAM order since the possible distribution of
complex signals is dependent on them.

B. CONSTANT MODULUS ALGORITHM (CMA)
Array weight derivation principle of CMA is to optimize
the amplitude of array output, y, so as to have the constant
envelope, i.e. to minimize the following cost function;

Q(wCMA(m)) =
1
Ns

Ns∑
k=1

∣∣|yk |p − δp∣∣q
=

1
Ns

Ns∑
k=1

∣∣∣|(wH
CMA(m)X)k |

p
− δp

∣∣∣q . (11)

It is a generalized definition [35]. Here, (a)k indicates the
k-th entry of the vector a. δ denotes the constant envelope
value and is defined as 1. p and q take values of 1 or 2, respec-
tively, and these settings provides a specific weight derivation
criterion. When p = 1 and q = 2, the weight update manner
can be expressed in a special form not including the step size.

It is called least square CMA (LS-CMA) [17] and is known
to exhibit a superior convergence characteristics.

y = w H
CMA(m)X, (12)

eCMA,k =
δyk
|yk |

, (13)

wCMA(m+ 1)

= wCMA(m)−
(
XXH

)−1
X (y−eCMA)

H

= wCMA(m)−
(
XXH

)−1
X
(
wH
CMA(m)X−eCMA

) H
= wCMA(m)−

(
XXH

)−1(
XXHwCMA(m)−XeHCMA

)
=

(
XXH

)−1
XeHCMA. (14)

eCMA ∈ C1×Ns in (13) is the error vector and the amplitudes
of those elements are normalized to the constant envelope
value. The above formulation is similar to the minimum
mean square error (MMSE) criteria based on a sample matrix
inversion (SMI) [36]. The normalized array output, δyk/|yk |,
in (14) can be regarded as the reference symbol in the
MMSE-SMI. Although the CMA is known to work under the
use of multi modulus signal such as 16QAM [37], it cannot
avoid the degradation of interference suppression capability
due to the nature of its optimization criterion, as the number
of envelopes increases.

IV. PROPOSED SCHEME
Suppose the synchronized transmission scenario such as
intra-systemMAchannel, the desired and interference signals
have almost the same property which limits the blind interfer-
ence suppression capabilities of ICA and CMA. In this case,
both BAA algorithms capture the signal which dominates
the mixture of the desired and interference components, i.e.
the larger signal strength. Therefore, its operational region is
limited to SIR > 0 dB. The signals’ property indicates the
kurtosis for ICA and the constancy for CMA. The kurtosis,
κ , takes the minimum value of −2.0 for BPSK and that for
M ≥ 4 is derived as [33],

κ = −
3
5
M + 1
M − 1

. (15)

It tends to decrease for the higher modulation order and
converges on −0.60. As for the CMA, the possible number
of constant envelopes (moduli), η, forM ≥ 4 can be counted
from the isosceles right triangle part of a quadrant of the IQ
constellation;

η =
1
2

√
M
2

(√
M
2
+ 1

)
=

1
8

√
M
(√

M + 2
)
. (16)

It increases in proportion to the modulation order and
diverges as M → ∞. These concrete values for each mod-
ulation order are summarized in Table 1. Both kurtosis and
moduli increase as the modulation order is raised. Since these
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FIGURE 2. Proposed structure of the transmitter and receiver.

TABLE 1. Signal properties for modulation orders.

FIGURE 3. Concept of time-domain inter-symbol spreading.

metrics have a noticeable difference compared to the case of
i.i.d, i.e. κ = 0 for ICA and η = ∞ for CMA, we can expect
that these tendencies are available for signal separation. In
particular for ICA, the κ approaches to −0.6 at M → ∞,
which is obviously different from the κ = 0 in the i.i.d
case. ICA optimizes the array weight so as to minimize the
kurtosis as defined in (9). Therefore ICA can effectively
suppress interference signals having normal distribution even
for higher modulation order such as 1024QAM.

Exploiting the above feature, the proposed scheme
intentionally Gaussianizes the statistical inherence of the
time-domain symbol sequence by the inter-symbol spread-
ing operation. A schematic structure of the transmitter and
receiver for the proposed scheme is drawn in Fig. 2. A spec-
ified spreading matrix, Qi ∈ CNs×Ns , is shared between the
i-th transmitter and receiver in advance. The proposed trans-
mitter firstly multiplies the transmission symbol sequence by
this spreading matrix.

si← siQi. (17)

This operation can be intuitively visualized as shown
in Fig. 3. Let INs ∈ CNs×Ns and U ∈ CNs×Ns denote
the identity and arbitrary non-zero matrices, the spreading
matrix, Qi, is defined so as to hold the following condition.

