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ABSTRACT Visual scene understanding is the core task in making any crucial decision in any computer
vision system. Although popular computer vision datasets like Cityscapes, MS-COCO, PASCAL provide
good benchmarks for several tasks (e.g. image classification, segmentation, object detection), these datasets
are hardly suitable for post disaster damage assessments. On the other hand, existing natural disaster datasets
include mainly satellite imagery which has low spatial resolution and a high revisit period. Therefore, they do
not have a scope to provide quick and efficient damage assessment tasks. Unmanned Aerial Vehicle (UAV)
can effortlessly access difficult places during any disaster and collect high resolution imagery that is required
for aforementioned tasks of computer vision. To address these issues we present a high resolution UAV
imagery, FloodNet, captured after the hurricane Harvey. This dataset demonstrates the post flooded damages
of the affected areas. The images are labeled pixel-wise for semantic segmentation task and questions are
produced for the task of visual question answering. FloodNet poses several challenges including detection
of flooded roads and buildings and distinguishing between natural water and flooded water. With the
advancement of deep learning algorithms, we can analyze the impact of any disaster which canmake a precise
understanding of the affected areas. In this paper, we compare and contrast the performances of baseline
methods for image classification, semantic segmentation, and visual question answering on our dataset.
FloodNet dataset can be downloaded from here: https://github.com/BinaLab/FloodNet-Supervised_v1.0.

INDEX TERMS Artificial intelligence, deep learning, hurricane Harvey, image classification, machine
learning, natural disaster dataset, remote sensing, semantic segmentation, unmanned aerial vehicle (UAV),
visual question answering.

I. INTRODUCTION
Visual scene understanding has the potential to advance
many decision support systems. The purpose of scene under-
standing is to classify the overall category of a scene as
well as to understand the interrelationship among different
object classes at both instance and pixel level. Recently,
several datasets [1]–[3] have been presented to study different
aspects of scenes by implementing many computer vision
tasks. A major factor in the success of most deep learning
algorithms is the availability of large-scale datasets. Publicly
available ground imagery datasets such as ImageNet [1],
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Microsoft COCO (Common Objects in Context) [2], PAS-
CAL Visual Object Classes [3], Cityscapes [4] accelerate the
advanced development of current deep neural networks, but
aerial imagery data sets are scarce since the annotation is
more tedious to obtain.

Aerial scene understanding datasets are helpful for urban
management, city planning, infrastructuremaintenance, dam-
age assessment after natural disasters, and high definition
maps for self-driving cars. Existing aerial datasets, how-
ever, are limited mainly to classification [5], [6] or seman-
tic segmentation [5], [7] of few individual classes such as
roads or buildings. Most of these datasets do not address the
unique challenges in understanding post-disaster scenarios as
a task for disaster damage assessment. Available post-disaster
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damage assessment datasets [8]–[11] mainly contain satel-
lite images and images collected from social media. Satel-
lite images are low in resolution and costly. On the other hand,
images posted on social media are noisy and not scalable for
deep learning models.

For quick response and recovery on large scale after a
natural disaster such as a hurricane, wildfire, and extreme
flooding access to high-resolution aerial images are critically
important for the response team. To fill this gap we present
FloodNet dataset associated with three different computer
vision tasks namely classification, semantic segmentation,
and visual question answering (VQA).
FloodNet, provides high-resolution images taken from

low altitude, as compared to satellite images which capture
images from a higher altitude and may have obstructions
from clouds and smoke. The characteristics ofFloodNet bring
more clarity to scenes and can help deep learning models
in making more accurate decisions regarding post-disaster
damage assessment. Currently, most of the tasks considering
natural disaster datasets are restricted to mainly classification
and object detection. Our dataset offers pixel-level annotation
for semantic segmentation and VQA, besides image classifi-
cation. All these three computer vision tasks can assist in the
understanding of a scene and help rescue teams efficiently
manage their operations during emergencies. Figure 1 shows
sample annotations offered by FloodNet.

Our contribution is two folds. First, we introduce
high-resolution UAV imagery with pixel-level annotations
named FloodNet for post-disaster damage assessment. Sec-
ondly, we compare the performance of several classification,
semantic segmentation, and VQA methods on our dataset.
To the best of our knowledge, this is the first semantic seg-
mentation and VQA work focused on UAV imagery for any
disaster damage assessment.

