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ABSTRACT Precise estimations of the roll and sideslip angles of autonomous vehicles are essential for
autonomous driving, which requires further information about the vehicle state. As such, novel deep learning
approaches have been introduced for this purpose. However, the majority of deep learning works focusing
on vehicle dynamics estimations have yet to delve into learning strategies specifically for this task. Here,
we argue that simply applying an adequate learning strategy to the task can boost the estimation performance.
In this paper, we propose a simple yet effective curriculum learning strategy for better estimations of the
roll and sideslip angles simultaneously. In addition, we compare our curriculum using a self-taught scoring
function with a curriculum sorted by prior human knowledge, demonstrating its superiority. The proposed
method outperforms the non-curriculum method by a large margin (up to a 16.5% decrease for sideslip as
validation and 3.7% on a test), especially with regard to cornering (up to a 4% decrease).

INDEX TERMS Curriculum learning, deep learning based estimator, roll angle, sensor fusion, sideslip angle,
vehicle pose estimation.

I. INTRODUCTION
Currently, autonomous vehicles are actively being devel-
oped by researchers worldwide, and numerous real road
driving trials are underway. Thus, the importance of pre-
cise estimates of vehicle states is crucial, in order to design
controllers that provide meticulous data for all driving con-
ditions. It is well established in the literature that sideslip
and roll angles are the most critical parameters of vehicle
lateral stability, whereas the high cost of the sensors deployed
to measure these values physically is not feasible when
building autonomous vehicles. Alternatively, most research
sidesteps this by estimating them. The Extended Kalman
Filter (EKF) and H-infinity-based approaches to estimate
vehicle lateral stability [1]–[3] have succeeded in mitigat-
ing the underlying non-linearity of the vehicle dynamics
systems. Still, conventional approaches cannot fully address
this type of non-linearity. The advent of deep learning has
allowed researchers to introduce more robust outcomes from
such non-linearity [4]–[8]. Neural networks used to estimate
vehicle lateral stability are complex models, but the simple
Fully Connected (FC) network has also proven to function
well in estimating the sideslip and roll angles simultaneously
[9], [10]. Diverse neural network architectures have been
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introduced to enhance the accuracy of the vehicle model,
where adequate learning strategies are yet to be explored for
vehicle lateral stability estimation tasks. Apart from choos-
ing the most effective neural network architecture for the
given task, an appropriate learning strategy is significant.
By applying a suitable learning strategy, one can realize better
performance from the same neural network backbone.

We observed that one of the major characteristics of vehi-
cle state estimation problems is aggregation of diverse driv-
ing data from different settings. Specifically, these different
settings differ by vehicle speed, maneuvers, road friction,
and many other possible factors that affect the driving. This
indicates the underlying congenital difficulty exists for each
driving data, and we were highly motivated that if the data
used for training the neural network is reordered in ideal
curriculum sorted by adequate difficulty, the estimation per-
formance of the neural network can be boosted. Humans
and animals learn much better when the data is given in a
meaningful order rather than being random shuffled; this type
of a training strategy to learn the model is called curriculum
learning [11], [12]. The major aspects of the superiority of
curriculum learning [12], compared to other learning strate-
gies, is that re-ordering the sequence of data with difficulty
benefits the model by gradually capturing more complex
concepts, thereby outperforming on the entire spectrum of the
data.
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The contribution of this work can be summarized as:
• We propose designing a curriculum learning strategy

with task-specific scoring and pacing functions for vehi-
cle lateral stability estimation.

• We attain robust estimation on nonlinear dynamics, e.g.,
upon on large cornering movements

• We conduct empirical investigation of different curricu-
lum conditions

• We analyze and evaluate our proposed curriculum learn-
ing strategy against human-prior curriculum and expert
model, and show the improvement of the vehicle lateral
stability in various driving scenarios.

This paper is organized as follows: Section II presents the
related works from the literature regarding curriculum learn-
ing and vehicle stability estimation. Section III defines the
theoretical formulation of the proposed method. Section IV
introduces the dataset configuration along with the data log-
ging system. Section V shows the experiment results and
further investigations we conducted, followed byAppendix A
and B. Finally, the recapitulation for the contributions of the
work is summarized in Section VI.