QiQ
H
j =

{
INs (i = j)
U (i 6= j).

(18)

The spreading matrix can be arbitrarily chosen as long as
the above constraint is satisfied.1 A simple matrix inversion
operation is also acceptable. This study employs an unitary
matrix to avoid the undesirable impact to the additive noise
term. In this case, U is also the unitary.
Qi can also be constructed by arranging the partial spread-

ing matrix, Pi ∈ CNq×Nq (Nq ≤ Ns), in a diagonal manner;

Qi =


Pi 0 . . . 0

0 Pi
...

...
. . . 0

0 . . . 0 Pi

 . (19)

s.t. Nq | Ns , (20)

Here we define Nq as the spreading factor and the nota-
tion . | . indicates that the integer Nq is a divisor of the
integer Ns. Other interfering transmitters (j 6= i) do not
apply the TISS, or prepare other different spreading matri-
ces. The desired/interference signals are then transmitted and
arrived at the receiver through the propagation channels. The
received signal is expressed as follows,

X = hisiQi +

Nt∑
j6=i

hjsjQj + N

=

 h1,i
...

hNr,i

 siQi +

Nt∑
j6=i

 h1,j
...

hNr,j

 sjQj + N. (21)

1QiQH
j = U (i 6= j) may possibly have special properties close to the

identity matrix. More specifically, consider Q1R1 = A and Q2R2 = B,
the requirement in (18) will be broken if each element of randomly prepared
A and B has very close values. Practically, for instance, we can prepare
matrices Qi (i = 1, 2, . . . ,Nt) and assign them to transmitters such that the
matrix product of any combination among them has an arbitrary value.
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Algorithm 1 Proposed BAA With TISS
Transmitter:
1: Set random complex matrix: Ai
2: QR decomposition: QiRi = Ai
3: si← siQi

Receiver:
4: X← XQH

i
5: m← 0
6: w(m)← (1, 0, . . . , 0)
7: while m < Nm do
8: y← wH (m+ 1)X
9: e← F(y,X)

10: w(m+ 1)← G(w,X, e, µ)
11: w(m+ 1)← w(m+ 1)/‖w(m+ 1)‖
12: m← m+ 1
13: end while

De-spreading is performed by applying the same matrix,
QH
i , to the received symbol sequences for all antenna ele-

ments.

X ← XQH
i (22)

= hisi +
Nt∑
j6=i

hjsjQjQ
H
i + NQjQ

H
i . (23)

The above operation returns the desired signal to its origi-
nal sequence whereas the interference signals are de-spread.
Suppose unitary spreading matrices, these multiplication is
also the unitary and thus effectiveness of our proposal holds
irrespective of applying TISS for other transmitters. Then
BAA schemes are applied. Its overall procedure for the
i-th transmitter/receiver is summarized in Algorithm 1. Here,
the function F calculates the error components as described
in (8) and (13). G indicates the weight update function as
described in (10) and (14), respectively. ‖.‖ stands for the
Frobenius (Euclidean) norm.

Fig. 4 exemplifies the two-dimensional histogram (or
called probability density function (PDF)) of spread 16QAM
symbols at Ns = 100. The kurtosis value is increased to
−0.0138 from −0.68 by spreading; approaches to the nor-
mal (Gaussian) distribution. Independent complex random
variables, having properties close to the uniform distribution
such as QAM symbols, are replaced with their respective
summations. This simple operation leads the complex signal
distribution to the Gaussian according to the central limit
theorem (CLT) [38]. Its classical form claims that a normal-
ized summation of independent random variables with arbi-
trary distribution tends to have a normal distribution. When
(z1, . . . , zN ) follow independent and identically distributed
(i.i.d) random variables with mean ξ and variance ρ2, these
arithmetic average,

z̄ =
1
N

N∑
k=1

zk , (24)

is also one of the random variables. The distribution of z̄
approaches to the normal distribution each with mean ξ and
variance ρ2/N as N → ∞. As for the proposed scheme,
it derives the new complex random variables by applying
spreading matrix,Qi =

1
Nq
(qi,k,j), to the transmission symbol

sequence. Focusing on the first Nq symbols to which the
partial spreading matrix, Pi, is applied, we have

s̄i,l =
1
Nq

Nq∑
k=1

si,kqi,k,l . (25)