The remainder of this paper is organized as follows - it
begins with highlighting the existing datasets for natural dis-
asters and also describes the computer vision tasks of image
classification, semantic segmentation, and VQA in section II.
Next, section III describes the FloodNet dataset including its
collection and annotation process. Section IV describes the
experimental setups for all three aforementioned tasks and
section V gives a complete analysis of the results. Finally
section VI summarizes the results including conclusion and
future works.

II. RELATED WORKS
In this section we provide an overview of datasets designed
for natural disasters damage analysis, followed by a survey of
techniques targeting aerial and satellite image classification,
segmentation, and VQA.

A. DATASETS
Natural disaster datasets are of two types: A) non-imaging
dataset (text, tweets, social media posts) [28], [29] and B)
imaging dataset [5], [7], [24]. Based on the position of
the captured image, current image-based natural disaster

datasets can be classified into three classes: B1) ground-level
images [30], B2) satellite imagery [5], [7], [23]–[26], and B3)
aerial imagery [6], [22], [27]. Recently several datasets have
been introduced by researchers for natural disaster damage
assessment. Nguyen et al. proposed an extension of AIDR
system [21] to collect data from social media in [30]. AIST
Building Change Detection (ABCD) dataset has been pro-
posed in [22] which includes aerial post tsunami images
to identify whether the buildings have been washed away.
A combination of SpaceNet [31] and DeepGlobe [32] was
presented in [23] and a segmentation model was proposed
to detect changes in man-made structures and estimate the
impact of natural disasters. Chen et al. in [24] proposed
a fusion of different data resources for automatic building
damage detection after a hurricane. The dataset includes
satellite and aerial imageries along with vector data. Onera
Satellite Change Detection (OSCD) dataset was proposed
in [25] which consists of multispectral aerial images to
detect urban growth and changes with time. A collection of
images of buildings and lands named Functional Map of the
World (fMoW) was introduced by Christie et al. in [26].
Aerial Image Database for Emergency Response (AIDER)
is proposed by Kyrkou and Theocharides in [6] for clas-
sification of UAV imagey. Rudner et al. [7] proposed
a satellite imagery dataset collected from Sentinel-1 and
Sentinel-2 satellites for semantic segmentation of flooded
buildings. Gupta et al. proposed xBD [5] which have both
pre- and post-event satellite images in order to assess build-
ing damages. Recently ISBDA (Instance Segmentation in
Building Damage Assessment) is created by Zhu et al.
in [27] for instance segmentation while images are collected
using UAVs.

A comparative study among different disaster and
non-disaster datasets is shown in Table 1. As you can see
in Table 1, our dataset is the only high resolution UAV dataset
collected after a hurricane which contains all computer vision
tasks including classification, semantic segmentation, and
VQA. Although several pre- and post-disaster datasets have
been proposed over the years, these datasets primarily consist
of satellite images. Satellite imageries, including those with
high resolution, do not provide enough details about the post
disaster scenes which are necessary to distinguish among
different damage categories of different objects. On the other
hand the primary source of the ground-level imageries is
social media [30], these imageries lack geo-location tags [27]
and suffers from data scarcity for deep learning training [11].
Although some aerial datasets [6], [27] are prepared using
UAVs, these datasets lack low altitude high resolution images.
AIDER [6] dataset collected images from different sources
for image classification task and contains far more examples
of normal cases rather than damaged objects; therefore lacks
consistency and generalization. ISBDA [27] provides only
building instance detection capability rather than inclusion
of other damaged objects and computer vision tasks like
semantic segmentation and VQA. To address all these issues,
FloodNet includes low altitude high resolution post disaster
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FIGURE 1. FloodNet dataset overview for Classification, Semantic Segmentation and Visual Question
Answering.

TABLE 1. A brief summary of existing datasets.

images annotated for classification, semantic segmentation,
and VQA. FloodNet provides more details about the scenar-
ios which help to estimate the post disaster damage assess-
ment more accurately.