II. RELATED WORK
A. CURRICULUM LEARNING
Curriculum learning [12] is a recent idea in the machine
learning field, where a curriculum is configured based on
ranking data with difficulty measures. These measurements
are not likely to be found in the real world and are chal-
lenging to elicit from humans. Several approaches [13], [14]
have proposed novel ideas to handle such issues. Self-paced
learning, introduced by Kumar et al. [13], is a novel method
in which sample selection appears during the training process
to increase the level of difficulty. Nonetheless, the absence
of a facilitator in self-paced learning does not guarantee the
credibility of the difficulty measurements occurring during
the training process. Hacohen and Weinshall [14] suggest
two different strategies, knowledge transfer as in transfer
learning for curriculum learning [15] and bootstrapping based
on self-tutoring. Both methods show promising results, but
the knowledge transfer method that uses another network
pre-trained on different tasks to provide the ranking of the
training data via the presumed difficulty is not ideal for
our problem. Our task consists of diverse driving conditions
that are compatible and comprehensive enough with other
simulator-based tasks from research on vehicle dynamics
stability. Therefore, it is unrealistic to acquire a new set of
data with which to train a network that will be solely used for
knowledge transfer based on difficulty measurements. The
bootstrapping-based self-taught method trains the network
without a curriculum and then uses the resulting network
as a scorer to rank the training data to train the same net-
work again, but with a curriculum. No additional resources
are required for a self-taught scoring function. Thus, our
scoring function is formulated based on the self-taught
method.

B. VEHICLE STABILITY ESTIMATION
There are numerous conventional approaches that focus on
model-based estimators using a determined vehicle dynamics
model [16], [17]. However, such approaches are vulnera-
ble to predictions of the lateral states of vehicle driving on
various friction surfaces and rough terrains, as the vehicle
dynamics is innately nonlinear. More recent studies have
applied an observer-based estimator to alleviate the nonlin-
ear motions [1]–[3]. Meanwhile, artificial neural networks
have been proven to perform better than observer-based
approaches in vehicle lateral stability estimations with both
linear and nonlinear features [9], [10]. Along with the devel-
opment of high-fidelity dynamic simulators, it has become
straightforward to acquire precise driving data. Accordingly,
data-driven neural network estimators are becoming more
actively studied.

Enlarging the neural network architecture and increasing
the complexity of neural networks are common approaches
to improve the accuracy of many other tasks, while these
strategies are not applicable to vehicle stability estimations.
It is unrealistic to deploy high computation resources in com-
mercial vehicles. We believe that it is possible to improve the
accuracy levels by simply applying a task-specific learning
strategy instead.

C. CURRICULUM LEARNING FOR MULTI-LAYER
PERCEPTRON
In the field of imitation learning and policy gradient rein-
forcement learning, a fully-connected Multi-Layer Percep-
tron (MLP) is commonly employed as a policy model
[18]–[20]. It has been demonstrated that training the mod-
els and agents in an ascending order of data difficulty can
improve the overall performance in numerous works [21],
[22]. Lee et al. [23] use an adaptive terrain curriculum
while training the model with the knowledge from a teacher
policy, updating the curriculum for every iteration of the
policy. Moreover, robot navigation with deep reinforcement
learning [24] increases the complexity of the environment in
multiple stages. Moreover, autonomous overtaking in game
simulator with curriculum reinforcement learning has already
shown power of curriculum learning in simulation-based
data [25].

We insist that curriculum learning in MLP-based vehicle
states estimation tasks can also be beneficial because these
tasks resemble the concepts in previous works. A neural net-
work model of high-performance automated driving [9] was
trained in a manner similar to curriculum learning. According
to previous works that applied curriculum learning to similar
tasks with vehicle stability estimation, we can expect promis-
ing results when adopting the curriculum learning strategy for
our problem.

III. APPROACH
Two main criteria must be considered when designing a
curriculum: ranking the data in a proper order that reflects

89250 VOLUME 9, 2021



J. Bae et al.: Curriculum Learning for Vehicle Lateral Stability Estimations

difficulty or complexity (if the order is not well configured,
the neural network cannot benefit from the idea that knowl-
edge obtained while learning easy samples contributes to the
learning of difficult samples), and the pacing rate at which
the data is presented to the model; a moderate pacing rate
is important because going over the simple data too rapidly
may reduce the benefit, while the opposite may lead to over-
fitting the model to the simple data. In this work, we propose
two separate but closely related functions for each criteria.
First, a scoring function, determines the difficulty of the
data and generates a curriculum that presents the easier data
first to the network. Scoring is done based on a self-tutoring
method [14]. The second function, termed a pacing function,
determines the rate of data from different levels of difficulty
being presented to the network.