Multiplication si,kqi,k,l are random variables and thus these
summation over Nq symbols also follows the normal distri-
bution. Based on the proof of CLT in [38, pp. 36–38], it can
be derived as follows. First, each multiplication si,kqi,k,l is
rewritten as,

s′k := si,kqi,k,l . (26)

It is also a random variable having an arbitrary distribu-
tion with mean ξ and variance ρ2. Here we justify the new
random variable in (25), key feature of the proposed TISS,
could follow the normal distribution. We exploit properties
of the first and second characteristic functions which are
defined [39, p. 41],

8s′k
(t) := E

[
exp

(
jts′k

)]
, (27)

0s′k
(t) := ln8s′k

(t) =
∞∑
m=0

κm
(jt)m

m!
, (28)

where t ∈ R is an arbitrary index. The second characteristic
function in (28) is given by the logarithm of the first one
and its Taylor series expansion. It is also called the cumulant
generating function; coefficient κm yields the m-th cumulant
and is obtained as,

κm =
dm0s′k (t)

d(jt)m

∣∣∣∣∣
t=0

. (29)

Note that 0s′k (0) = 1, 0(m)
s′k

(0) = E[s′k
m] (for m =

1, 2, . . . ), at t = 0, the first three cumulates can be obtained
as,

κ0 = 0, (30)

κ1 = E[s′k ] = ξ, (31)

κ2 = E[s′k
2]− E[s′k ]

2
= ρ2. (32)

We then attempt to derive that the first characteristic func-
tion of the new random variables applied TISS in (25),

8s̄l (τ ) = E
[
exp(jτ s̄l)

]
, (33)

converges to that of the normal distribution with CN
(ξ, ρ2/Nq) [40, p. 238], i.e.

8norm(τ ) ≈ exp

(
jτξ −

τ 2(ρ2/Nq)
2

)
, (34)

under Nq→∞.
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FIGURE 4. Two-dimensional histogram for 16QAM (Ns = Nq = 100).

(33) can be rewritten by using (25) and (27) as,

8s̄l (τ ) = E
[
exp(jτ s̄l)

]
= E

exp
jτ

1
Nq

Nq∑
k=1

s′k


= E

 Nq∏
k=1

exp
(
j
τ

Nq
s′k

)
=

Nq∏
k=1

E
[
exp

(
j
τ

Nq
s′k

)]

=

Nq∏
k=1

8s′k

(
τ

Nq

)
, (35)

where following general properties are used;

exp

(∑
k=1

zk

)
=

∏
k=1

exp (zk) , (36)

E[ζ z] = E[ζ ]E[z]. (37)

Since each variable, s′k , is independent and follows the
same distribution for arbitrary k , the above characteristic
functions, 8s′k

(τ ), are identical. Therefore (35) is further
modified to

8s̄l (τ ) =
{
8s′k

(
τ

Nq

)}Nq

. (38)

8s̄l (τ ) can be expressed by applying an exponential of
the second characteristic function in (28),

8s̄l (τ )

=

{
8s′k

(
τ

Nq

)}Nq

=

[
exp

{
∞∑
m=0

κm

(
jτ/Nq

)m
m!

}]Nq

FIGURE 5. One-dimensional histogram for 16QAM. The brackets in the
legend indicate the kurtosis values.

=

[
exp

{
κ0+

1
Nq

jτκ1+
1
N 2
q
κ2

(jτ )2

2
+

∞∑
m=3

1
Nm
q
κm
(jτ)m

m!

}]Nq

= exp

{
Nqκ0+jτκ1+

1
Nq
κ2

(jτ )2

2
+

∞∑
m=3

1

Nm−1
q

κm
(jτ)m

m!

}
.

(39)

Substituting (30)–(32) into (39) yields

8s̄l (τ ) = exp

{
jτξ +

ρ2

Nq

(jτ )2

2
+

∞∑
m=3

1

Nm−1
q

κm
(jτ )m

m!

}
.

