
Received May 23, 2021, accepted June 5, 2021, date of publication June 18, 2021, date of current version June 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090438

Fast RFID Tag Sorting at the Edge for
Internet of Things
YANGZHAO YANG1 AND XIUJUN WANG 2,3,4
1Shenzhen Cyberaray Network Technology Company Ltd., Shenzhen 518000, China
2School of Computer Science and Technology, Anhui University of Technology, Ma’anshan 243032, China
3Institute for Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230091, China
4Anhui Engineering Laboratory for Intelligent Applications and Security of Industrial Internet, Ma’anshan 243032, China

Corresponding author: Xiujun Wang (wxj@mail.ustc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61402008, in part by the University
Natural Science Research Project of Anhui Province under Grant KJ2020A0249, in part by the Provincial Key Research and Development
Program of Anhui Province under Grant 202004a05020009 and Grant 201904a05020071, in part by the Open Fund of Key Laboratory of
Anhui Higher Education Institutes under Grant CS2020-006, in part by the Electronic Information and Control of Fujian University
Engineering Research Center, Minjiang University, under Grant MJXY-KF-EIC1803, and in part by the Program for Synergy Innovation in
the Anhui Higher Education Institutions of China under Grant GXXT-2020-012.

ABSTRACT Internet of Things (IoT) has gained great popularity in various fields including smart warehouse
and intelligent manufacturing. As a building block of IoT network, the Radio Frequency IDentifica-
tion (RFID) technology enables a large and ever-increasing number of physical objects to be monitored
across the Internet via tag identification. Efficiently managing massive tags in RFID systems becomes an
important research issue for IoT networks. This paper focuses on a fundamental management problem —
tag-sorting, which is to (1) put a set S of identified tags into a certain order by informing each tag t ∈ S
of a unique integer 1(t) ∈ {1, 2, · · · , |S|}, and meanwhile (2) keep unidentified tags from receiving any
of these integers. For RFID systems, it is critical to solve this problem as quickly as possible in the sense
that, once sorted, every identified tag t ∈ S can be manipulated via t’s log2(|S|)-bit integer significantly
shorter than t’s 96-bit long tag-ID (log2(|S|) � 96), boosting efficiency substantially. The existing works
of literature, however, fails to solve this problem rapidly, as they accomplish (1) and (2) separately by using
aloha-like protocols and Bloom filters, which incur a long communication time far from the optimum. In this
paper, we overcome this drawback by proposing a protocol Psort capable of solving the problem fastly. In
particular, this protocol is built with a novel data structure and communication scheme to achieve (1) and (2)
simultaneously by using a communication time proven to be much less than the state-of-the-art protocols.
The simulation results demonstrate the competence of Psort in achieving about 1.4× speedup than the state-
of-the-art solutions.

INDEX TERMS IoT network, edge server, RFID systems, tag management, tag-sorting, unidentified tag,
identified tag.

I. INTRODUCTION
Over the past decades, Internet of Things (IoT) has
been used in many fields including smart warehouse
management [1]–[3], traffic monitoring [4]–[6], and logis-
tical tracking [7]–[9]. In the construction of IoT net-
works, RFID technology serves as a building block that
connects millions and billions of physical objects into
the Internet through identifying the RFID tags affixed to
objects [10], [11]. This enables massive physical objects to

The associate editor coordinating the review of this manuscript and
approving it for publication was Vyasa Sai.

be swiftly sensed and controlled across the IoT network [12],
and creates the opportunity for efficient management and
accurate analysis made towards these objects [4], [13]–[18].