Let X = {Xi}
N
i=1 = (xi, yi)Ni=1 denotes the data, where xi

represents a single data point consisting of different sensor
data; yi denotes its corresponding set of sideslip and roll
angles, and N denotes the total number of driving scenarios.
Our curriculum learning setting is slightly different with
curriculum learning works for classification tasks. Previous
curriculum learning [14], [15] works sample each mini-batch
Bi ⊆ X uniformly from X and a list of these sampled
mini-batches is used as the curriculum in every single epochs.
Alternatively, we designed the curriculum learning to occur
gradually during all training epochs. The MLP used in this
work is a fully-connected layer which is deployed with fine
regression. As a MLP is frequently used in reinforcement
learning [26], [27], it is more likely to show feasible results
when the curriculum settings from reinforcement learning
are followed, where curriculum learning proceeds during all
training epochs.

Our proposed algorithm for curriculum learning is pre-
sented here as Algorithm 1. In order to demonstrate the supe-
riority of curriculum learning over a non-curriculum method,
we devised two different pacing functions and show that both
of them outperform a naive approach. Also, we defined a
curriculum based on human prior knowledge and compared
with our curriculum using a self-taught scoring function (see
Section V-A3). Lastly, we examined an anti-curriculum con-
dition, where samples ranked by scoring function S are sorted
in descending order, and a random curriculum condition
where samples are randomly sorted. These results are shown
in Section V-B2.

A. SCORING FUNCTION
The scoring function is defined as any function S : X→ R,
and it should have the following property.

D(xi, yi) > D(xj, yj) if S(xi, yi) > S(xj, yj), (1)

where D(xi, yi) denotes the ground-truth difficulty of the
example (xi, yi). In order to design such a scoring function,
we initially train an identical network with the full set of data
(self-teacher). For the loss function, we used the root mean
square error (RMSE). The same loss function is used to train
our neural network for curriculum learning. The loss function

Algorithm 1
Input: dataX, scoring function S, pacing function P, number
of driving scenarios being added for each step θ , number of
driving scenarios N
sort X→ [X′1, . . . ,X

′
N ] in ascending order based on S

for each epoch e do
Xe← []
k = min (Pθ (e), N )
Xe← [X′1, . . . ,X

′
k ]

train model with data subset Xe
end for

is computed as follows:

Loss =

√√√√ 1
M

M−1∑
i=0

(
ŷ(i)− y(i)

)2
, (2)

where ŷ(i) and y(i) are the estimated and the ground truth roll
and sideslip angles, respectively, andM is the batch size.

Our self-taught scoring function S(X′k ) for each driving
scenario X′k is defined as follows:

S(X′k )=

(x(i), y(i)) ∈ X′k |

√√√√1
n

n−1∑
i=0

(g(x(i))−y(i))2

 , (3)

where n denotes the number of data in driving scenario
X′k and g(x(i)) denotes the inference result with the given
input x(i) of the trained teacher model, previously trained
with the non-curriculum method. Thus, scores defined by
scoring function S(X′k ) encode the supervision from the
self-teacher [14]. For each driving scenario X′k , the RMSE
between the inference result of the teacher model given input
x(i) and ground-truth y(i) where (x(i), y(i)) ∈ X′k is defined
as S(X′k ). The smaller S(X′k ) is, the better the teacher model
predicts on X′k . This can be interpreted as meaning that if
S(X′p) < S(X′q), then driving scenario X′p is more easier than
X′q in terms of the model.

B. PACING FUNCTION
For the pacing function, we adopt single-step pacing to input
data from easy driving scenarios during the early stages and
gradually expand the range of the data to difficult driving
scenarios in later stages.

The pacing function P controls the sequence of the driving
data being input to the learner model for each epoch e.
A sequence of subsets [ X′1, . . . ,X

′
k ] → Xe is determined,

where k = Pθ (e). Thus, proposed pacing function P is
given as:

Pθ (e) = θ × (1+
⌊ e
θ

⌋
), (4)

where θ denotes number of driving scenarios to be added
incrementally for the steps, e is the current epoch and

⌊ e
θ

⌋
refers to the rounded down value of e

θ
. To elaborate, we can
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say that the initial setting is given as θ = 2. When training
starts (e = 0), Pθ (e) is equal to 2. Thus, the model starts
training with data from the first two driving scenarios of X
until e = 1. If e becomes six, training data is brought from
first eight driving scenarios of X. Eventually, Pθ (e) will be
larger than the total number of driving scenarios N and will
be saturated as N in Algorithm1. After saturation, model will
be trained on the X overall during the remaining epochs. The
effect of varying θ in the training models is described in
Section V-A4.

