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ABSTRACT The advancements in semiconductor technology greatly impact the growth of hybrid VLSI
devices and components. The nanometer technology has been possibly executed due to the enhancement of
the scaling factor of theMOSFETs. Since theMOSFETs play a vital role in building dense devices, it also has
several research insights with various semiconductor materials with high- dielectrics. The high- dielectric
material in place of the conventional oxide layer in the MOSFET design results in improved performance
by reducing the Short Channel Effects (SCEs). In this research work, an analytical model of the lightly
doped Cylindrical Surrounding Double-Gate (CSDG) MOSFET has been realized. The capacitive modeling
has been done for this cylindrical structure. This modeling has been analyzed for all operating regions of
the transistors, capacitance estimation, and electrical field dependence on the capacitance. The results have
been compared with the previous research and tabulated. It has been observed that the transconductance (Gm)
values have been raised to 0.0106 S/µm from 0.000645 S/µm with the inclusion of 2D electron gas in the
core of CSDG MOSFET. This novel model occupies less area on the board, and routing is more accessible
than the conventional DGMOSFET design. The overall results have been following the agreement in terms of
accuracy, area tradeoff, and high speed, making the novel model suitable for high-frequency/RF applications.

INDEX TERMS CSDG MOSFET, cylindrical structure, double-gate (DG) MOSFET, high- dielectric,
microelectronics, nanotechnology, VLSI.

I. INTRODUCTION
Designing an Integrated Circuit (IC) or high-speed semi-
conductor devices requires a set of protocols or regulations
for its series of functionalities-photo-lithography, etching,
ion implantation, atomic layer deposition, metal and contact
creation, etc. [1]–[3]. The MOSFET design involves these
functions and had been performed by a group of marketable
entities. The double-gate model is extended as Cylindrical
Surrounding Double-Gate (CSDG) MOSFET to get three-
dimensional controllability and scalability in the nanometer
regime. The proposed model has been described as single
analytical expressions as in cylindrical dimension as the con-
ventional DG MOSFET is revolved along the axis outside
the second gate. This revolution creates the bottom gate
as the inner gate in the CSDG MOSFET design. The scaling
of the gate terminal length has been promising research in the
CSDG MOSFET structures [4]. The proposed model makes
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the transistor immune to Short Channel Effects (SCEs) and
highly controllable due to the cylindrical structure. Doping
acts as a significant factor in the CSDG MOSFETs since the
lightly doped or undoped channel is the preferred overdoped
material [4], [5]. This doped material has high fluctuations,
which result in poor mobility and threshold voltage (VT)
variations [6].

The CSDG MOSFETs have been experimented with in
previous research, but to calculate the actual performance of
the CSDG MOSFETs, capacitance modeling and electrical
field estimation for the same is required. The drain current
models were established in recent works in the nanome-
ter regime [7]–[11], which concentrates only on the long
channel models [5], [12]. Hence, capacitance modeling with
good accuracy of transconductance and electrical field in the
cylindrical structure is essential for the accurate designing of
CSDG MOSFETs.