B. ALGORITHMS
Here we review the related computer vision algorithms and
some of their applications in disaster damage assessment.

1) CLASSIFICATION
The utility of deep neural networks was realized when
they achieved high accuracy in categorizing images into
different classes. This was given a boost mainly by
Krizhevsky et al. [33] which achieved state-of-the-art per-
formance on the ImageNet [1] dataset in 2012. As this is
arguably the most primitive computer vision task, a lot of
networks were proposed subsequently which could perform

classification on public datasets such as CIFAR [34], [35],
MNIST [36], and FashionMNIST [37].

This led to a rise in networks such as VGGNet [38],
ResNet [39], InceptionNet [40], Xception [41], MobileNet
[42] etc., where the network architectures were experimented
with different skip connections, residual learning, multi-level
feature extraction, separable convolutions, and optimiza-
tion methods for mobile devices. Although these networks
achieved good performance on day to day images of animals
and vehicles, they were hardly sufficient to make predictions
on scientific datasets such as those captured by air-borne or
space-borne sensors.

In this regard, some image classification networks have
been explored for the purpose of post-disaster damage detec-
tion, such as [21], [43]–[46]. [21] used crowd sourced images
from social media which captured disaster sites from the
ground level. [44] used a Support Vector Machine on top of a
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Convolutional Neural Network (CNN) followed by a Hidden
Markov Model post-processing to detect avalanches. [45]
compared [38] and [39] for fire detection, but then again the
dataset used contained images taken by hand-held cameras on
the ground. [46] developed a novel algorithm which focused
on wildfire detection through UAV images. [43] have done
extensive work by developing a CNN for emergency response
towards fire, flood, collapsed buildings, and crashed cars.

2) SEMANTIC SEGMENTATION
Semantic segmentation is one of the prime research areas in
computer vision and an essential part of scene understand-
ing. Fully Convolutional Network (FCN) [47] is a pioneer-
ing work which is followed by several state-of-art models
to address semantic segmentation. From the perspective of
contextual aggregation, segmentation models can be divided
into two types. Models, such as PSPNet (Pyramid Scene
Parsing Network) [48] or DeepLab [49], [50] perform spa-
tial pyramid pooling [51], [52] at several grid scales and
have shown promising results on several segmentation bench-
marks. The encoder-decoder networks combines mid-level
and high-level features to obtain global context from differ-
ent scales. Some notable works using this architecture are
[50], [53]. On the other hand, there are models [54]–[56]
which obtain feature representation by learning contextual
dependencies over local features.

Besides proposing natural disaster datasets many
researchers have also presented different deep learning mod-
els for post natural disaster damage assessment. Authors
in [23] perform previously proposed semantic segmenta-
tion [57] on satellite images to detect changes in the struc-
ture of various man-made features, and thus detect areas
of maximal impact due to natural disaster. Rahnemoon-
far et al. present a densely connected recurrent neural network
in [58] to perform semantic segmentation on UAV images
for flooded area detection. Rudner et al. fuse multiresolu-
tion, multisensor, and multitemporal satellite imagery and
propose a novel approach named Multi3Net in [7] for rapid
segmentation of flooded buildings. Gupta et al. propose a
DeepLabv3 [50] and DeepLabv3+ [59] inspired RescueNet
in [60] for joint building segmentation and damage classi-
fication. All these proposed methods address the semantic
segmentation of specific object classes like river, buildings,
and roads rather than complete scene post disaster scenes.

Above mentioned state-of-art semantic segmentation mod-
els have been primarily applied on ground based imagery [4],
[61]. In contrast we apply three state-of-art semantic segmen-
tation networks on our proposed FloodNet dataset. We adopt
one encoder-decoder based network named ENet [62], one
pyramid pooling module based network PSPNet [48], and the
last model DeepLabv3+ [59] employs both encoder-decoder
and pyramid pooling based modules.

3) VISUAL QUESTION ANSWERING (VQA)
Many researchers proposed several datasets and methods for
VQA task.