(40)

Suppose the third and subsequent terms become negligible
at Nq→∞, we have the same expression as (34).
Fig. 5 shows one-dimensional PDFs to examine the depen-

dency of the spreading factor, Nq, with 16QAM. Specifically,
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the distribution of QAM symbols is uniform in real and
imaginary parts, respectively, therefore, TISS output easily
follows the normal distribution with not so large value of Ns.
Meanwhile, the spreading length affects to a tailedness of
the distribution. It contributes to the reduction of the kurtosis
value. Figure also shows the kurtosis for each TISS output. It
can be confirmed that Nq = 10 is sufficient to differentiate
the desired and interference signals. Distribution of signal
amplitude asymptotically follows Gaussian, i.e. i.i.d having
zero kurtosis, when the spreading factor, Nq, is 100 or more.
The kurtosis of the QAM signal is at least −0.6 and is
obviously different from zero, so that ICA based on kurtosis
minimization can fully exploit this feature to capture the
desired signal and properly suppress the interfering signal. As
for the CMA, TISS is surely effective since the deviation of
interference signal amplitude is largely spread. Furthermore,
it can also be confirmed that the constant envelope property is
certainly broken. The above principle brings the expectation
that the BAA weight derivation by ICA and CMA can appro-
priately work to suppress interference signals, irrespective of
the initial SIR condition.

It should be noted that the proposed TISS cannot expand
transmission bandwidth unlike code division multiple access
(CDMA). In CDMA, a transmission symbol is combined
by the orthogonal spreading code with higher rate. There-
fore, the transmission bandwidth is spread in the frequency-
domain. The proposed TISS performs spreading operation by
inter-symbol superposition as depicted in Fig. 3, so that the
signal bandwidth is maintained; there is no spectral efficiency
degradation. It is applicable to an orthogonal frequency divi-
sion multiplexing (OFDM) which is a great majority of cur-
rent wireless communication systems. Meanwhile the above
mentioned principle for the proposed concept is considered to
be consistent under the CDMA as the samemanner. Although
the joint application of CMA and CDMA was studied in
literature [41]–[43], they have not yet provided discussions
on its interference suppression mechanism.

V. NUMERICAL RESULTS
A. SIMULATION PARAMETERS
Two kinds of signal sources exist; the one is the desired signal
and the others are the interference. This study assumes a
simplified channel model based on the plane wave approx-
imation [44], [45]. Each coefficient of the channel matrix
in (3) is determined by the angle of arrival (AoA), θ , for
rigorous evaluation under fixed SIR conditions. It becomes,

H=


1 . . . 1

e−j
2π
λ
d cos θ1 . . . e−j

2π
λ
dcos θNt

...
...

e−j
2π
λ
(Nr−1)dcos θ1 . . . e−j

2π
λ
(Nr−1) dcos θNt

. (41)

AoAs for respective signals are determined at random
within the range from −90◦ to 90◦ with 0.01◦ resolution.
Interference suppression performances for above mentioned
two BAA algorithms, RobustICA and LS-CMA, are mainly

TABLE 2. Simulation parameters.

discussed. Additionally, characteristics of BCA [29] and
pilot-aided MMSE [36] algorithms are compared as bench-
marks. The maximum iteration count for them is set to 100,
which shows sufficient convergence characteristics. As for
the RobustICA, the search range for its step size is from−10
to 10; 0.0005 step in the region |µ| ≤ 0.5, 0.01 step in 0.6 ≤
|µ| ≤ 3 and 1 step in 4 ≤ |µ| ≤ 10. The spreadingmatrix,Qi,
is generated from QR decomposition of an arbitrary regular
complex matrix. Under the above condition, output signal-
to-interference plus noise power ratio (SINR) is examined
in terms of input SIR, the number of symbols, Ns, and the
modulation orders. When the desired signal is assumed to be
from the 1st transmitter, its array output SINR is defined as,

SINR =

∣∣(wHh1
)∣∣2

Nt∑
j=2

∣∣∣(wHhj
)∣∣∣2 + σ 2

. (42)

Interference-limited condition is supposed in order to
clearly discuss the interference suppression capability;
signal-to-noise power ratio (SNR) is set to 30 dB. Detailed
parameters are listed in Table 2. Unless otherwise specified,
we assume Nq = Ns.