Takagi and Takenaka [12] proposed a fabrication tech-
nique of the InGaAs ultrathin body channels on large size Si
wafers. Also, the effectiveness of III-V materials on TFETs
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through the enhancement of tunneling probability has been
demonstrated. Yu et. al. [13] have evaluated monolithic
3-D logic circuits and 6T SRAMs composed of InGaAs-n/
Ge-p ultra-thin-body CSDGMOSFETs by considering inter-
layer coupling through the TCAD mixed-mode model. Their
work indicates that monolithic 3-D InGaAs/Ge logic cir-
cuits provide equal leakage and better delay performance
compared with planar 2-D structure through the optimized
3-D layout. Rodwell et. al. [14] reviewed the development
of In(Ga)As-channel DG MOSFETs. The InAs and InGaAs
channels, combined with thin gate dielectrics, provide high
transconductance, but Off-state leakage can be high due
to band-band tunneling currents. This leakage is reduced
through thin 2.5 nm − 3 nm channels and InGaAs or InP
vertical field spacers in the raised source and drain. Kanale
and Baliga [15] demonstrated the BaSIC (DMM) topol-
ogy to improve the short-circuit time for a 1.2 kV SiC
power MOSFET product from 4.8 µs to 7.9 µs with a
17 % increase in on-state resistance by utilizing a commer-
cially available 100 V rated Gate-Source-Shorted (GSS) Si
Depletion-Mode power MOSFET (DMM). The optimization
of the Si GSS-DMM was discussed to achieve superior per-
formance, namely larger short-circuit time with less increase
in ON-resistance. Akbar et. al. [16] advanced using Deep
Learning (DL) algorithms in the design of cylindrical sur-
roundingMOSFET, device simulation for gate-all-around sil-
icon nanowire MOSFETs to predict electrical characteristics
of device induced by work function fluctuation. Notably,
the DL approach can extract crucial electrical characteristics
of a complicated device accurately with a 2 % error in a
cost-effective manner computationally.

In this research work, the exact cylindrical capacitive
model of the CSDG MOSFETs has been developed to erad-
icate SCEs and provide stability, scalability, a better routing
facility on board. The drain current equation has been modi-
fied for cylindrical structure, which is valid for all operating
regions. The lightly doped channel is most suitable for the
CSDG MOSFET design [17]–[21]. The model starts with
developing the current equation for the Double-Gate (DG)
MOSFET and extends to the nanometer region for the CSDG
MOSFET by substituting the equivalent parameters for the
cylindrical structure [22]. This proposed model has been val-
idated using the results extracted from the electronic device
simulator and also using predictive model values. The quan-
tum energy coefficients have not been covered in this model
as the threshold voltage drops rounded up in the quantum cor-
rection, which is important only in Silicon-based devices with
lower than 10 nm thickness [23]–[25]. The capacitance esti-
mation has been done using the conventional DG MOSFET
constraints and expanded to the cylindrical structure with the
electrical field model in the oxide layer [26], considering the
thickness of the oxide layer [27]. It has been maintained at
less than 10 nm for semiconductor material alloys [28], [29].
This research paper has been organized as follows:

Section II models the CSDGMOSFET using the capacitance
(electrical field associated) with high- dielectric material

between the gate and the channel. Also, this section deals with
the effect of channel doping. Section III describes the current
modeling of the proposedMOSFET. Section IV elaborates on
the capacitive model. Section V supports the proposed model
with quantitative and qualitative results followed by the dis-
cussions to enhance the performance of the CSDGMOSFET.
Finally, SectionVI concludes theworkwith confirmed results
and also provides future considerations.

II. STRUCTURAL ANALYSIS OF PROPOSED
CSDG MOSFET MODEL
The functional unit in the design of CSDG MOSFET is
the two-dimensional double-gate MOSFET that is shown
in fig. 1. Here in fig. 1 (dimensions, in nm), the green color
block represents the substrate material, the royal blue block
shows the outer gate terminal, and the light blue depicts
the inner gate terminal. The red color is the spacer mate-
rial. The yellow color of the DG MOSFET shows the oxide
layer where a high- (kappa) dielectric has been introduced.
The purple color shows the contacts at the source and drain
terminals. To design an efficient CSDG in three-dimension,
the 2-D DG MOSFET has been revolved along the axis
outside the second/internal gate terminal. This makes the pro-
posed design reflect three-dimension as CSDG MOSFET as
shown in fig. 2(a). The cross-sectional view of the proposed
CSDG MOSFET is represented as isometric and plane view
in fig. 2(b).

FIGURE 1. The dimensions (in nm) of the 2D structure of the double-gate
MOSFET.