To find the right answer, VQA systems need to model
the question and image (visual content). Substantial research
efforts have been made on the VQA task based on real
natural and medical imagery in the computer vision and nat-
ural language processing communities [14], [63]–[65] using
deep learning-based multimodal methods [66]–[74]. In these
methods, different approaches for the fined-grained fusion
between semantic features of image and question have been
proposed. Most of the recent VQA algorithms have trained
on natural image based datasets such as DAQUAR (Dataset
for Question Answering on Real-world images) [75],
COCO-VQA [14], Visual Genome [15], Visual7W [16].
In addition Path-VQA [19] and VQA-MED [20] are medi-
cal images for which VQA algorithms are also considered.
There are no such datasets apt for training and evaluating
VQA algorithms regarding disaster damage assessment task.
In this work, we present FloodNet dataset to build and test
VQA algorithms that can be implemented during natural
emergencies. To the best of our knowledge, this is the first
VQA dataset focused on UAV imagery for disaster damage
assessment. To evaluate the performances of existing VQA
algorithms we have implemented baseline models, Stacked
Attention network [63], and MFB with Co-Attention [74]
network on our dataset.

III. THE FloodNet DATASET
The data is collected with small UAV platform, DJI Mavic
Pro quadcopters, after Hurricane Harvey. Hurricane Harvey
made landfall near Texas and Louisiana on August, 2017, as a
Category 4 hurricane. The Harvey dataset consists of video
and imagery taken from several flights conducted between
August 30 - September 04, 2017, at Ford Bend County in
Texas and other directly impacted areas. The dataset is unique
for two reasons. One is fidelity: it contains imagery from
sUAV taken during the response phase by emergency respon-
ders, thus the data reflects what is the state of the practice and
can be reasonable expected to be collected during a disaster.
Second: it is the only known database of sUAV imagery
for disasters. Note that there are other existing databases of
imagery from unmanned and manned aerial assets collected
during disasters, such as National Guard Predators or Civil
Air Patrol, but those are larger, fixed-wing assets that operate
above the 400 feet AGL (Above Ground Level), limitation of
sUAV. All flights were flown at 200 feet AGL, as compared
to manned assets which normally fly at 500 feet AGL or
higher. At a height of 200 feet, our images correspond to
a very high spatial resolution, about 1.5cm, making them
unique compared to other datasets for natural disasters. The
post-flooded damages to affected areas are demonstrated in
all the images. There are several objects (e.g. construction,
road) and related attributes (e.g. state of an object such
as flooded or non-flooded after Hurricane Harvey) repre-
sented by these images. For the preparation of this dataset
for semantic segmentation and VQA, these attributes are
considered. FloodNet dataset can be downloaded from here:
https://github.com/BinaLab/FloodNet-Supervised_v1.0
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A. ANNOTATION TASKS
After natural disasters, the response teamfirst need to identify
the affected neighborhoods such as flooded neighborhoods
(classification tasks). Then on each neighborhood they need
to identify flooded buildings and roads (semantic segmen-
tation) so the rescue team can be sent to affected areas.
Furthermore, damage assessment after any natural calamities
done by querying about the changes in object’s condition so
they can allocate the right resources. Based on these needs
and with the help of response and rescue team, we defined
classification, semantic segmentation and VQA tasks.

In total 2343 images have been annotated with 9 classes
which include building-flooded, building-non-flooded, road-
flooded, road-non-flooded, water, tree, vehicle, pool, and
grass. A buildings is classified as flooded when at least one
side of a building is touching the flood water. Although we
have classes created for flooded buildings and roads, to dis-
tinguish between natural water and floodwater, ‘‘water’’ class
has been created which represents any natural water body
like river and lake. For the classification task, each image is
classified either ‘‘flooded’’ or ‘‘non-flooded’’. If more than
30% area of an image is occupied by flood water then that
area is classified as flooded, otherwise non-flooded. Number
of images and instances corresponding to different classes are
shown in Table 2. Our images are quite dense. On average,
it takes about one hour to annotate each image. To ensure
high quality, we performed the annotation process iteratively
with a two-level quality check over each class. The images
are annotated on V7 Darwin platform [76] for classification
and semantic segmentation. Annotation tasks on V7 Darwin
platform is performed in two steps. In the first step the image
is assigned to an annotator randomly. After the annotation is
complete, the images are sent to the reviewers. Depending
on the quality of the annotation, the images are either being
accepted or sent back to the annotators with comments. The
review and feedback cycle continues until the annotation
reaches the high quality.