Recently, as the number of tags attached to objects gets
increased dramatically [3], [12], [19], [20], how to rapidly
manage these massive tags has become an important research
issue in RFID systems for IoT networks. In particular,
this issue is critical when massive sensed data from tags
are flooded into edge servers where they must be timely
processed and analyzed to provide valuable intelligence to
real-time applications [3]–[8], [21], [22]. For example, con-
sider the RFID systems used in cold-chain storage and

90268 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-8758-5763

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

FIGURE 1. An example of the RFID systems for IoT networks.

transportation facilities, where sensor-augmented RFID
tags [23] are attached to food items and track their temper-
ature in real-time. In this scenario, allowing all tags to send
back their sensed data without control will lead to a high
transmission latency and a large volume of redundant/useless
information. Therefore, to ensure food quality and safety, a
smart temperature surveillance application deployed in these
systems must control and schedule tags to send their data
appropriately so that those tags (attached to food items) with
abnormal temperatures can be detected timely. More example
can be found in [3]–[5], [7], [20], [23]–[27].

Generally speaking, an RFID system for IoT networks
[1]–[8] contains three key components: an edge server, mul-
tiple readers, and massive tags. The edge server communi-
cates with readers (RFID readers) over a high-rate link and
provides both computational and storage support for readers.
The server also schedules readers and tags to work together
appropriately, prevents communication collisions, and sends
local analysis results or sensed data back to the central cloud
if required. In contrast to the high-speed link between the
server and readers, a reader monitors the tags (RFID tags)
within an area via a low-rate link through whose communi-
cation volume mainly determines protocols’ communication
cost in RFID systems. A tag is composed of an antenna and
a microchip. It carries a 96-bit or 128-bit ID to uniquely
characterize itself as well as the attached physical object (the
object that this tag is affixed to). When interrogated by a
nearby reader, a tag shall backscatter the stored ID to this
reader for showing its existence. A tagmay also transmit other
information related to the attached object back to the reader
if required [3], [4], [20], [23]–[26], [28]–[30]. If the 96-bit or
128-bit ID of a tag t has been collected by a nearby reader
(t has been recognized by this reader), t is called as an
identified tag (the system knows t’s existence); otherwise,
t is called an unidentified tag. In Fig. 1, we depict an example
of the RFID systems for IoT networks.

This paper primarily focuses on the tag-sorting problem
which is a fundamental management problem in the RFID

systems for IoT networks. Specifically, given a set S of n iden-
tified tags, and a setO of an unknown number of unidentified
tags, this problem requires to quickly (1) put the n identified
tags into a certain order by informing them with unique inte-
gers from {1, 2, · · · , n}, and meanwhile (2) keep unidentified
tags from receiving these integers. Hereafter, we call (1) and
(2) the two objectives of the tag-sorting problem.

The studied problem has a natural and deep connection to
efficiently managing massive tags in RFID systems, and thus
greatly affects system efficiency. The reason is that, once
the tags in an RFID system are sorted, every identified tag
t can be manipulated (selected, read and written) via the
short unique integer assigned to t , substantially reducing
the communication time for managing massive tags. This
aspect is of particular importance for RFID systems with
massive tags at the edge of IoT networks [1], [2], [7], [20],
[21], [23] and thus motivates our research in this paper.
Specifically, given an RFID systemwith a set S of n identified
tags and a set O of unidentified tags, if these tags are sorted
(i.e., each identified tag in S is informed with a unique integer
1(t) ∈ {1, 2, . . . , n}, while unidentified tags in O are not),
we can enjoy three typical benefits as below.

• An RFID reader can quickly select an identified tag t
from S by sending out t’s integer 1(t), a log2(n)-bit
string substantially shorter than t’s 96-bit or 128-bit ID
(log2(n)� 96) [10], [24].

• An RFID reader can rapidly select a tag subset T from
S (T ⊂ S) by sending out the unique integers of the tags
in T instead of their 96-bit IDs [8], [10], [25].

• An RFID reader can swiftly read or write data from
or to every identified tag in S by following either an
increasing or decreasing order of tags’ integers [10],
[20], [26].

