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ABSTRACT In this paper, a modified Sprott-C chaotic system is proposed based on Kolmogrov model,
which shows rich dynamic behaviors, especially, the system divergence is related to the variables. To quan-
titatively evaluate the influence of variable divergence on phase space volume, the ultimate bound and
equilibrium point of the system are analyzed and two indicators are proposed. The study shows that the
volume of the phase space of the system contracts when the initial divergence is less than 0, while the volume
expands first and then contracts when the initial divergence is greater than 0. The influence of the variable
divergence on the system is revealed. Furthermore, it is shown that the stability of equilibrium point has no
effect on the divergence on the phase space volume.

INDEX TERMS Divergence, equilibrium point, ultimate boundary.

I. INTRODUCTION
Chaos refers to the uncertain or unpredictable randomness
of a certain nonlinear system under certain conditions, and
is known as one of the ‘‘three revolutions’’ in the natural
science of the 20th century [1]. Since Lorenz discovered the
first chaotic attractor in the 1960s [2], Chaos as an impor-
tant branch of nonlinear system theory, has been developing
rapidly and gradually become a hot research topic in the field
of modern natural science. In addition, chaos has obtained
huge and far-reaching achievements in different research
areas, such as stability and bifurcation analysis [3]–[7], coex-
istence attractor and hidden attractor [8]–[13], chaos control
and chaos synchronization [14]–[17], dynamic behavior anal-
ysis ofmemristors, neural network [18]–[22], and so on. After
understanding the general laws of chaos, the research of chaos
began to develop into the application field [23]–[28].

The ultimate bound plays an important role in the quali-
tative behavior research of a chaotic system [29]–[31], and
it has a wide range of applications in the control and syn-
chronization of chaos. Since the Lorenz systemwas proposed,
many researchers have beenworking on the ultimate bound of
Lorenz system. It was not until 1987 that Leonov, a Russian
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scholar, gave a ultimate bound in the form of ellipsoid and
cylinder for the first time [32]. Subsequently, many scholars
studied the ultimate bounds of different chaotic systems and
obtained the ultimate bounds of some chaotic systems, such
as Lorenz system [33]–[37], Lorenz system family [38]–[40],
Chen system [41], Chua system [42], Lorenz-Haken sys-
tem [43], and so on.

From the point of view of the volume of phase space,
the chaotic systems can be divided into volume conservative
chaos and volume variable chaos [44]. The divergence can be
used to describe the divergence degree of vector field of each
point in space [45]–[47]. When the divergence divF > 0,
the volume expansion of phase space indicates that the attrac-
tor is generated by a positive source.When divF < 0, the vol-
ume contraction of phase space indicates that the attractor is
generated by a negative source. When divF = 0, the vol-
ume of the phase space is constant, the system is a volume
conservative chaos and there is no attractor. The divergence
of most chaotic systems is a fixed value, but some system
divergences are affected by the system variables. However,
there are few studies on the influence of system variables on
chaotic system divergence. To evaluate the divergence of a
system, it would be important to have some indicators, and
this paper proposes two indicators to measure the system
divergence.
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In this paper, a modified dissipative system is proposed
based on the Sprott-C system [48]. The Kolmogorov form
is used to analyze the mechanism of the system [49]–[54],
and then the stability and ultimate bounds of the system are
analyzed [55], [56]. It is found that the divergence of the
system is not a fixed value but related to variables, which is
analyzed in this paper since the divergence is rarely analyzed.
The main contributions of this paper are: 1) the classical
Sprott-C system is modified to a dissipative system whose
divergence is affected by variables; 2) we analyze the equi-
librium point and the ultimate bound of the system, and the
analysis results are used to analyze the divergence affected by
variables; 3) two new indicators are proposed to analyze the
dissipative system affected by variables.