We split the dataset into training, validation, and test sets
with 70% for training and 30% for validation and testing. The
training, validation, and testing sets for all the three tasks will
be publicly available.

TABLE 2. Number of images and instances corresponding to different
classes.

B. VQA TASK
To provide VQA framework, we focus on generating ques-
tions related to the building, road, and entire image as a

whole for our FloodNet dataset. By asking questions related
to these objects we can assess the damages and understand
the situation very precisely. Attribute associated with afore-
mentioned objects can be identified from the Table 2. For
the FloodNet-VQA dataset,∼ 4500 question-image pairs are
considered while training VQA networks. All the questions
are created manually. Each image has an average of 3.5 ques-
tions. Each of the questions is designed to provide answers
which are connected to the local and global regions of images.
In Figure 1, some sample questions-answer pairs are pre-
sented from our dataset.

1) TYPES OF QUESTION
Questions are divided into a four-way question group, namely
‘‘Simple Counting’’, ‘‘Complex Counting’’, ‘‘yes/no’’, and
‘‘Condition Recognition’’. In the Figure 2, distribution of the
question pattern based on the first words of the questions is
given. All of the questions start with a word belonging to the
set {How, Is, What}. Maximum length of question is 11.

In the Simple Counting problem, we ask about an object’s
frequency of presence (mainly building) in an image, regard-
less of the attribute (e.g. How many buildings are in the
images?). Both flooded and non-flooded buildings can appear
in a picture in several cases (e.g. bottom image fromFigure 1).
The question type Complex Counting is specifically

intended to count the number of a particular building attribute
(e.g. How many flooded/non-flooded buildings are in the
images?) We’re interested in counting only the flooded or
non-flooded buildings from this type of query. In comparison
to simple counting, a high-level understanding of the the
scene is important for answering this type of question. This
type of question also starts with the word ‘‘How’’.
Condition Recognition questions investigate the condition

of the entire image as a whole or any object. ‘‘What is the
condition of the road?’’, ‘‘What is the overall condition of the
entire image?’’ are the examples from this category, Starting
word for this type of question is ‘‘What’’.
Yes/No type question is categorised as the fourth type of

question. ‘‘Is the road flooded?’’, ‘‘Is the road non-flooded?’’
are some of the examples from this category. Starting word
for this type of question is ‘‘Is’’.

2) TYPES OF ANSWER
Both flooded and non-flooded buildings can exist in any
image. For complex counting problem, we only count
either the flooded or non-flooded buildings from a given
image-question pair. Roads are also annotated as flooded or
non-flooded. Second image from the Figure 1 depicts both
flooded and non-flooded roads. Thus, the answer for the ques-
tion like ‘‘What is condition of road?’’ for this kind of images
will be both ‘flooded and non-flooded’. Furthermore, entire
image may be graded as flooded or non-flooded. Table 3
refers to the possible answers for three types questions and
from Figure 2, we can see the possible answer distribution
for different types of question. Most frequent answers for
counting problem, in general, are ‘4, 3, 2, 1’ whereas ‘27,
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FIGURE 2. VQA Data Statistics: Left figure represents the distribution of the question pattern based on starting word; Right-top, Right-bottom
figures describes the distribution of possible answers for different question types.

TABLE 3. Set of possible answers for three types of questions.

30, 41, 40’ are the less frequent answers. For Condition
Recognition problem, ‘non-flooded’, and for yes/no type of
question, ‘yes’ is the most common answer.

IV. IMPLEMENTATION
To understand the usability of these images for flood detec-
tion, we majorly carry out three tasks, which are image clas-
sification, semantic segmentation, and VQA. In this section
we describe howwe implement the three tasks, and the hyper-
parameters involved. For all of our tasks, we use NVIDIA
GeForce RTX 2080 Ti GPU with an Intel Core i9 processor.