All these bring great conveniences to managing massive
tags. Some concrete examples are listed to appreciate the
practical significance of this problem. First, considering a
supermarket, the manager needs to periodically and quickly
find out those identified tags that went missing, such that the
loss or theft of items can be caught or even prevented. In this
case, it is easy to see that a fast tag sorting protocol helps
solve the problem, since it can separate out unidentified tags
before checking the existence of remaining identified tags
one-by-one following an increasing order of tags’ integers.
Second, in a sensor-augmented RFID system, tags equipped
with sensors can monitor their surroundings and then peri-
odically feed data back to readers for analysis. During each
time of data collection, only a subset of the identified tags
is usually required to send back their data, while the rest are
not. Clearly, a fast tag-sort protocol can speed up the data
collection process, as a tag subset can be rapidly selected
by their assigned integers. Third, considering a large local
logistic center, tags are constantly being shipped to different
destinations. In this scenario, the transportation company
needs to write on each identified tag some information, e.g.,
a destination address, shipper code, insurance policy, for live

VOLUME 9, 2021 90269

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

tracking or querying purposes. Also, an efficient tag-sorting
protocol makes it simple to build a fast-writing process, since
every identified tag bears a unique integer, while uniden-
tified tags do not. More practical examples can be found
in [3], [4], [6], [8], [21], [26], [29], and [32]..

With the above discussions, it is not hard observe that a
fast tag-sorting protocol is beneficial to the goods monitoring
applications deployed in supermarkets and warehouses [2],
[22], [25], [26]. Because this protocol can rapidly deactivate
irrelevant (unidentified) tags and get relevant (identified) tags
more easily manipulated with the assigned integers, each
of which is significantly shorter than the original 96-bit
IDs of these tags. Environmental data collection applications
dealing with sensor-augmented tags also benefit from a fast
tag-sorting protocol. Environmental data collection applica-
tions dealing with sensor-augmented tags also benefit from
a fast tag-sorting protocol [8], [9], [23]. The explanation is:
once tags are sorted, the reader can more quickly isolate a
tag subset from a large population by using the assigned
short integers than using the original 96-bit IDs. For the same
reason, a tag sorting protocol also helps some applications
that needs to store the same piece of information in a tag
subset for tracking or security reason [14], [20], [24], [29],
[30] (since tag subsets can be more quickly selected with
these assigned integers after all tags are sorted).

A. LIMITATIONS OF PRIOR WORK
Despite the broad significance of the tag-sorting problem
in RFID systems, to our best knowledge, there is no pro-
tocol specifically designed to solve this problem. A naive
solution would be to let the reader predetermine a unique
integer 1(t) ∈ {1, 2, .., n} for each identified tag t ∈ S,
and then broadcast the 96-bit or 128-bit IDs of the tags in
S by following either an increasing or decreasing order of
tags’ integers: 1(t), t ∈ S. This solution, however, yields a
high communication cost of 96 × n bits, and then an unac-
ceptable latency for real-time applications, especially when
there are massive identified tags (n is large). For saving the
communication cost, we may first separate identified tags
from unidentified ones by using the classic Bloom filter and
then adopt an Aloha-like protocol to assign each identified
tag a unique integer. Unfortunately, this scheme still cannot
bring the communication time down to a satisfactory level,
because both Bloom filter and aloha-like protocols demand
a considerable amount of communication cost which is far
from the optimum.

Other research works investigating problems related to the
tag-sorting problem are analyzed below.

There are some researches [24], [29], [32]–[34] devoted
to rapidly collecting tag information in RFID systems. For
example, in [32], Chen et al. studied how to collect the
information from a whole tag population. They proposed
the Multi-hash Information Collection method (MIC) that
employs multiple hash functions to resolve hash collisions
in each communication round to boost the chance that a
tag can successfully send back its information. With this

strategy, more tags can send their information back in one
round, and thus MIC shows an improved time efficiency
than the Single-hash based approaches. The authors in [33]
studied how to collect the information from a subset S
of identified tags instead of the whole population of tags.
They designed the Enhanced Tag-Ordering Polling method
(ETOP) that utilizes the classic Bloom filter for separating
those tags in subset S from other tags and then polls their
information. Liu et al. [34] proposed a tree-based polling
protocol (TPP) which collects tag information by polling
tags’ hashed indexes and reduces the communication cost
by reducing the length of polling vectors. Reference [29]
studied how to use minimal perfect hashing to collect the
information of a tag subset. For this purpose, they proposed a
protocol called the minimal Perfect hashing-based Informa-
tion Collection (PIC) which uses multiple indicate vectors to
recursively appoint one slot solely to one tag, and then filters
out other non-target tags.