B. RESULTS: 2× 2 CASE
First, we observe the case where the number of transmitters
and receiver antenna elements are two, i.e. Nt = Nr = 2.
Fig. 6 shows cumulative distribution functions (CDFs) of
array output SINR in the case with 16QAM, Ns = 100,
input SIR = −10 dB. Here we plot characteristics of TISS
applied to RobustICA, LS-CMA and BCA as well as that
without BAA. The result of MMSE is also disclosed as an
optimal performance supported by the known pilot symbols.
The conventional schemes without TISS frequently miscap-
ture the interference signal and suppress the desired one;
output SINR distribution is impractically degraded. The pro-
posed schemes with TISS successfully work to suppress the
interference signal even at SIR = −10 dB. BAA well cap-
tured the desired signal by spreading the interference signal.
Although the interference suppression performance of BCA
can be improved by applying TISS, its achievable output
SINR is less than that for CMA and ICA.Weight optimization
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FIGURE 6. CDFs of array output SINR (Nt = 2, Nr = 2, 16QAM, Ns = 100,
SIR = −10 dB).

principle for BCA is geometrical inherence, i.e. convex
perimeter, on IQ two-dimensional plane. It also requires the
condition that is compactness. Application of TISS is con-
sidered to satisfy it because the QAM symbol arrangement
of the desired signal is well visible in that of the Gaussian-
ized interference signal. Convex perimeter is also focused
on the amplitude domain similar to that of CMA, so that
its interference suppression performance strongly depends on
the power ratio to the desired signal. Such an indicator for
QAM signals seems to be weak for TISS against the Gaussian
distribution. It is not applicable to suppress a large level of
interference. The main focus of our proposal, i.e. the kurtosis
for ICA and the constancy for CMA, can be obviously dif-
ferentiated with that for the Gaussian distribution. Especially
for ICA, it attained satisfactorily improved interference sup-
pression capability even in such an interference-dominated
situation. In this case, the kurtosis of the desired signals is
−0.68 whereas that for Gaussianized interference is around
−0.01 as shown in Fig. 5. Suppose the required output
SINR is 10 dB, ICA can satisfy it for 85.6%. CMA can
also exhibit good output SINR in 60.1% even in the use of
multi modulus 16QAM signals. The remaining percentiles
should be improved further; BAAs have not reached the con-
vergence. It would depend on the spatial correlation among
the desired/interference signals. Other physical layer signal
processing, e.g. forward error correction, can compensate for
such a room for improvement. As for the MMSE, the number
of pilot symbols is set to be the same as that of receiving
antenna elements and these sequences are orthogonal among
users. Although it should exhibit the best SINR performance
thanks to a priori information, its overhead is inevitable.
Practically, the number of pilot signals is limited and hence
its sequence should be rigorously designed so as to keep the
(quasi-)orthogonality. The proposed concept is also support-
ive of alleviating such limitations.

Fig. 7 shows the convergence characteristics with the itera-
tion count for each BAAs in the cases of 16QAM, Ns = 100,

FIGURE 7. Array output SINR with iteration step (Nt = 2, Nr = 2, 16QAM,
Ns = 100, SIR = −10 dB).

and input SIR = −10 dB. The figure exemplifies the result
of the one trial, but they show almost the consistent tendency.
In conventional BAAs, capturing the interference signal as
large as 10 dB leads to convergence in a few iterations since
their optimization criteria can be easily satisfied. Although
ICA and CMAwith TISS require slightlymore iterations than
the conventional schemes to converge, they can successfully
attain good output SINR larger than 10 dB. From the case
study shown in Fig. 7, it is about 10 iterations for ICA and
about 60 for CMA; 100 iterations are sufficient. BCA with
TISS requires more iteration to the optimal; its maximum
count is set to 200. We can observe the above tendency
generally holds; ICA converges faster and achieves higher
output SINR than CMA.

Following evaluations focus on the median value of the
array output SINR distribution. Fig. 8 shows the median
value of array output SINR obtained by ICA and CMA with
input SIR. This case also employs 16QAM and Ns = 100.
The figure plots the characteristics without BAA process-
ing as a reference in which input and output values almost
correspond. Conventional schemes without TISS can obtain
sufficient output SINR at SIR > 0 dB whereas they cannot
work at the opposite condition where SIR < 0 dB. It implies
that the original BAA algorithms capture the signal having
larger power and suppress the other one having lower power.
The proposed scheme, ICAwith TISS, can achieve consistent
output SINR over 20 dB irrespective of the interference level.
Even in the case of CMA with TISS, a significant output
SINR can be achieved when the input SIR is larger than
−10 dB. CMA can also be sufficiently applicable depending
on the requirement, such as target SINR, the signal processing
capability, and the processing delay related to the iteration.
In other words, when TISS is applied, the desired signal can
always be obtained while using ICA or CMA without any
additional control such as the interference level estimation
and the algorithm switching referring to its estimation result.
Regarding BCA, although the array output is improved,
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FIGURE 8. Median value of array output SINR with input SIR (Nt = 2,
Nr = 2, 16QAM, Ns = 100).