For network evaluation, we use mean intersection over
union (mIoU) and accuracy as the metrics defined in Equa-
tions 1 and 2 respectively. In these equations k represents the
total number of classes, whereas TP, TN, FP, FN represent
true positives, true negatives, false positives, and false nega-
tives respectively.

mIoU =
1
k

k∑
i=1

TPi
TPi + FPi + FNi

(1)

Accuracy =
1
k

k∑
i=1

TPi + TNi
TPi + TNi + FPi + FNi

(2)

A. IMPLEMENTATION OF IMAGE CLASSIFICATION
For image classification, we used three state-of-the-art
networks i.e. InceptionNetv3 [77], ResNet50 [39], and
Xception [41] as base models to classify the images into

Flooded and Non-Flooded categories. Each of these networks
have significantly contributed to the field of computer vision
by introducing a unique design element, such as the residual
blocks in ResNet, themulti-scale architecture in InceptionNet
and depthwise separable convolutions in Xception. For our
classification task, the output from these base models was
followed by a global average pooling layer, a fully connected
layer with 1024 neurons having rectified linear unit (RELU)
activation, and finally by two neurons with softmax activa-
tion. We initialized our networks with ImageNet [1] weights
and trained them for 30 epochs, with 20 steps for every
epoch, using binary cross entropy loss. We used the Adam
optimizer [78] with a learning rate of 0.001, and resized all
images to 224 × 224 dimension.

B. IMPLEMENTATION OF SEMANTIC SEGMENTATION
For semantic segmentation, we implemented three methods,
i.e. PSPNet [48], ENet [62], and DeepLabv3+ [59]; and
evaluate their performance on FloodNet dataset. For imple-
menting PSPNet, ResNet101 was used as backbone. We used
‘‘poly’’ learning rate with base learning rate 0.0001. Momen-
tum, weight decay, power, and weight of the auxiliary loss
were set to 0.9, 0.0001, 0.9, and 0.4 respectively. For ENet we
used 0.0005 and 0.1 for learning rate and learning rate decay
respectively. Weight decay was set to 0.0002. Similarly for
DeepLabv3+ we used poly learning rate with base learning
rate 0.01. We set weight decay to 0.0001 and momentum to
0.9. For image augmentation we used random shuffling, scal-
ing, flipping, and random rotation which helped the models
avoid overfitting. From different experiments it was proved
that larger ‘‘crop size’’ and ‘‘batch size’’ improve the perfor-
mance of the models. During training, we resized the images
to 713× 713 since large crop size is useful for the high reso-
lution images. For semantic segmentation evaluation metric,
we used mean intersection over union (mIoU).
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TABLE 4. Per-class intersection over union (in %) and their mean value (mIoU) on FloodNet testing set.

C. IMPLEMENTATION OF VQA
Finally, for VQA, simple baselines (concatenation/element-
wise product of image and text features) and Multimodal
Factorized Bilinear (MFB) with co-attention [74], Stacked
Attention Network [63] have been considered for this study.
All these models are configured according to our dataset.
We do not considered any pre-trained weights for image
feature extraction. For image and question feature extraction,
respectively, VGGNet (VGG 16) [38] and Two-Layer LSTM
(Long short-term memory) [80] are taken into account. Fea-
ture vector from last pooling layer of the VGGNet and
1024-D vector from the last layer of Two-Layer LSTM are
extracted as the image and question vectors respectively.
Dataset is split into training, validation and testing data.
All the images are resized to 224 × 224 and questions are
tokenized before feed into the model. All the questions are
converted into lower-case and punctuation are removed in
the text pre-processing step. By considering cross-entropy
loss, all the models are optimized by stochastic gradient
descent (SGD) with batch size 16. In the training phase,
models are validated by validation dataset via early stopping
criterion with patience 30.

V. RESULTS
We have implemented baseline models on our Flood-
Net dataset for three computer vision tasks namely image
classification, semantic segmentation and VQA. In this
section we will present the results from baseline models for
all the three tasks individually.

A. IMAGE CLASSIFICATION PERFORMANCE ANALYSIS
The classification accuracies of the three networks are shown
in Table 5. From this table, it can be seen that although
all three networks give similar performance, the highest
performance on the test set was given by InceptionNetv3.
The multi-scale architecture of this network has success-
fully helped in classifying the test images into Flooded and
Non-Flooded classes, as compared to other networks. The
depthwise separable convolutions of Xception and residual
architecture of ResNet50 gave slightly worse performance,
although Xception showed the highest performance on the
training set. This is contrary to the networks’ performance
on the ImageNet dataset where ResNet50 gave the highest
performance.