The rest of this paper is organized as follows. In Sect. 2,
a modified Sprott-C dissipative system is proposed and some
basic dynamics have been analyzed. In Sect. 3, the mecha-
nism of the system is analyzed. In Sect. 4, some basic charac-
teristics of equilibrium points are analyzed and the ultimate
boundary of the system is estimated. In Sect. 5, the system’s
divergence is analyzed, when initial points is outside the
ultimate bound, based on two proposed divergence indicators.
Finally, conclusion is drawn in Sect. 6.

II. A MODIFIED CHAOTIC SYSTEM
In 1994, Sprott [48] proposed a series of simple

three-dimensional autonomous systems through a large num-
ber of numerical experiments. These systems are similar to
Lorenz model, but have different attractor shapes and chaotic
characteristics, and the Sprott-C system is

ẋ = yz
ẏ = x − y
ż = 1− x2

(1)

The system (1) can be represented as ẋẏ
ż

 =
 0 z 0

0 0 0
−x 0 0

×
 xy
z

+
 0 0 0
0 −1 0
0 0 0


×

 xy
z

+
 0
x
1

 , (2)

and its Kolmogrov form is

Ẋ = J (x)∇H +3X + f , (3)

where J (x) is the structure matrix,3 is the dissipative torque
and f is the outer ideal. In this paper, a new system is proposed
by modifying J (x) and 3. The structure matrix J (x) of the
system (1) can be modified as

J (x) =

 0 z bx
−z 0 −ex
−x ex 0

 (4)

Obviously, when abcde 6= 0, b = 1 and d = 1 + e,
the structure matrix J (x) is skew-symmetric. Here,3 can be

FIGURE 1. Nonlinear system with chaotic dynamics.

modified as

3 =

−a 0 0
0 −1 0
0 0 −c


Then, the new system can be expressed as

ẋ = yz−ax + bxz
ẏ = x−y− dxz
ż = 1− x2−cz+ exy

(5)

When abcde 6= 0, a = −0.88, b = 1, c = 0.36, d =
−0.5 and e = −1.5, the phase diagram and Lyapunov expo-
nents (LEs) of the system (5) are shown in Fig. 1, and it can
be seen from Fig. 1(b) that the LEs are (0.168, 0,−0.973),
which show the system (5) is chaotic with the given parame-
ters. And with the increase of parameter c, the maximum LE
of the system gradually increases, and when the parameter
c > 0.367, the maximum LE of the system oscillates and
gradually decreases to below 0, which means the system
converges to the equilibrium point through transient chaos
with the increase of the parameter c, as shown in Fig. 1(c).

Considering the symmetric transformation, it can be found
that the system (5) is invariant under T : (x, y, z) →
(−x,−y, z), and the solutions of the system (5) is
z-symmetric in the state space. The projection of the sym-
metrical image on the coordinate plane can be expressed as
central symmetry or axial symmetry. More precisely, it is
centrosymmetric in the x − y plane, and z-axis symmetry in
the y− z and x − z planes.

And it can find that the divergence of system (1) is a fixed
constant as

∇ · V =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −1 (6)

However, the divergence of the proposed system is related
to the variable z, which means the system divergence is not a
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FIGURE 2. System (5) under inertial torque when b = 1, d = −0.5 and
e = −1.5.

fixed constant. Here, the divergence of the system (5) can be
expressed as

∇ · V =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −a+ z− 1− c (7)

III. ENERGY ANALYSIS
The vector field of the system could be decomposed into
kinetic torque, internal torque, dissipative torque and exter-
nal torque. Correspondingly, kinetic energy, potential energy,
dissipative energy, and external energy are identified in the
system. The kinetic torque can be expressed as

K =
1
2

(
X2
+ Y 2

+ Z2
)

(8)

Let the internal torque beU = 0, the dissipative torque and
external torque are

3 =

31 = −a 0 0
0 32 = −1 0
0 0 33 = −c

 and f =

 0
x
1


The mechanics of the system (5) is investigated by con-

trasting it with the Kolmogorov system. When U = 0,
the system can be expressed as

Ẋ = J (x)∇H +3X + f (9)

With the system (5) being represented in terms of its three
forms of torques, the system (5) is analyzed under the action
of the kinetic, dissipative and external torques, respectively.