The most significant challenges in the design of the CSDG
MOSFET are the account of capacitances and transconduc-
tances [30], [31]. This cylindrical structure constitutes the
capacitance between the concentric walls created by the inner
gate terminal and the channel inside the bulk separated by
the spacer layer. In this analysis, the structural parameters
(as in Table 1) of the cylindrical-shaped MOSFET are con-
sidered. The electrical field stored in the capacitor is derived
using the energy stored by charge accumulation in the CSDG
MOSFET [32]–[34].

The CSDG MOSFET design has been analyzed using
the capacitive model derived in the following section.
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FIGURE 2. The proposed CSDG MOSFET. The double-gate MOSFET is
rotated around the axis outside/below the lower gate to get the
cylindrical-shaped CSDG MOSFET.

This enables the proposed MOSFET suitable for the appli-
cation such as low power RF device design, industrial
automation, and consumer electronics [35]–[37]. The oxide
capacitive effect has been analyzed using the energy stored in
the concentric cylindrical walls, which constitutes the electri-
cal field [38].

III. CURRENT MODELING FOR CSDG MOSFET
The current passing through the device is commonly termed
as ON-current and the current passing through the insulator
or the high- dielectric material is termed as the leakage
current [39]. In the MOSFET ON state, the current flowing
between the source and drain terminals is often referred to as
the on-current [40], [41]. Here, theMOSFET current equation
has been derived for the cylindrical structure and applied to
model the cylindrical surrounding double-gate MOSFET.

For n-channelMOSFET, the current equations [5]–[8], [42]
can be given as (1), shown at the bottom of the page.

For p-channelMOSFET, the current equations [5]–[8], [42]
can be given as (2), shown at the bottom of the page.

The transistors with multiple threshold voltages (Vt) has
been in need to design low power circuit in nanometer
and its optimization. Channel doping plays a significant
role in designing low-power circuits with higher mobility
and controllability [43]. The use of intrinsic channel mate-
rial is avoided in recent research to increase mobility and
lower dopant fluctuations, reducing controllability. However,
to fabricate multi-gate terminals in a single structure, enough
doping has to be used to stay in the active operating region.
With a lower amount of inversion charge carriers or minimum
gate voltages, the depletion charge due to low Vg is apprecia-
ble in non-zero energy across the channel length [44]. The
intrinsic material has zero initial energy, and the potential
was observed to be constant in the active region. The doping
increases the operating range such as in the case of DG
MOSFET, doping exhibits linear electric field and an acute
drop of potential in the center of the channel.

The charge inversion is acquired along with the interface
layer and accumulates close to this layer at very minimum
gate voltages [17], [45]. Similar structures can be used in the
cylindrical structure as well in the parabolic field is set up
at very minimum gate voltages in the cylindrical coordinate.
The positions of the charge accumulated in the concentric
cylinders have been fixed inside the centroid position, which
can be used to modify the effective capacitance expression as
in (3). The capacitance is the combination of the capacitance
connected series, gate capacitance, and the oxide capaci-
tance, channel capacitance components due to the centroid
point chosen inside the cylindrical structures [7], [16], [46].
For a cylindrical surrounding double-gate MOSFET is given

IDS = 0 for VGS < VT

ID(linear) =
µn

2
.Cox.

W
L

[
2 (VGS − VT) .VDS − V2

DS

]
for (VGS ≥ VT)& (VDS < VGS − VT)

ID(saturation) =
µn

2
.Cox.

W
L
(VGS − VT)

2 (1+ λVDS) for VGS ≥ VT
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as follows, in general, for cylindrical structures, cylindrical
capacitance per unit length is often expressed as:

C
Lc
=

2πkε0

ln
(
b
a

) (3)

Thereafter, the capacitance modeling has been executed
for the proposed CSDG MOSFET using the (1) and (2). The
CSDG MOSFET delivers a cylindrical capacitance between
the gate and conducting material. There exists an oxide layer
that acts as a dielectric material [47].