Therefore, networks which give high accuracy on everyday
images such as those of ImageNet cannot really be used
to detect image features from aerial datasets which contain

TABLE 5. Classification accuracy (in %) of three state-of-the-art networks
on the training, validation, and test sets of FloodNet data.

more complex urban and natural scenes. Thus, there is a need
to design separate novel architectures which can effectively
detect urban disasters.

B. SEMANTIC SEGMENTATION PERFORMANCE ANALYSIS
Semantic segmentation results of ENet, DeepLabv3+, and
PSPNet are presented in Table 4. From the segmentation
experiment it is evident that detecting small objects like
vehicles and pools are the most difficult tasks for the seg-
mentation networks. Flooded buildings and roads are the next
challenging tasks for all three models. Among all of the
segmentation models, PSPNet performs best in all classes.
It is interesting to note that although DeepLabv3+ and PSP-
Net collect global contextual information, their performances
on detecting flooded buildings and flooded roads are still
low, since distinguishing between flooded and non-flooded
objects heavily depends on respective contexts of the classes.
The qualitative results of these three networks are shown
in Figure 3.

C. VQA PERFORMANCE ANALYSIS
Accuracy is the performance metric that we consider for the
VQA task to compare the baseline models. We consider top-1
accuracy for the comparison purpose. If the ground-truth
matches the output (which has the highest probability) from
a model, the accuracy for any image is 1, otherwise it is 0.
From the Table 6, we can identify that counting problem
(simple and complex) is very challenging compared to task
of condition recognition. Many objects are very small which
makes it very difficult even for humans to count. Accuracy
for ‘Condition Recognition’ category is consistent for all of
the methods. This is because it is not difficult to recognize
the condition of whole images as well as roads as they are
pictured in a larger ratio given the overall size of an image.
Performances of the all methods for ‘Condition Recognition’
category are when we compare those with other categories.
MFBwith co-attention [74] performswell for ‘yes/no’ type of
question. Stacked Attention Network [63] shows better result
for all counting (e.g. simple and complex) related problem
compare to the other methods.
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TABLE 6. Comparison of accuracy between baseline VQA algorithms on our dataset.

FIGURE 3. Visual comparison on FloodNet test set for Semantic Segmentation.

VI. DISCUSSION AND CONCLUSION
In this paper, we introduce the FloodNet dataset for post nat-
ural disaster damage assessment. We describe the dataset col-
lection procedure along with different features and statistics.
The UAV images provide high resolution and low altitude
dataset specially significant for performing computer vision
tasks. The dataset is annotated for classification, semantic
segmentation, and VQA. We perform three computer vision
tasks including image classification, semantic segmentation,
and VQA and in-depth analysis have been provided for all
three tasks.

Although UAVs are cost effective and prompt solution dur-
ing any post natural disaster damage assessment, several chal-
lenges have been posed by FloodNet dataset collected using
UAVs. Among all the existing classes, vehicles and pools
are the smallest in shape and therefore would be difficult
for any network models to detect them. Segmentation results
from Table 4 supports the task difficulty in identifying small
objects like vehicles and pools. Besides detecting flooded
building is another prime challenge. Since UAV images only
include top view of a building, it is very difficult to estimate
how much damages are done on that building. Segmentation
models do not perform well in detecting flooded buildings.

Similarly flooded roads pose challenge in distinguishing
them from non-flooded roads and results from segmentation
models prove that. Most importantly distinguishing between
flooded and non-flooded roads and buildings depends on
their corresponding contexts and current state-of-art models
are still lacking good performance in computer vision tasks
performed on FloodNet. To the best of our knowledge this is
the first time where these three crucial computer vision tasks
have been addressed in a post natural disaster dataset together.
The experiments of the dataset show great challenges and we
strongly hope that FloodNet will motivate and support the
development of more sophisticated models for deeper seman-
tic understanding and post disaster damage assessment.
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