A. SYSTEM UNDER INERTIAL TORQUE
When the system (5) is only under the action of inertial
torque, the system becomes

Ẋ = J (x)∇H (10)

When b = 1, d = −0.5 and e = −1.5, the phase diagram
and Hamiltonian energy of the system (5) are shown in Fig. 2.

It can be seen from Fig. 2 that the phase space volume and
Hamiltonian energy of the system are conservative.

B. SYSTEM UNDER INERTIAL TORQUE AND
EXTERNAL TORQUES
When the system (5) is under the inertial torque and external
torques. The phase diagram and Hamiltonian energy of the
system (5) are shown in Fig. 3.

FIGURE 3. System under inertial torque and external torque.

FIGURE 4. System under all torques.

It can be seen from Fig. 3 that under the action of inertial
torque and external torque, the Hamiltonian energy of the
system is periodic and no longer a constant.

C. SYSTEM UNDER ALL TORQUES
When the system (5) is under all torque. The phase dia-
gram and Hamiltonian energy of the system (5) are shown
in Fig. 4.It can be seen from Fig. 4 that the system is chaotic
under the action of all torques, and the Hamiltonian energy of
the system is chaotic.

Through energy analysis, it can be seen that under the
action of different torques, the system is in different states.
When the system under inertial torque, the system volume
and Hamiltonian energy are both conservative; when the
system under inertial torque and external torque, the system
Hamiltonian energy is periodic; when the system under all
torques, the system volume conservation is broken and the
Hamiltonian energy becomes more disordered, and the sys-
tem is chaotic.

IV. EQUILIBRIUM POINT AND BOUNDARY ESTIMATION
In order to further analyze the influence of the divergence
on the system dynamics, the ultimate bound and equilibrium
point of the system are analyzed first, when the initial point is
outside the ulitmate bound, and exclude the influence of the
stability of the equilibrium point.

A. EQUILIBRIUM POINT
To analyze the local dynamic characteristics of the system
with the change of parameter c, without loss of generality,
the following parameters settings: abcde 6= 0, a = −0.88,
b = 1, d = −0.5 and e = −1.5 are used, and changing
the parameter c. By calculation, the distribution of the system
equilibrium points are given in Table 1.
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TABLE 1. Distribution of system equilibrium points.

TABLE 2. Basic characteristics of E0.

Here,

E0 =
(
0, 0,

1
c

)
(11)

E1,2 =
{
∓

√
(28.24c+ 8.16), ±

√
15c+ 4.57, −3.48

}
(12)

and

E3,4 =
{
±
√
0.237c+ 0.47, ∓

√
0.133c+ 0.264 , −0.5}

(13)

First, considering E0, the characteristics of equilibrium
point E0 can be shown in Table 2.
Next, the characteristics of the equilibrium points E1,2 are

discussed. As E1,2 are symmetric about the z-axis, we only
focus on E1.
In this case, the characteristic equation of Jacobian matrix

of E1 is

f (λ)

= λ3 + (c+ 3.617) λ2

− (3.5
√
(28.54c+ 8.16) (16c+ 4.57)+29.3+98.86c)λ

− 1.497− 5.233c+0.245
√
(28.54c+8.16)(16c+4.57)

(14)

It can be observed that the characteristic equation can be
expressed as

f (λ) = a1λ3 + b1λ2 + d1λ+ e1 (15)