Hence, this setup constitutes a concentric cylindrical
capacitor between the layers of the transistor [38], [42].
The concentric cylindrical capacitance is similar to the
parallel plate capacitor with the cylindrical coordinates.
The cylindrical capacitance parameters of (3) are substi-
tuted in (1) and (2), forming the (4) and (5), respectively.
For n-channel CSDG MOSFET, the drain current can be
expressed as (4), shown at the bottom of the page.

For p-channel CSDG-MOSFET, the drain current can be
given as (5), shown at the bottom of the page.

IV. EXTENSIVE CAPACITIVE MODELING
In this modeling, the capacitance effect has been calcu-
lated for the two-dimensional structure initially, and then it
has been extended to the cylindrical structure. The CSDG
MOSFET has complex capacitance expressions, which are
modeled using the electrical field in the cylinder and the
energy stored in the concentric sheets of the cylinder (area
between gate and the channel separated by a high- dielectric,
acts as a concentric capacitor inside the CSDG MOSFET)
[48], [49]. The high- dielectric material acts as a vital
modeling capacitance parameter in the CSDG MOSFET
paradigm [9], [12].

The proposed CSDG structure is a cylindrical form, and
modeling of a cylinder is essential tomodel for the same. Cus-
tomarily, the cylindrical capacitance of the CSDG MOSFET
is expressed as:

Cox_cyl = kεox
Acap

d
(6)

where the area of the cylindrical structure is given by:

Acyl = 2π r2 + h (2π r) (7)

The cylindrical capacitance of the oxide layer (preferably
high- dielectric material) in the CSDG MOSFET is given
by (6). This capacitor has become a dielectric cylindrical
capacitor of area Acap:

Acap = Ac1 − Ac2 (8)

The area of the two cylindrical structures has to be calcu-
lated and after subtracting the area of the cylinder having a
smaller radius (inner, b) from the area of a cylinder having a
larger radius (outer, a), it gives the exact area of the capacitor
dielectric material. It has been used to calculate the effect
of the high- dielectric material in the construction in the
CSDG MOSFETs [50]. The outer and inner cylinder’s area
is denoted as Ac1 and Ac2.

Ac1 = 2π r2c1 + h (2π rc1)

Ac2 = 2π r2c2 + h (2π rc2)

}
(9)

Substituting (9) in (8) as

Acap =

[
2π r2c1 + h (2π rc1)

]
−

[
2π r2c2 + h (2π rc2)

]
(10a)

Therefore,

Acap = 2π
[(

r2c1 − r2c2
)
+ h (rc1 − rc2)

]
(10b)

Cylindrical capacitance can be given as,

Cox_cyl = kε0
A
d
= kε0

2π
[(
r2c1 − r2c2

)
+ h (rc1 − rc2)

]
d

=
2πkε0

d

[(
r2c1 − r2c2

)
+ h (rc1 − rc2)

]
(11)

The capacitance in the cylindrical structure is the function
of the radii of the inner (a) and the outer (b) cylinders. The
expression as in (11) shows the capacitance due to the oxide
layer between the gate and channel materials.

A. ELECTRICAL FIELD IN THE CAPACITOR
OF CSDG MOSFET
In general, energy stored in the capacitor is given as Ecap:

Ecap =
1
2
Cox_cyl.V2 (12)
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(5)
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Substituting (11) in (12) and after reduction will give:

Ecap_cyl =
πkε0V2

d

[(
r2c1 − r2c2

)
+ h (rc1 − rc2)

]
(13)

An electric field in the cylindrical capacitor within the
cylinder is expressed as:

E =
V
d
=

µ0

2πR2 .
µnπkε0

ln
(
b
a

) .W
L

[
2 (VGS − VT)VDS − V2

DS

]
E=−

µ0µnkε0
2R2 . ln

( a
b

)
.
W
L

[
2 (VGS − VT)VDS−V2

DS

]


(14)

The electrical field is inversely proportional to the radius
of the three-dimensional cylindrical structure. As shown
in (14), the expression for the electric field is applied in the
following section to derive the electric field associated with
the oxide layer. This gate oxide layer acts as a dielectric mate-
rial. So, the entire design comprises a concentric cylindrical
capacitor between the layers of the CSDG MOSFET. The
concentric cylindrical capacitance is similar to the parallel
plate capacitor but with the cylindrical coordinates [51]–[53].
Hence, the modeling of this electric field plays a significant
role in analyzing the capacitive effect and the energy stored
in the MOSFET.