FIGURE 9. Median value of array output SINR with symbol amount
(Nt = 2, Nr = 2, 16QAM, SIR = −10 dB, w/TISS).

it has not reached a level that can withstand practical
use.

Under the application of TISS, Fig. 9 shows the median
value of array output SINR with the number of symbols Ns at
the input SIR = −10 dB. Array output SINR by ICA-TISS
tends to be saturated at around 200 symbols. The size of the
spreading matrix Qi is defined as the same as the symbol
amount Ns. As the number of symbols increases, statistics
of the interference signal approaches the normal distribution,
so that the identification accuracy could be improved. Fur-
thermore, output SINR = 15 dB or more can be attained at
50 symbols. ICA-TISS can provide good interference sup-
pression capability even with the reduced number of symbols.
Especially in the smaller symbol amount region, the superi-
ority of ICA over CMA can be confirmed.

Performance dependency on the spreading factor is then
examined. Fig. 10 plots median values of array output SINR
with the spreading matrix size, Nq. Fix the symbol amount to

FIGURE 10. Median value of array output SINR with spreading factor
(Nt = 2, Nr = 2, 16QAM, Ns = 100, SIR = −10 dB, w/TISS).

FIGURE 11. Median value of array output SINR with modulation order
(Nt = 2, Nr = 2, Ns = 100, SIR = −10 dB, w/TISS).

Ns = 100, other parameters are set to Nt = Nr = 2 and input
SIR = −10 dB. Increasing Nq surely improves interference
suppression performance for all BAA algorithms. Nq = 10 is
sufficient for ICA while 20 or more is required for CMA and
BCA. Statistical inherence such as peakedness and tailedness
comprising kurtosis can be extracted with comparative ease,
whereas the amplitude-based metrics such as constancy and
convex perimeter require more strict Gaussianization to rec-
ognize the desired signal.

Finally, the median value characteristics of array output
SINR with modulation order is disclosed in Fig. 11. In this
case, the input SIR = −10 dB and Ns = 100. Interference
suppression performance tends to be degraded as the modu-
lation order,M , increases. It is because the kurtosis gets larger
and the number of signal envelopes are increased with M as
expressed in (15) and (16), respectively. It should be noted
that the degradation for ICA is converged in 256QAM or
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FIGURE 12. CDFs of array output SINR (Nt = 4, Nr = 16, 16QAM,
Ns = 800, SIR = −10 dB).

higher since their original kurtosis values are around −0.60.
ICA can keep good output SINR median value around 20 dB
even in 1024QAM; the desired and interference signals are
distinguishable thanks to the TISS operation which modi-
fies the kurtosis value to almost zero. It indicates that such
a higher modulation order is fully applicable when SNR
is higher or array antenna gain is available. Although the
effectiveness of CMA can also be observed, its achievable
output SINR is limited compared to the ICA. An increase in
the signal envelope number largely affects the signal sepa-
ration capability for the constant modulus criterion. Unfor-
tunately, the overall performance of BCA is inferior to the
other candidates in terms of symbol amounts and modulation
order.

C. RESULTS: 4× 16 CASE
In the next case, we set Nt = 4 transmitters and Nr =

16 receiver antenna elements to assess the impact of more
interference sources and excessive degree of freedom at the
receiver side. Fig. 12 shows CDFs of array output SINR in the
case with 16QAM, Ns = 800, input SIR = −10 dB. Effec-
tiveness of ICA is kept and it shows a significant improve-
ment exceeding the 10 dB output SINR in about 85% range.
It is nearly approaching the optimal MMSE performance. On
the other hand, the improvement of CMA is limited. The
increase of spread interference sources hinders the capturing
capability of the desired signal. CDF of BCA also exhibits
a similar tendency. As mentioned above, amplitude-based
optimization criteria are strongly constrained by the number
of signal sources.

To observe the above characteristics in detail, the transi-
tion of the output SINR with the iteration count is plotted
in Fig. 13. Same as the case of 2 × 2, the desired signal is
suppressed and exhibits unusefully low output SINR without
TISS. Although the application of TISS is effective, both the
improvement of convergence and output SINR are getting

FIGURE 13. Array output SINR with iteration step (Nt = 4, Nr = 16,
16QAM, Ns = 300, SIR = −10 dB).