So the eigenvalues of E1 is calculated by Cardano formula
as

a1 = 1,

b1 = c+ 3.617,

d1 = −98.86c+ 3.5
√
(28.54c+ 8.2)(16c− 4.57)− 29.3,

e1 = 0.245
√
(−28.54c− 8.2)(16c− 4.57)− 5.23c− 1.5,

w =
−1+ 3

√
3i

2
,

p =
3a1d1 − b21

3a21
,

q =
27a21e1 − 9a1b1d1 + 2b31

27a31
,

β1 =
3

√√
(
q
2
)
2
+ (

p
3
)
3
−
q
2
,

β2 =
3

√
q
2
+

√
(
q
2
)
2
+ (

p
3
)
3
,

λ1 = β1 − β2 −
b1
3a1

,

λ2 = wβ1 − w2β2 −
b1
3a1

,

and,

λ3 = w2β1 − wβ2 −
b1
3a1

,

Here, λ1+λ2+λ3 = −b1, which can be proved by follows.

f (λ) = (λ− λ1) (λ− λ2) (λ− λ3)

= λ3 − (λ1 + λ2 + λ3) λ
2
− λ1λ2λ3

+ (λ1λ2 + λ1λ3 + λ2λ3) λ (16)

Comparing (15) with (16), the equation λ1+λ2+λ3 = −b1
can be obtained.

If there are λ3 = − (c+ 3.617) and λ1,2 = ±ωi at critical
stability, taking λ3 into f (λ) obtains

f (λ3) =
(
3.5
√
(28.54c+8.2) (16c+4.6)+ 29.3

)
(c+ 3.6)

− 5.23c+ 0.245
√
(28.54c+ 8.2)(16c+ 4.6)

+ 98.9c (c+ 3.62)− 1.5 = 0 (17)

By solving the equation (17), we can get ch1 = −0.3357
and ch2 = −3.175. Here, these two values are to be discussed.

1) When c = ch1, obviously, Re (λ3) 6= 0,

dRe
(
λ1,2

)
dc

∣∣∣∣∣
c=ch1

= 6.395 6= 0

can be obtained by the complex symbolic calculation.
So Hopf bifurcation occurs in the system when c = ch1. With
the growth of parameter c, the stability of the equilibrium
point E1 changes from instability to stability.

2) When c = ch2, obviously, Re (λ3) 6= 0,

dRe
(
λ1,2

)
dc

∣∣∣∣∣
c=ch1

= 1.278 6= 0

can be obtained by the complex symbolic calculation, which
means Hopf bifurcation occurs in the system, and the sta-
bility of the equilibrium point E1 changes from stability to
instability.

Through the above discussion, the basic characteristics of
E1 can be concluded in Table 3

Then, the basic characteristics of equilibrium point E3
are analyzed, and the characteristic equation of Jacobian
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TABLE 3. Basic characteristics of E1.

TABLE 4. Basic characteristics of E3.

TABLE 5. Basic characteristics of equilibrium points.

matrix at E3 is

f (λ) = λ3 + (c+ 0.62) λ2 + (2.1+ 2.93) λ+ 1.51c+ 3

(18)

Using Cardano formula, we can also get the eigenvalues
of E3 and the value of c when Hopf bifurcation occurs.
By calculation, ch3 = 0.3403 and ch4 = −1.640 can be
obtained. Next, the dynamic characteristics of the system for
different c values will be discussed.

When c = ch3, obviously, Re (λ3) 6= 0 and one obtains

dRe
(
λ1,2

)
dc

∣∣∣∣∣
c=ch3

= −2.152 6= 0

by the complex symbolic calculation, which means Hopf
bifurcation occurs in the system, and the stability of the
equilibrium point E3 changes from instability to stability.
However, when c = ch4, Re (λ3) 6= 0, λ1,2 = ±ωi are not

conjugate pure imaginary, so Hopf bifurcation does not occur
in the system. Through the above analysis, the characteristics
of E3 can be shown in Table 4.

Through the above analysis, the basic characteristics of the
equilibrium point can be summarized in Table. 5.