B. COMPREHENSIVE ELECTRICAL FIELD
IN THE OXIDE LAYER
An electric field in the inner cylindrical capacitor with uni-
form current density is expressed as:

Einner=−
µ0µnkε0

2r
. ln

( a
b

)
.
W
L

[
2 (VGS−VT)VDS−V2

DS

]
Eouter=

µ0µnkε0
r

. ln
( a
b

)
.
W
L

[
2 (VGS−VT)VDS−V2

DS

]


(15)

The total electric field of the cylindrical structure of the
oxide layer is given by the expression after reduction (14)
gives the electric field associated with the oxide layer of the
cylindrical capacitor.

The expression for the electric field in the oxide layer of
CSDG MOSFET is given as:

Eox=Einner+Eouter

Eox=

{
−
µ0µnkε0

2r
. ln

( a
b

)
.
W
L

[
2 (VGS−VT)VDS−V2
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]}
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{
µ0µnkε0

r
. ln

( a
b

)
.
W
L

[
2 (VGS−VT)VDS−V2
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]}
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1
2r
µ0µnkε0. ln
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b

)
.
W
L

[
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]
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(16)

Here, the expression, Eox provides the reduced form of the
electric field associated with the cylindrical capacitor with a
high- dielectric material between two concentric cylindrical
structures.

This analysis has been further divided into following
sections:

a. For CSDG MOSFET, a = rc1; b = rc2, in (15),
the energy stored in the oxide layer becomes,

Eox =
1
2r
µ0µnkε0. ln

(
rc1
rc2

)
.
W
L

[
2 (VGS − VT)VDS−V2

DS

]
(17)

b. For rc1 = rc2 = R

Ecap_cyl =
πkε0V2

d
V2/cm (18)

c. For p-type CSDG MOSFET, a = rc1; b = rc2 in
Eq. (15)

Eox = −
µ0µpε0k

2R2 . ln
[
rc1
rc2

]
.
W
L
.
[
2 (VGS−VT)VDS−V2

DS

]
(19)

The small-signal model of capacitance at the gate terminal
with lightly doped channel and the high- dielectric material
in CSDG MOSFET (as in fig. 1) (Gate length = 10 nm,
tox = 2 nm, and L = 30 nm) has been simulated using
electronic simulator.

The device has been used in the nanometer range in the
linear region to record the capacitance values (drain voltage,
Vds = 50mV) and compared them with the predictive model.
The resultedmodel predicts and effectively calculates the gate
capacitances. As the centroid approaches the interface layer
when the gate voltage is increased, the gate capacitance also
rises to its maximum.

V. RESULTS AND DISCUSSIONS
The cylindrical model has been simulated using the electronic
simulator and the results have been compared with the Pre-
dictive Technology Model (PTM) values.

The center of the cylindrical structure was extracted from
the simulation results and the charge density distribution
graphs were plotted as in fig. 3(a) double-gate and 3(b)
cylindrical surrounding double-gate MOSFET, respectively.
The exponential values of the results are in good agreement
with the predicted values.