FIGURE 14. Median value of array output SINR with input SIR (Nt = 4,
Nr = 16, 16QAM, Ns = 300).

dull except for ICA. Due to the increase in the number of
signal sources that produce multiple local optima, CMA and
BCA struggle to derive the optimal weight to extract the
desired signal even under the application of the proposed
TISS. On the other hand, it can be seen that ICA is able
to derive the optimal solution with reasonable iterations and
suppress interference even under such a severe condition.
This is because CMA and BCA focus only on the amplitude
domain, that is, the tailedness on the IQ plane, while ICA
considers the higher-order statistics representing the form
of a probability distribution, i.e. the peakedness as well as
tailedness as indices of optimization.

Fig. 14 shows the median value of the array output SINR
for the input SIR. This case shows the number of symbols
at Ns = 300. Input SIR value to invert output SINR (for
BAAs without TISS) is shifted to the minus region. It is
because the interference power is measured as the sum of
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FIGURE 15. Median value of array output SINR with symbol amount
(Nt = 4, Nr = 16, 16QAM, SIR = −10 dB, w/TISS).

that from the other three transmitters. ICA-TISS can achieve
good output SINR more than 20 dB at −14 ≤ SIR ≤ 4 dB
whereas at SIR > 4 dB, it tends to be degraded despite the
sufficiently high desired signal power. An excessively large
number of receiving antennas, i.e. observation points, also
may deliver array weights to the local optimal solution. It
also be because the interference signal level is small and
close to the noise; caused an imperfect interference cancel-
lation. Figs. 15 and 16 show the median array output SINR
with the number of symbols, Ns, and the modulation order,
M , when the input SIR is −10 dB and TISS is applied.
ICA-TISS shows reasonable SINRwith 200 symbols or more
while there is no negative dependence on higher modulation
order. Except for this condition on ICA-TISS, none of the
other BAA algorithms are able to achieve sufficient inter-
ference suppression performances. We can conclude that the
ICA based on the non-amplitude based optimization prin-
ciple can achieve excellent blind interference suppression
performance in various environments under the application of
TISS.

D. COMPUTATION COMPLEXITY
Here we discuss computation complexity which is defined as
the number of multiplications. In ICA, calculation of kurtosis
and the residual error is dominated by the matrix-vector
product such as XyH , which requires NrNs multiplications.
In addition, ICA requires search process for the optimal step
size, µopt among Nk candidates, and the iterative process
for the weight update with Nm times. Computation order
for ICA becomes O(NkNmNrNs). Although CMA contains
the matrix-matrix product as (XX)−1XeCMA, (XX)−1X part
is invariant against the iterative process. It is sufficient to
calculate once beforehand, and hence the dominant com-
putation becomes NrNs. With considering the Nm iteration,
complexity order of CMA can be estimated as O(NmNrNs).
As for BCA, the most dominant operation is the extraction

FIGURE 16. Median value of array output SINR with modulation order
(Nt = 4, Nr = 16, Ns = 300, SIR = −10 dB, w/TISS).

TABLE 3. Computation complexity.

of the convex hull from the Ns points, which is known to be
O(NslogNs) [29]. It should be repeated for Nm, so that the
overall complexity order is O(NmNs(Nr + logNs)). Note that
BCA also contains weight application y = w H

BCA(m)Xwhich
requires NrNs multiplications in the iteration process same
as the other algorithms. ICA has an extensive computational
load due to a double optimization process whereas it can
provide outstanding interference suppression performance in
combination with the proposed TISS.

Table 3 summarizes complexity order and CPU running
time for BAA weight calculation. Running time is exam-
ined by using Intel(R) Core(TM) i9-10980XE CPU and is
averaged over 3,000 trials. Representative parameters are the
iteration countNm = 100 and the number of symbolsNs = 100,
respectively. For ICA, the number of step size candidates,
Nk, is 2497. We can confirm that the relationship among the
computation time for BAA algorithms almost agrees with the
estimated order based on multiplications. CMA exhibits the
fastest computation even though it contains the computation
of (XX)−1X. The computation time for ICA is larger than the
others because it requires an optimal step size search in (9). It
will be shortened by devising hardware implementation such
as parallel processing. In this study, the step size is approx-
imately thoroughly searched for reliable weight derivation,
but its simplification is an issue to be addressed for feasibility
verification.
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The proposed TISS requires additional computation to
generate the spreading matrix, Q. The complexity order for
its preparation is known to O(N 3

q ) for the QR decomposition
[46, p 249], or less for the matrix inversion [47, p. 12], [48].
Sufficient output SINR can be provided with Nq = 10 for
ICA and around 20 for CMA and hence the computation
complexity required for spreading matrix derivation can be
practically acceptable, compared with thoroughly preparing
the spreading matrix with the size of the number of symbols
Ns. Here,Q could be calculated once preparatory to operation
and stored in the internal memory, or updated at regular
interval. It is possible to substantially avoid the computational
impact on practical use.