B. BOUNDARY ESTIMATION
The ultimate boundary of chaotic system not only plays a key
role in the control of chaotic systems, but also can be used
to estimate the Hausdorff dimension, so the estimation of the

ultimate boundary has great significance. The ultimate bound
of the system (5) is to be estimated.
Theorem 1:When abcde 6= 0, the trajectory of the system

(5) is contained in the ellipsoid

� =
{
(x, y, z) |x2 + y2 + (z− 1/e)2 ≤ R2

}
(19)

where

R = max {
(
1−c/e
c

)2

,

(
1−bc
c

)2

,

(1− c/e)2

4 (c− 1)
,

(1− c/e)2

4(c−a+ 1/e)2 (a− 1/e)

}
(20)

Proof: Firstly, we construct

F(x, y, z) = A1(x − B1)2 + A2(y− B2)2 + A3(z− B3)2

(21)

The derivative of F(x, y, z) is

Ḟ
2
= A1 (x − B1) ẋ + A2 (y− B2) ẏ+ A3 (z− B3) ż (22)

And the ultimate boundarys must be symmetric about the
z-axis as the proposed system is symmetric about the z-axis,
the calculation can be simplified by setting

A1 = A2 = A3 = 1, B1 = B2 = 0,

B3 =
1
e
, d = e+ 1 and b = 1.

One gets

F (x, y, z) = x2 + y2 + (z− 1/e)2 (23)

and

Ḟ
2
=

(
1
e
− a

)
x2 − y2 −

(
√
cz−

1+ c/e
2
√
c

)2

+
(1− c/e)2

4c
(24)

The maximum value of F satisfies the equation Ḟ = 0.(
a−

1
e

)
x2 + y2 +

(
√
cz−

(1+ c/e)
2
√
c

)2

=
(1−c/e)2

4c
(25)

Let t = 1
e , using the Lagrange multiplier method, we can

get the maximum value under the condition of Ḟ = 0, then
define the Lagrange function.

G = x2 + y2 + (z− t)2

+λ

(
− (a− t) x2 − y2 −

(
√
cz−

1+ tc
2
√
c

)2

+
(1− tc)2

4c

)
(26)

The partial derivative of the equation (26) can be obtained
as.
∂G
2∂x
= (1− λa+ λt) x = 0 (27)

∂G
2∂y
= (1− λ) y = 0 (28)

VOLUME 9, 2021 88963



E. Dong et al.: Divergence Measure on Modified Sprott-C System

∂G
2∂z
= z (1− λc)+

λ (1+ bc)
2

−b = 0 (29)

∂G
2∂λ
= (t − a) x2 − y2 +

(
1+ tc
2
√
c
−
√
cz
)2

+
(1− tc)2

4c
= 0

(30)

and then the extremum of the equation (23) is disscussed
based on whether λc− 1 is zero.
Case 2.1:When λc− 1 6= 0, a 6= t .
Case 2.1.1:When λ = 1, λ 6= 1

a−t .
By solving (27) and (29), one obtains x = 0 and z =

1+tc−2t
2(c−1) . Taking the result into the function (30), one obtains

y2 = (c−2)(1−tc)2

4(c−1)2
. By calculation, we can get

Fmax =
(1− tc)2

4 (c− 1)
.

Case 2.1.2:When λ 6= 1, λ = 1
a−t .

By solving the equations (278), (29) and (30), one obtains

Fmax =
(1− tc)2

4(c−a+ t)2 (a− t)
.

Case 2.1.3:When λ = 1, λ = 1
a−t .

By solving equation (29) and (30), one obtains

Fmax =
(1− tc)2

4 (c− 1)
.

Case 2.1.4:When λ 6= 1, λ 6= 1
a−t .

By solving the equations (27), (28), (29) and (30), one
obtains

Fmax =

(
1−tc
c

)2

.

Case 2.2:When λc− 1 = 0, a 6= t .
Case 2.2.1:When c 6= 1, c 6= a− t .
By solving the equations (27), (28) and (29), we can

get (x, y, z) = (0, 0, t) or (x, y, z) = (0, 0, t). However,
(x, y, z) = (0, 0, t) is not appropriate since F (x, y, z) 6= 0.
When (x, y, z) =

(
0, 0, 1c

)
, one obtains

Fmax =

(
1−bc
c

)2

.