C. BACKBONE ARCHITECTURE
Our task aims to train the model with the data obtained
from the simulator and achieve decent performance during
real-world driving, often referred to as ‘Sim2Real’ in the
literature. Physical sensor data on an actual real platform are
noisy enough to produce non-negligible errors; thus, neural
networks that recurrently process data for predictions are
not adequate for our task [28]. Additional modules such
as an observer based on filtering combined with a neural
network [3] show robust performance on vehicle roll angle
predictions. However, filter-based approaches are usually
associated with a phase delay, meaning that it is undesirable
to attach extra filters onto a neural network because real-time
estimations are required on the vehicle.

Considering the characteristics of our task, a MLP is used
in this work. The MLP has shown reliable results in several
works that perform accurate predictions [29], [30] and does
not accumulate errors derived from the previous estimations.
Figure 1 illustrates our FC model, which is referenced from
a backbone neural network in a deep learning model for
mass production vehicles [10]. We denote ax and ay as the
longitudinal and lateral acceleration variables, φ̇ as the roll
rate, ψ̇ as the yaw rate, δ as the steering angle and vx as
the longitudinal velocity of the vehicle body. The selected
input states are essential values for the neural network to
derive the roll and sideslip angle, and they are able to be
accurately measured on low-cost sensors, including IMU and
GPS, in real time.

FIGURE 1. Backbone architecture.

IV. DATASETS
A. DATA LOGGING SYSTEM
The training dataset should include diverse driving scenarios
that could represent comprehensive vehicle conditions during

driving. It is difficult to obtain data from aggressive driving
in an actual vehicle because drifting on a road with low
friction is dangerous, while such training data are crucial for
estimating vehicle states under unstable conditions. There-
fore, the dataset should be obtained from a vehicle simulator,
where such unrealistic driving data can be acquired. In this
work, we use CarMaker, which solves nonlinear equations
based on high-fidelity vehicle mathematical models in real-
time. This approach allows users to construct the environ-
ments and modify the roads and maneuvering conditions
quickly.

The simulator provides an interface bywhich to gain access
to the simulated vehicle states. We built a logging system
based on a Robot Operating System (ROS) [31] during a
real-time simulation (see Figure 2). We employed ROS2 in
this work. We manually drove the simulated vehicle with
Logitech G29 racing wheel and pedals to obtain validation
data. The data were logged in the CSV format at a frequency
of 20 Hz.

FIGURE 2. CarMaker data logging system with ROS2.

B. TRAIN & TEST DATASET
We used the default demo car model, and the scheduled
maneuvers were driven using the built-in controller of Car-
Maker. Three maneuver scenarios are employed in simula-
tion: lane change, J-turn, and slalom maneuvers, all of which
are commonly used in experiments on vehicle dynamics [4],
[5], [32]. The lane change scenario contains three double
lane-change maneuvers. The driven road length during each
lane change is varied, with values used here of 25m, 20m, and
15 m. For the J-Turn, the vehicle turns left after accelerating
to the target speed and performs a successive right turns after
recovering its stability. Two slalom driving maneuvers with
18 m and 36 m interval lengths are employed to enhance the
instability severity.

The road friction coefficient is varied from 0.4 to 1.0, and
the target speed is varied from 20 km/h to 100 km/h. Given
that the training and testing datamust be carefullymanaged to
avoid unintended bias, some of the logged data is discarded.
Constant vehicle states from exceptionally slow driving in
some maneuvers are meaningless. Such data will account for

89252 VOLUME 9, 2021



J. Bae et al.: Curriculum Learning for Vehicle Lateral Stability Estimations

TABLE 1. Specific dataset composition.

FIGURE 3. Dataset acquisition using CarMaker. (a) Double lane change maneuvers. (b) J-turn maneuvers. (c) 36m slalom maneuvers. (d) A race track for
the validation dataset.

a large portion of all data because the vehicle needs more
time to finish the course at a slow speed as compared to a
faster speed. If these data logged from slow driving are not
manually discarded, it leads to the overfitting of the neural
network. For example, 20 km/h maneuvers during a lane
change were discarded. Consequently, 20 km/h maneuvers
were not included in the 36m length slalom scenario. We also
adjusted the start point of each maneuver in order to reduce
straight driving at a constant speed. Some extreme cases
where the car entirely lost its stability, such as fishtailing,
were also removed, as they are not reliable data to train
the network. Table 1 shows the specific information of our
dataset.