The simulated result is submissive in order with the
recorded values. The MOSFET behaves submissively to
the conventional planar structure. The predicted values of
gate thickness for DG MOSFET below 12 nm possess the
normalized center (tcenter/tox) with 0.31825, 0.29075, and
0.0.285125 for 5 nm, 10 nm, and 12 nm, respectively. But in
order of higher thickness, it has been observed to be from
0.280625 to 0.252125 for 25 nm and 60 nm, respectively.
The experimented simulation was carried out and it showed
agreement to the predicted values. The simulation result for
60 nm gate thickness provides a normalized center of 0.25025
that is nearer to the predicted values. The predicted value
and the electronic device simulated values are in perfect
agreement that states that the capacitive model proposed has
been satisfied. The increment in the gate voltage provides
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FIGURE 3. Charge along the center of the cylindrical structure has a
dependence on dimensions of the MOSFET with simulated values and
predictive model.

the development of the charge carrier accumulation along the
channel length, which increases the chance of band bending
towards the interface between the gate and the channel. The
charge density distribution is shown in fig. 4 to depict the
various radii of the cylindrical structure of the proposed
MOSFET. The novel model can be used in hybrid RF appli-
cations and also introduced to the different configurations of
heterostructures.

The predictivemodel of theMOSFET has been used to find
the charge center in the cylinder, which has been in agreement
with the proposed analytical model as shown in fig. 5. This
shows the exact location of the center for various radii of
the proposed CSDG MOSFET. This design can be used to
design complex electronic devices like high-precision hybrid
RF devices.

The value of the charge density distribution has been ana-
lyzed for various radii of the CSDG MOSFET, which states
the proposed model is working successfully in all regions
of operations satisfying the desired outputs. The core of the

FIGURE 4. Simulated charge density distribution along the length of the
channel in the diameter of the CSDG MOSFET structure in the
subthreshold operating region for various radii.

FIGURE 5. The cylindrical center for the charge has been shifted towards
the interface between the gate and the oxide layer.

cylindrical surrounding double-gate MOSFET plays a major
role in improving the transconductance parameter. Initially,
the core of the CSDG MOSFET has been designed without
any material that shows reduced improvement. The two-
dimensional electron gas (2DEG) has been added as core
material to enhance the electron transmission inside the core.
This improves the velocity of the electrons in the inner gate
material. So, the transconductance in the active region has
been improved well and it is more submissive to the CSDG
MOSFET without 2D electron gas. The transconductance
values have been improved with the inclusion of 2D electron
gas in the core inside the inner gate cylinder.

At normal room temperature, Vd = 0.167 V , it has
been observed that the transconductance (Gm) values have
been raised to 0.0106 S/µm from 0.000645 S/µm with-
out and with 2D electron gas respectively. The value of
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FIGURE 6. The transconductance values range for various radii of the
inner cylindrical structure showing the effect of the 2D electron gas in the
core of the proposed CSDG MOSFET.

TABLE 1. Parameters used for capacitance modeling.

transconductance has been improved from 0.000208 S/µm
to 0.00415 S/µm at Vd = 0.5 V for the radius of 10 nm. For
a greater impact, the usage of electron gas has been showing a
considerable amount of improvement in the Gm values for the
radii of the proposed CSDG MOSFET. Hence, the modeled
CSDG MOSFET has been appropriate to work in hybrid RF
devices and most suitable for designing consumer electronic
devices.

VI. CONCLUSION AND FUTURE RECOMMENDATIONS
In this research work, an analytical capacitive model for
the cylindrical surrounding double-gate MOSFET had been

proposed. It has been validated in all the operating regions
of the transistor. The lightly doped cylindrical structure is
capable of performing characteristics in the linear active
region. The overall results show very well submissive than
the conventional MOSFET. A compact analytical capacitive
model for the cylindrical structure had been analyzed with
a three-dimensional cylindrical structure. The simulations
provide agreement with the proposed CSDG MOSFET with
the parametric evaluation with the cylindrical MOSFET and
the energy stored in a cylindrical structure, electrical field
associated with that.

In the future, the CSDGwith heterostructures can be devel-
oped to provide high electron mobility inside the channel.
The three-dimensional design can be improved in the elec-
tron velocity by applying a high- dielectric along with the
arbitrary alloy of semiconductor materials. A further study
can be carried out to improve ION/IOFF ratio.

APPENDIX
See Table 1.
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