Case 2.2.2:When c = 1, c 6= a− t . unsolvable.
Case 2.2.3:When c 6= 1, c = a− t . unsolvable.
Case 2.2.4:When c = 1, c = a− t . unsolvable.
So, when the parameters a = −0.88, b = 1, c = 0.36, d =
−0.5 and e = −1.5,

Fmax =

(
1−tc
c

)2

= 3.442,

and the ultimate boundary of the system (5) is x2 + y2 +
(z+ 2/3)2 ≤ 3.442, as shown in Fig. 5.

FIGURE 5. The ultimate boundary.

V. DIVERGENCE MEASURE
According to the stability of the equilibrium point and ulti-
mate boundary obtained in the above sections, the divergence
of system (5) is analyzed when the initial point is selected
outside the ultimate boundary.

The divergence of the system (5) can be expressed as

∇ · V =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −a+ z− 1− c (31)

which is related to the parameters a and c, and variable z. The
average divergence is defined as follows.

∇ · V̄ =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
=

1
N

N∑
t=1

∇z (t)−a− 1− c (32)

When a = −0.88, b = 1, c = 0.36, d = −0.5 and e =
−1.5, the system average divergence can be obtained as

∇ · V̄ =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
== −0.48+

1
N

N∑
t=1

∇z (t) (33)

and we can get z̄ = −0.3236, so the average divergence of
the system is

∇ · V̄ =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −a+ z̄− 1− c = −0.8036 < 0

(34)

Hence, the system is dissipative, that is, a volume element
with an initial volume V (0) converges to volume element
V (0) e−(a−z̄+1+c)t0 at time t0, which means that when t →
∞, each volume element including system trajectory shrinks
to 0 at an exponential rate −(a− z̄+ 1+ c).

At the initial time, the divergence of the system will be
affected by the initial point. When the initial point z0 >

0.48, the initial divergence of the system is greater than 0,
otherwise, it is less than 0, which means that the contraction
and expansion state of each volume element including the
trajectory of the system is uncertain at the initial time.

When the initial value is selected as x0 = (0.7459, 0.5583,
z0), the bifurcation diagram of the system can be obtained by
changing the initial point, as shown in Fig. 6.
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FIGURE 6. The bifurcation diagram of variable initial value.

The red dashed lines in Fig. 6 are the upper and lower
bounds of the ultimate boundary, z1 = 2.7733 and z2 =
−4.1067, respectively. In this paper, we only discuss the case
that the initial point is selected outside the ultimate boundary
of the system (5), because there are two states within the ulti-
mate boundary of the system, that is, chaos and quasi period.
And the quasi period is two quasi period states, converging to
the equilibrium point E3 and E4 respectively, so it is hard to
quantify the volume changes of the system.

In order to quantify the variation of divergence, when the
initial point is selected outside the ultimate boundary, two
indicators D and K are proposed to measure divergence.
Definition 1: Select the state xm of the system at time mT,

where T is the step size; the distance D between the state
xm of the system and the equilibrium point xe in the x − y
plane, is used to indicate the distance between the current
state of the system and the attractor, which ia also called the
relative attractor distance. Here, xe equilibrium point that the
trajectory of the system converges to first. HenceD is defined
as

D =
√
(xm − xe)2 + (ym − ye)2 (35)

We select the data of the first 0.1 s, the step size is 0.001 s,
for indicating the distance between the current state of the
system (5) and the attractor.
Definition 2: Select the states xn and xm of the system

(5) at time nT and mT. The direction vector between xn and
xm is used to represent the trend of volume contraction in
phase space, which is called contraction trend variableK. The
equation expression of K is

K = (|xn − xm| , |yn − ym| , |zn − zm|) (36)

The selection of n and m depends on the actual situation.
In order to show the trend of system contraction, the data from
0.001 s to 0.05 s and the step size 0.001 s are selected to show
the change of system phase space volume at the initial time.