The variables listed in Table 1 are parameterized in the sim-
ulator, and all of those maneuvers were automatically logged
by reserving the range of the parameters. We simulated a total
of 434 maneuvers, 335.5 minutes of driving, and 406, 392
data.

C. VALIDATION DATASET
The validation dataset was obtained in a different environ-
ment in CarMaker. We chose a racing track for validation
data which is exclusive to the training and testing dataset.
The starting and finishing points are also properly adjusted

TABLE 2. Specific validation dataset composition. We denote clockwise
as CW and counter-clockwise as CCW.

to avoid long straight driving at a constant speed, as such
redundant data harms the reliability of the validation perfor-
mance. Validating the trained neural network on an immense
amount of easy data shows good performance regardless of
the knowledge network learned during the training. We also
chose the new road friction coefficients to evaluate the neural
network with the unseen data. The same vehicle model was
used, but it was driven by two different drivers: the built-in
controller in the simulator and a skilled human driver. The
skilled human driver attempted to make as large a sideslip
angle as possible while maintaining the desired speed at the
corners. This ensures the diversity of unsteady states in the
validation dataset, allowing the trained neural networks to
be evaluated in comprehensive cases. The driven courses
of the training and validation data are shown in Figure 3.
The Table 2 shows the detailed information of the validation
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dataset. We simulated 36 maneuvers, 81.6minutes of driving,
and 99, 356 data in total.

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTINGS
Our experiment setting for neural network training is quite
simple. The neural network was trained with a batch size of
32 and a learning rate of 0.0001. It was initialized with the He
initializer [33]. The RMSE loss is used as the loss function,
with the rectified Linear Unit (ReLu) [34] for activation in
hidden layers.

1) DATASET CONFIGURATION
With regard to vehicle lateral stability, especially for the
sideslip angle, road surface friction is one of the most
dominant factors. The tire cornering stiffness is an impor-
tant parameter that determines how much the vehicle can
resist lateral force during cornering. It is decreased in a
low tire-road friction coefficient environment, meaning that
the vehicle has a larger sideslip angle with the same lateral
tire force than in a high friction environment [35]. In the
case of a vehicle driving aggressively on a low-friction road
conditions such as wet asphalt or dirt, it will tend to drift
with nonlinear dynamics more easily, making it more difficult
to estimate the stability [36]. Chen et al. [6] experimentally
showed that a slight variation in the friction coefficient has a
major impact on the sideslip angle. Accordingly, we divide
the acquired dataset into 14 driving scenarios on the basis
of the road friction and the vehicle speed. In our setting,
speed greater than or equal to 50 km/h is classified as fast,
with lower speeds considered to be slow. The threshold was
empirically determined in order to maintain a data balance
between classes [14]. Then, data in each class were split into
70% for training and 30% for testing.

2) ERROR METRIC
We use two error metrics for the performance evaluation:
ERMS and Emax .

ERMS =

√√√√√ 1
MN

M−1∑
i=0

N−1∑
j=0

(
ŷ(i, j)− y(i, j)

)
, (5)

Emax = {i ∈ (0, 1, . . . ,M − 1), j ∈ (0, 1, . . . ,N − 1) |

max
( ∣∣ ŷ(i, j)− y(i, j) ∣∣ )}, (6)

where ŷ(i, j) and y(i, j) are the estimated and the ground truth
roll and sideslip angles, respectively, and M and N are the
number of batches and the mini-batch size. ERMS and Emax
are commonly used error metrics in vehicle lateral stability
estimation tasks [2], [10].

3) SCORING FUNCTION
The scoring function is based on Equation 3. The self-taught
scoring function measures the difficulty of each driving sce-
nario. However, it is also possible for a human to empir-
ically rank the driving scenarios according to the level of

difficulty with their prior knowledge of vehicle dynamics and
real-world driving experience. The two possible candidates
are shown in Table 3. In general cases, the vehicle becomes
unstable when the friction of the road surface is low and the
speed of the vehicle is high. According to common sense, it is
natural to assume that unstable vehicle states are more diffi-
cult to estimate than stable ones. Therefore, we can come up
with two possible candidates in terms of a human considering
two main criteria applicable to vehicle instability. The first
candidate assumes the effect of the friction coefficient to be
greater than the vehicle speed in driving, whereas the second
candidate assumes the opposite. The curriculum generated by
our scoring function S ranks driving scenarios similarly with
the second candidate but is slightly different.