There are several studies [2], [35]–[37] that deal with
detecting missing tags or unidentified tags in RFID systems.
For instance, Zhang et al. [2] focused on quickly finding out
missing tags in mobile RFID systems. They designed a proto-
col called Efficient Bit-Detecting (EBD), which assumes that
each tag has been assigned with a unique reading order, and
then uses a single bit-array to detect the presence of missing
tags. Reference [35] studied how to quickly detect missing
tags in the presence of unknown tags. They designed a miss-
ing tag detection protocol that uses a compressed Bloomfilter
to reduce the communication cost for pinpointing missing
tags.

In summary, however, when applying these existing
protocols to the tag-sorting problem, they suffer from
a long communication delay, because they handle the
two objectives of the tag-sorting problem separately.∗

Specifically, given an RFID system with n identified tags
and an unknown number of unidentified tags, the commu-
nication costs of the existing protocol are lower bounded
by 1.44 n log2(1/ε) + 2.71n (see Theorem 5). The first
subformula 1.44 n log2(1/ε) is the communication cost of
using a Bloom filter to keep unidentified tags from receiving
any integers with an error probability ε [38]; The second
subformula 2.71n is the communication cost for informing
each identified tag of a unique integer [29], [39]. We will
explain in the following sections how we break this upper
limit by handling the two objectives simultaneously.

Please note that, there are a number of recent
works [40]–[45] that use the term ‘‘tag sorting’’ to represent
the RFID-based localization problem, which is to acquire the
location information of different tags and find the spatial
order of these tags. In contrast, the tag-sorting problem
studied here is to assign each identified tag a new and unique
integer regardless of their locations and spatial order. These
works are therefore not discussed.

∗ Recall that the sorting problem strictly requires that unidentified tags
shall not receive unique integers that are meant for identified tags only.

90270 VOLUME 9, 2021

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

B. TECHNICAL CHALLENGES AND CONTRIBUTIONS
There are two technical challenges to address when designing
a fast tag-sorting protocol.

• How to rapidly separate the identified tags from
unidentified tags. Unidentified tags can be filtered out
simply if we use a Bloom filter to encode the set S of
identified tags and then send this filter out. However,
a Bloom filter and its variant structures are not optimal
in terms of memory space, thus still demands a con-
siderable amount of communication cost [38]. Hence,
we need to design a new data structure capable of
smartly encoding the information of identified tags with
as few bits as possible. This point is indeed challenging,
as the following sections reveal our great efforts towards
fulfilling this goal.

• How to rapidly inform identified tags of unique inte-
gers. When assigning integers to tags, people usually
think of the traditional aloha-like protocols [24], [29],
[32]–[34], [37] which randomly distribute tags to differ-
ent slots, and then assign different integers to different
tags by using the singleton slots (a slot is called a single-
ton slot if there is exactly one tag mapped to this slot).
Although this scheme is popular in RFID systems, it still
suffers from low communication efficiency because a
large proportion of transmitted slots are not singleton
slots and thus unused. To be more specific, on average,
about 1−e−1 of the slots in these aloha-like protocols are
not singleton [29]. Therefore, we need to design a new
scheme that boosts communication efficiency by reduc-
ing the number of useless slots. In fact, we achieve this
point by reusing these useless slots to deactivate uniden-
tified tags (separating unidentified tags from identified
ones). This point is challenging, because, as far as we
know, it has never been touched by other research works,
and it requires much effort to utilize those slots which
appear to have no functionality to deactivate unidentified
tags.

Briefly, the core contribution of this paper compared to
these existing works contains two elements as below.