Three different initial points outside the ultimate bound-
ary are selected as x01 = (0.7459, 0.5583,−6), x02 =
(0.7459, 0.5583, −4.5) and x03 = (0.7459, 0.5583, 4), and

FIGURE 7. The system phase diagram and diagram of D.

FIGURE 8. The system phase diagram and diagram of D.

the system is quasi periodic, chaotic and quasi periodic,
respectively. Then the change of phase space volume is ana-
lyzed when these three initial points are selected.

Case 1:When x01 = (0.7459, 0.5583,−6), the divergence
at the initial time of the system is

∇ · V0 =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −a+ z0 − 1− c = −6.48 < 0

(37)

the phase diagram of the system and the diagram of D are
shown in Fig. 7.

The red curve in Fig. 7(a) is the data of the first 1 s.
We can clearly see the shrinking of the volume element from
Fig. 7(a). And D gradually decreases, as time goes by, as can
be seen from Fig. 7(b).

Case 2: When x02 = (0.7459, 0.5583,−4.5), the diver-
gence at the initial time of the system (5) is

∇ · V0 =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −a+ z0 − 1− c = −4.98 < 0

(38)

The phase diagram of the system and the diagram of D are
shown in Fig. 8.

In Fig. 8(a), the red curve is the data of the first 1 s. As can
be seen from Fig. 8(a), the volume element gradually shrinks
as time goes by. It can be seen from Fig. 8(b) thatD gradually
decreases.

Case 3: When x03 = (0.7459, 0.5583, 4), the divergence
at the initial time of the system is

∇ · V0 =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −a+ z0 − 1− c = 3.52 > 0

(39)
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FIGURE 9. The system phase diagram and diagram of D.

FIGURE 10. The sequence diagram of K.

The phase diagram of the system (5) and the diagram of D
are shown in Fig. 9.

The red curve in Fig. 9(a) is the data of the first 1 s. It can
be seen that the volume element is expanded outwards at
the beginning, and then the volume product element starts
to contract under the effect of attractor in Fig. 9(a). From
Fig. 9(b), we can also find that D increases firstly, and then
decreases gradually.

The sequence diagram of K at 3 ≤ z0 ≤ 8 and −8 ≤ z0 ≤
−4.5 are shown in Fig. 10, which shows the effect of |z0| on
the contraction rate.

From Fig. 10(a), it can be seen that when−8 ≤ z0 ≤ −4.5,
that is, 4.5 ≤ |z0| ≤ 8, the value of K changes monotonously
with the decrease of |z0|, that is, the initial divergence of the
system (5) decreases with the decrease of |z0|, and the rate
of contraction decreases. Similarly, when 3 ≤ z0 ≤ 8, that
is, 3 ≤ |z0| ≤ 8, the value of K also changes monotonously
with the decrease of |z0|, that is, the initial divergence of the
system increases with the increase of |z0|, and the expansion
rate increases.

From the above three cases, the influence of initial points
outside the ultimate boundary on each volume element is
revealed. When the initial divergence of the system is posi-
tive, the trajectory of the system (5) will expand firstly, but
the average divergence of the system (5) is still negative,
so the system trajectory will eventually be attracted to the
chaotic attractor. Meanwhile, when the initial divergence of
the system is negative, the trajectory of the system will firstly
contract and then finally be attracted to the chaotic attractor.
The three-dimensional diagram of D is drawn in Fig. 11,
to further analyze the influence of different initial points on
the volume change in the phase space.

The green area is the part where the indicator D is greater
than 0, and the red area is the part where the indicator D is

FIGURE 11. The three-dimensional diagram of D.

FIGURE 12. The bifurcation diagram on variable initial value.

less than 0 in Fig. 11. In Fig. 11 (a), 3 < Z0 < 15, the initial
values in the green area achieve the phase space volume that
expands first and then contracts. In Fig. 11 (b), −15 < Z0 <
−4, the initial values in the red area can achieve the extracted
phase space volume.