TABLE 3. The two possible curriculum candidates according to human
prior knowledge, and a curriculum devised by the scoring function S.

The curriculum devised by our scoring function shows
several irregular patterns, such as a driving scenario with a
friction coefficient µ of 0.6 and a rapid speed being ranked
as more difficult data than that with a friction coefficient µ of
0.4 and the same rapid speed. Such a reversal occurs due to the
conservative behavior of the built-in controller of the simula-
tor. The controller tries to complete the reserved maneuvers
while maintaining the desired speed, but it will slow down
the speed during the large drifts because the controller is
fundamentally designed not to push the vehicle out of the
course. Thus, the vehicle states driven at lower friction levels
may be more stable than those with higher friction. The dif-
ficulty order ranked by the self-taught scoring function could
capture these ambiguous features of the given data while
human scoring could only rely on the exterior information
such as prior knowledge. Therefore, we can conclude that
our scoring function is expected to be more appropriate for
designing a curriculum for the vehicle dynamics estimation
task than a scoring function based on human prior knowledge.

The estimation results by the curriculum based on our
scoring function are evaluated in Section V-B1. We train
the model with the two above human-prior-knowledge-based
curriculum candidates described above and compared these
with a curriculum based on our scoring function in
Section V-B3 for further investigation.
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4) PACING FUNCTION
The pacing function is based on Equation 4. The parameter
θ in pacing function Pθ determines the rate of the curriculum
being updated. Different rates of curriculum updates in terms
of θ are visualized in Figure 4. The non-curriculum method
is constantly trained with a universal set of the training data.
When the θ is small, i.e., 1 or 2, the training data is slowly
increases with the epochs from the easier to the more difficult
driving scenarios. If θ is large, i.e., 12 or 13, the training
data is nearly identical to that of the non-curriculum method.
In terms of the neural network, the difficulty of the knowledge
it should digest for each epoch increases as θ increases,
thereby mitigating the effect of the gradual increase in the
difficulty. In other words, it lacks the benefit of curricu-
lum learning where knowledge obtained from learning easier
data contributes to the learning of more difficult data if θ
is large. Table 4 shows the results of a neural networks
trained with θ = 1, 2, 4, and 8. The estimation performance
declines as θ increases, empirically proving that a small value
of θ must be employed for a proper curriculum learning
strategy. Therefore, we chose two different pacing functions
with small values of θ , 1 and 2. The comparison between
the non-curriculum method and the curriculum methods is
described in Section V-B1.

FIGURE 4. Increasing data size with respect to epochs on different θ in
pacing function Pθ .

TABLE 4. ERMS of different Pθ for the test and the validation dataset.

B. EVALUATIONS
In this section, first we evaluate our method by comparing it
with the non-curriculum method, including a detailed analy-
sis. Secondly, we show the result of an alternative curricu-
lum compared to our proposed method. Next, we collated
the curriculum based on human prior knowledge with ours.

Lastly, we compare our curriculum method with a domain
expert model, which is trained on data with a narrower range
of friction coefficients. This is described in Appendix B.

1) CURRICULUM METHODS
In this work, the improvement achieved in the sideslip angle
estimation should be focused on, as it is much more difficult
to estimate the sideslip angle than roll angle on various fric-
tion surfaces [6].

We compared the estimation results of the non-curriculum
method over the curriculum method with two pacing func-
tions. Table 5 shows the curriculum method performs better
in most cases compared to the non-curriculum method. The
errors in the sideslip angle have a much larger magnitude
than errors in the roll angle, and the performance increases or
decreases for the roll angle are so small so as to be negligible.
The sideslip angle ERMS of the test data of the curriculum
method with θ = 1 shows more than a 16.5% decrease
compated to the non-curriculum method, which is a notable
advance. There is also a 3.7% decrease in the validation data.
The curriculum method with θ = 1 has the best overall
performance on both the test and validation data. Appendix A
shows error graphs of the roll angle and sideslip angle during
50 epochs and reports the errors for all driving scenarios.