E. DISCUSSION
The above evaluation exhibited the fundamental effectiveness
of the proposed scheme suppressing the interference signal
even when its power is larger than that of the desired signal.
The following discussion throws related issues and future
challenges for the proposed approach.

We considered the simple line-of-sight channel model
with the narrow band single-carrier transmission in order to
strictly evaluate the BAA interference suppression perfor-
mance under the deterministic SIR condition. Results clar-
ified that the proposed scheme does work irrespective of
SIR and hence it could be applicable for Rayleigh fading
channel environment where signal strengths, i.e. SIR, fluctu-
ate instantly. Its practical application is OFDM transmission.
In this case, the proposed scheme can be simply extended
by applying per subcarrier. Blind interference suppression
capability based on OFDM should be verified through a
link level evaluation, under the general wideband channel
environment with multipath fading. Meanwhile, in an asyn-
chronous transmission case, a possibility of eased signal
separation was suggested in [33]. Sampling timing devia-
tion decreases the kurtosis of the interference signal, i.e.
distribution goes to the Gaussian. Its realistic impact is an
interesting issue to be studied as an extension of our proposed
concept.

As a concrete application example, the proposed scheme
could be effective for uplink interference cancellation in
a multicell environment [49], [50] where inter-cell CSI is
unavailable. The spreading matrix can be regarded as unique
words that can contribute to separate signal sources. Prepar-
ing respective spreading matrices for each transmitter is
expected to successfully extract the desired signals without
the use of CSI. It is expected contributing to resolving the
pilot contamination problem [51]. This promising nature
would be able to realize a perfect blind MIMO without any
identification overhead. The blind MIMO well investigated
so far necessitates identifying which antenna they were trans-
mitted from after ICA signal source separation [20], [21]. It
can be realized by detecting the desired signal stream that
matches the unique word after BSS. However, the receiver
needs to know how many signals are impinging. This
approach is unavailable for such as CMA; it extracts only the

signal having the highest amplitude, so there is no means to
obtain the other signals. The proposed scheme by TISS can
extract the desired signal regardless of the signal level or the
strength of the properties of the signal. The spreading matrix
itself has the identification function; it can be understood as
a kind of a priori information.

As for the issues behind the proposed approach, the impact
on the orthogonality among the time-domain symbols should
be considered. Time varying channels, brought by the
mobility of user terminals, may break the orthogonality
among spread symbols. The original signal sequence can-
not be obtained even after the de-spreading operation. The
BAA algorithms require several data symbols and hence
the above impact on the mobility environment should
also be further investigated while exploring enhancement
approaches.

VI. CONCLUSION
This paper newly proposed the interference Gaussianization
scheme by time-domain symbol spreading which can expand
the operational region of the blind adaptive array signal
source identification in terms of the input SIR. The trans-
mitter applies a spreading matrix to the desired transmission
signal and the receiver de-spreads the mixture of the desired
and interference signals, using the preshared same matrix. It
results in spreading only interference components so as to
have the Gaussian distribution, i.e. intentionally reduces the
kurtosis for ICA and breaks the constant envelope property
for CMA. It leads both ICA and CMA to well capture the
desired signal and hence these weight optimization criteria
appropriately and efficiently work to suppress the interfer-
ence signals. Computer simulation verified its fundamental
effectiveness; ICA and CMAwith TISS successfully realized
interference suppression at the region SIR < 0 dB where
was out of the range conventionally, even in the use of higher
modulation order. Although the effectiveness of CMA-TISS
is limited to a few numbers of signal sources, ICA-TISS
presents wide capability for a larger number of not only
sources but also receiver antenna elements. If we carefully
chose the application situation for CMA-TISS, it is still use-
ful under the use of specified parameters such as symbol
amounts and the modulation order. The proposed approach
has a promising possibility to resolve various co-channel
interference problems.
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