It is necessary to analyze the change of system volume
element. Without loss of generality, c = 0.32 is chosen to
analyze the influence of the equilibrium point stability on the
divergence. When c = 0.32, the system is chaotic, but the
three equilibrium points are all unstable equilibrium points,
and the system divergence is still related to the value of
the variable z. Here, the initial point is selected outside the
ultimate boundary of the system (5). Firstly, the bifurcation
diagram of the system (5) is drawn in Fig. 12, when the initial
point is x0 = (0.7396, 0.5534, z0).
The red lines z1 = 3.1253 and z2 = −4.4587, in Fig. 12,

are the upper and lower boundary of the ultimate boundary.
We can find the system is always chaotic from Fig. 12. Here,
x01 = (0.7396, 0.5534, 4) and x02 = (0.7396, 0.5534,−6)
are chosen as two cases to study whether the stability of the
equilibrium point has impact on the volume change of the
system.

Case 1:When x01 = (0.7396, 0.5534, 4), the initial diver-
gence of the system (5) is

∇ · V0 =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −a+ z0 − 1− c = 3.56 > 0

(40)
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FIGURE 13. The system phase diagram and diagram of D.

FIGURE 14. The system phase diagram and diagram of D.

FIGURE 15. The sequence diagram of K.

The phase diagram of the system and the diagram of D are
shown in Fig. 13.

Case 2: When x02 = (0.7396, 0.5534,−6), the initial
divergence of the system (5) is

∇ · V0 =
∂ ẋ
∂x
+
∂ ẏ
∂y
+
∂ ż
∂z
= −a+ z0 − 1− c = −6.44 < 0

(41)

The phase diagram of the system (5) and the diagram of D
are shown in Fig. 14.

It can be seen fromFigs. 13 and 14 that the value of variable
D changes as time goes by, obviously, it meets the previous
conclusion.

The sequence diagram of K of the system (5) at −8 ≤
z0 ≤ −4.5 and 3.5 ≤ z0 ≤ 8 are shown in Fig. 15. It can be
seen from Fig. 15 that the volume of the phase space of the
system contracts when the initial divergence is less than 0,
while the volume expands first and then contracts when the
initial divergence is greater than 0, obviously which meets the
previous conclusion at c = 0.36.
When c = 0.32, the three-dimensional diagram of D is

given in Fig. 16.

FIGURE 16. The three-dimensional diagram of D.

As can be seen from Fig. 16, when c = 0.36 and c = 0.32
the three-dimensional diagrams of D are similar. From the
analyses of c = 0.36 and c = 0.32, it can be found that when
the divergence of the system (5) is related to the variable z,
the volume contraction and expansion is related to the selec-
tion of the initial point, which is outside the ultimate boundary
of the system. When the initial divergence is greater than 0,
the volume of the system (5) expands first and then contracts.
When the initial divergence is less than 0, the volume of the
system (5) shrinks as time goes by. Moreover, the contraction
rate of phase space volume is related to the initial point of the
system (5).

VI. CONCLUSION
In this paper, a three-dimensional dissipative system was
proposed and the mechanism of the system is analyzed by
contrasting it with the Kolmogorov form. Furthermore, it was
found that the system divergence is related to the variable z.
In order to analyze the influence of divergence on the system
dynamics, and the ultimate bound and the stability of the
equilibrium points are studied. Although the divergence of
the system is related to the variable z, the average divergence
of the system is still negative and the system is dissipative.
Then two new indicators D and K were introduced to analyze
the influence of divergence on the system dynamics, when
the initial point is outside the ultimate boundary. And it
was found that when the initial divergence is less than 0,
the system volume is keeping on contracting; when the initial
divergence is greater than 0, the system volume expands
first and then contracts. The divergence measurement method
proposed in this paper for the initial state of system can
effectively analyze the influence of divergence on the pro-
posed system, which is worth studying for this kind of special
system, especially for the two wing attractor.
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