To observe the individual improvements for each driving
scenario realized by our curriculum method compared to
the non-curriculum method, we analyze a heat map of the
estimation differences between the non-curriculum and cur-
riculummethods, as depicted in Figure 7. Each row represents
the error for each driving scenario, with the arrangement
going from top to bottom according to the level of difficulty
computed by the scoring function S. The two sections of
ERMS and Emax are respectively divided by the largest abso-
lute value in each section. Therefore, the more each element
approaches −1 i.e., dark blue, the greater the estimation
improvement. The heat map shows that the benefits from
curriculum learning are mainly achieved in difficult driving
scenarios.

We plotted the inference results of the two neural net-
works trained with the non-curriculum method and our pro-
posed curriculum method with θ = 1. The validation data
obtained by the controller of the simulator (Figure 5) and
by a proficient human driver (Figure 6) were used for the
estimation. The estimation result for test data is shown in
Appendix A from the randomly selected driving scenario.
It is demonstrated that the curriculum method outperforms
the non-curriculum method, especially on the peak values
where significant cornering occurs. We calculated the errors
of the peak values with the entire validation dataset. The
local maxima and minima were selected as the peak val-
ues by a simple comparison of 200 horizontal neighboring
sideslip angle values. The corresponding sideslip angle mean
absolute errors (MAE) of the non-curriculum method and
curriculummethod were 0.3009◦ and 0.2889◦, showing a 4%
of improvement.
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TABLE 5. Estimation results for the test and the validation dataset of the non-curriculum method and our curriculum methods. The pacing function is set
with the parameters θ = 1 and θ = 2.

FIGURE 5. Inference results of the non-curriculum(original) and curriculum methods on a maneuver at a race track. These validation data
were acquired on a road with a friction coefficient of 0.45 and a desired speed of 40 km/h: (a) Roll angle predictions graph, and
(b) sideslip angle predictions graph.

TABLE 6. Estimation results for the test and the validation datasets. The pacing function is set with a parameter of θ = 1.

2) ANTI-CURRICULUM AND RANDOM CURRICULUM
To demonstrate that our self-taught scoring feature helps
curriculum learning, we conducted further experiments. Two
different methods were designed, as described in Section III.
The anti-curriculum method used the scoring function that
sorts the data in reverse order of the curriculum method.
The random curriculum method used a scoring function in

which the driving scenarios are randomly scored. The per-
formances are shown in Table 6. The results indicate that the
anti-curriculum and random curriculum methods have infer-
ence accuracy levels similar to that of the non-curriculum
method. The test and validation ERMS of the sideslip angle by
our curriculum method showed corresponding improvements
of 16.5% and 3.7%(see Table 5), whereas the anti-curriculum
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FIGURE 6. Inference results of non-curriculum and curriculum methods on a maneuver at a race track by the skilled human driver. The
validation data ware acquired on a road with a friction coefficient of 0.85 and a desired vehicle speed of 80 km/h. (a) Roll angle
predictions graph, and (b) sideslip angle predictions graph.

FIGURE 7. Performance differences of the non-curriculum and the
curriculum methods with respect to each driving scenario.

and random curriculum outcomes only achieved improve-
ments of 3.8% and 2.5% on the test ERMS . Moreover,

FIGURE 8. Results of compared test losses among the different methods
during training. The pacing function of the curriculum method is Pθ=1.
The curriculum method (in blue) has a lower test loss outcome than the
others.

the respective validation ERMS outcomes even increased by
4.4% and 3.8%.

We compiled a test loss graph of the four different meth-
ods; non-curriculum, our curriculum, anti-curriculum, and
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FIGURE 9. Error graph comparison of the non-curriculum method and the curriculum method (with θ = 1) during training. The graphs in the left column
are for the non-curriculum method and the graphs in the right column are for the curriculum method. (a)-(b) RMSE of the roll angle. (c)-(d) RMSE of the
sideslip angle. (e)-(f) Max errors of the roll angle. (g)-(h) Max errors of the sideslip angle.
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TABLE 7. Error measurements for the test and the validation datasets. The pacing functions of the three curriculum methods use the parameter θ = 1.