(1) We have proposed a protocol that solves the
tag-sorting problem in a way that the two objec-
tives of this problem can be achieved simultaneously
with much less communication time. Remember that
given an RFID system with both identified and uniden-
tified tags, the tag-sorting problem has two objectives of
(1) informing each identified tag of a unique integer
and (2) keeping unidentified tags from receiving these
integers.

(2) We have examined the proposed protocol with rig-
orous theoretical analysis and proven that the pro-
posed protocol requires much less communication
time compared to the existing standard protocols.
More specifically, the proposed protocol reduces the
communication time by 30% as compared to existing
state-of-the-art protocols.

The rest of the paper is organized as follows. Section II
introduces the system model, problem definition, and
assumptions. Section III presents the designed tag-sorting
protocol, followed by a theoretical analysis of its
performance. Section IV conducts extensive simulations for
comparing the proposed protocol with the other existing
protocols. Section V presents the conclusion of this paper.

II. DEFINITION AND ASSUMPTIONS
A. SYSTEM MODEL AND PROBLEM DEFINITION
We consider an RFID system consisting of an edge server,
a reader R, and a number of tags each of which is attached to
a physical object. The reader R fully covers all the tags and
connects an edge server via a high-speed link from which
it can get storage and computational support quickly. Each
tag t carries a unique 96-bit ID by which we can identify
both the tag t and the associated physical object. Tag t can
perform certain simple computations. Moreover, if the ID
of tag t has already been recognized by R, t is called as an
identified tag; otherwise, t is an unidentified tag. We denote
the set of identified tags by S = {t1, t2, · · · , tn} and the set of
unidentified tags by O = {u1, u2, · · · }.
The communication between reader R and tags follows the

classic framed slotted Aloha (FSA) scheme which is given by
the EPC Global C1G2 standard [10]. This scheme has been
used widely by a large number of tag management protocols
working in RFID systems [2], [24], [30], [35]–[37]. To be
more specific, this scheme contains multiple rounds, and each
one works as follows.

• First, the readerR starts a communication round by send-
ing out the necessary parameters including a random
seed and a frame size.

• Second, every tag, upon receiving a request, performs
some calculations, and then either sends back some
information or waits to receive further messages from
readers.

In this paper, we take the communication cost of a protocol
to be primarily determined by the number of the transmit-
ted bits between reader R and tags, which are sent over a
low-speed link [10].

With the above notations, it gets ready to define the
tag-sorting problem as below.
Definition 1: Let ε be a user-specific error probability.

Given an RFID system with a reader R, a set S of n identified
tags, and a set of unidentified tags, the tag-sorting problem
requires to design a protocol running on reader R and tags,
such that the following two requirements can be satisfied.

(1) ∀t ∈ S, t is informed of a unique integer from
{1, 2, · · · , n};

(2) ∀u ∈ O, the probability that u is incorrectly informed of
(or incorrectly receives) an integer I ∈ {1, 2, · · · , n} is
no more than ε.

In Fig. 2, we show an example of the tag-sorting problem
in an RFID system with 5 identified tags and 5 unidentified
tags.

VOLUME 9, 2021 90271

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

FIGURE 2. An example of the tag-sorting problem.

Please note that the problem definition and the pro-
posed scheme in this paper can be easily extended to the
multi-reader scenarios, when readers are well scheduled to
work jointly by the edge server, which is usually true in
practice [1]–[3], [24], [30], [35]–[37]. There already exist
a number of efficient methods [46]–[48] that schedule the
readers in RFID systems to work jointly well and free of col-
lisions. It should also be noted that the goal of the tag-sorting
problem studied in this paper is to assign each identified tag a
single, new, and unique integer that does not take into account
their locations or spatial orders. Thus, it is different from
the RFID-based localization problem that uses ‘‘tag sorting’’
term [40]–[45] to represent finding the spatial order of the
tags.