FIGURE 10. Inference results of non-curriculum and curriculum methods on a slalom maneuver included in the test data. The data ware
acquired on a road with a friction coefficient of 0.6 and a desired vehicle speed of 60 km/h. (a) Roll angle predictions graph, and
(b) sideslip angle predictions graph.

random curriculum method for a comparison, as shown
in Figure 8. The curriculum method exhibits the lowest test
loss, which is the same as the results of curriculum learning
for the training of deep learning networks [14]. Another
notable finding is that the test loss of the curriculum method
decreases continuously, while that of the anti-curriculum and
random curriculum methods fluctuate greatly. It can be inter-
preted that the knowledge model acquired from the previous
data is highly appreciated in learning data with proximal
difficulty in the near future steps.

3) HUMAN SCORED DIFFICULTY ORDER
We also demonstrated that the well-defined self-taught
scoring function contributes to curriculum learning more
than just the heuristically determined data difficulty order.

The two difficulty order candidates are described in Table 3
with pacing function Pθ=1. Table 7 shows the self-taught
scoring function has much better performances than those
with human-scored orders. The test ERMS of the sideslip
angle of the former has a 16.5% improvement. However,
the candidate 1 and 2 only have 9.9% and 11.3% improve-
ments, respectively. This indicates that our self-taught scoring
function is thoroughly designed and sufficient to outperform
scoring based on human prior knowledge.

VI. CONCLUSION
We present effective curriculum learning scheme for vehicle
dynamics estimation along with self-taught scoring and pac-
ing functions, which are devised thoroughly by considering
the nature of the problem. The curriculum method shows
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TABLE 8. Error measurements of the test data for each driving scenarios.

FIGURE 11. Inference results of our model and the expert model. This validation data ware acquired from a human driver on a road with a
friction coefficient of 0.85 and a desired vehicle speed of 80 km/h. (a) Roll angle predictions graph, and (b) sideslip angle predictions
graph.

reasonable improvements in most of the driving scenarios
compared to the non-curriculum method, especially during
significant cornering motions. Moreover, our curriculum out-
performs the curriculum defined by human prior knowledge,
indicating the distinction of our self-taught scoring function.

In addition, we also examined the performance between an
expert model and the proposed method. Despite the slight
difference in the performance, considering the inference
speed and computational budget our method is reasonably
comparable.
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APPENDIX A
ESTIMATION RESULTS OF CURRICULUM LEARNING
The detailed versions of test errors measured for each driving
scenario with the non-curriculum and curriculum methods
(θ = 1) are shown in Table 8. The visualized error graphs
of the roll angle and sideslip angle during 50 epochs are
shown in Figure 9. The estimation result using an arbitrarily
selected course from the test data is shown in Figure 10. The
compared models are trained with the non-curriculum and the
curriculum method with the pacing function Pθ=1.

APPENDIX B
COMPARISON WITH THE EXPERT MODEL
There are numerous studies focused on two-stage estimation
methods to determine vehicle sideslip angles [6], [7]. The
main idea is to clarify the correlation between the human
prior knowledge and the stability of the vehicle for the neural
network. The second-stage estimator will make predictions
on vehicle stability according to the prior information pre-
dicted by the first-stage estimator. Similarly, the mixture-
of-experts method can be introduced for this task. We can
design amodel in which an input-dependent gate makes a soft
prediction about the driving environment, with the weighted
summation of the individual expert opinions based on the
gate for the final result [37]. In such a situation, the expert
model is expected to have a better prediction in a certain
driving environments than a single model trained to fit all data
acquired from various environments. However, the mixture-
of-experts model has more network parameters and greater
complexity than a single model and therefore requires more
inference time. Because software runtime is very important
on a commercial vehicle, there is a tradeoff between the
accuracy and inference speed.

We simply compared our model with the single expert
model. We assumed that the road surface friction most criti-
cally affects the lateral stability of the vehicle. Then, an expert
model was trained only with the data acquired from envi-
ronments with road friction coefficients of 0.8 and 0.9 road
friction coefficient. This expert model was not trained while
coupled with the gate, but it can be considered as an empir-
ically generated expert to regress the classified data subset
more accurately. The expert model employed an identical
network, as shown in Figure 1. Finally, we compare the
prediction results of our model and the expert model (see
Figure 11). The data used for validation are identical to the
data shown in Figure 6.
The results show that the expert model trained with the

confined road friction range performs slightly better than our
model with proposed the curriculum learning approach. How-
ever, embedded single board computers in actual vehicles
have limited parallel computing capabilities; thus, the estima-
tor should be guaranteed for real-time performance. Consid-
ering that the single model runs much faster than the multiple
expert models, the difference between the two models is
reasonably small.
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