Based on Definition 1, it is clear that the main sources of
communication overhead in the tag-sorting problem consist
of two parts: the transmission cost for achieving the objective
(1) and the transmission cost for achieving the objective (2).
In the following section, we show how to overcome this
overhead by proposing a novel data structure and communi-
cation scheme which can achieve the two objectives jointly.
In particular, the novel data structure can smartly encode the
information of identified tags with a minimum number of bits
(much less than the classic Bloom filter) to satisfy objective
(2); the data structure also helps the related communication
scheme to satisfy objective (1) by using a much-reduced
number of communication slots than aloha-like protocols.

B. ASSUMPTIONS
Besides the above definition, we adopt the following two
assumptions in this paper.

We assume that the reader can transmit messages to all
tags using the same rate (e.g., 26.5Kbit/s), but does not
consider the difference in the signal strength of RFID tags.
Three reasons account for this assumption. First, the max-
imum interrogating range of an RFID reader is limited

to the distance where the passive tags’ chips can receive
enough power to turn on themselves (the range is usually
less than 10 meters) [26], [49]. Second, most RFID systems
are installed in supermarkets, warehouses or on the conveyor
belts, where the communication condition of every tag within
the reader’s range are almost the same [2], [8], [9], [24],
[26], [29], [30], [32]–[37], [50]. Note that, in typical RFID
systems, tags communicate and power themselves using same
RF waves radiated by the reader antenna [10], [51]. In other
words, the reader sends its energy through the antenna as RF
waves to tags in order for them to become energized and
respond back to the reader. Third, this transmission setting
assumption has been widely used to evaluate the performance
of various promising tag management protocols in RFID
systems [2], [9], [24], [29], [30], [32]–[35], [37], [50], [52].

Since this paper primarily focuses on managing RFID tags
with as little communication time as possible and mainly
solves the tag-sorting problem, we do not concern the security
issues on tags. There could be potential security risks to the
proposed protocol since the new identifiers assigned to tags
come from a fixed set of integers, making them relatively easy
for malicious attackers to guess and exploit. However, please
note that the security feature of tags is largely preserved since
the proposed protocol does not make any changes to the Kill
password and Access password stored on each tag. Note that
the Access password allows a user to lock a tag, preventing
modification of various parts of the memory (EPC, User,
etc.); the Kill password is needed to disable a tag [10]. We
do think the security issue is vital and will consider this with
more details in our future.

III. THE DESIGN OF PSORT
The designed protocol Psort is a two-phase protocol. The
first phase assigns unique integers to a large fraction of the
identified tags in set S (a faction of 1 − ε1.6 of them) and
meanwhile separates unidentified tags from identified tags
with a user-specific probability ε. Please note that the unique
integer 1(t) assigned to tag t is called the order of tag t
throughout this paper. The second phase finishes the rest of
the job by assigning the other tags in S (a faction of ε1.6 of
them) with unique integers directly by pooling their IDs.

InPsort, we use three states to characterize the current status
of a tag.

- Tag t is in unsorted state, if t doesn’t know whether
it is an identified or unidentified tag or not, i.e., has no
idea about whether it belongs to S or O.

- Tag t is in sleep state, if t knows for sure that it is an
unidentified tag; A tag in sleep state keeps in this state
until the end of Psort.

- Tag t is in sorted state, if t has determined to be an
identified tag and has obtained a unique order 1(t).

Initially, every tag t in this RFID system is in the unsorted
state, and maintains a local variable G which is initialized to
0 to keep tracking of the number of tags that have entered the
sorted state.

90272 VOLUME 9, 2021

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

A. THE FIRST PHASE OF PSORT
The first phase of Psort has f = dlog2(

1
ε
)e communication

roundsR1,R2, ..,Rf , each of which puts a number of uniden-
tified tags into the sleep state and a number of identified tags
into the sorted state. To be more specific, by the end of the
first phase (after l rounds), (1) a fraction of about 1 − ε1.6

of identified tags will be assigned with unique integers from
{1, 2, · · · , n} and put to the sorted state; (2) a fraction of
1 − ε unidentified tags enter the sleep state without getting
any integer.

For ease of illustration, let Sk denote the set of identified
tags that are in the unsorted state and nk denote its size (nk =
|Sk |), before the start of the k-th roundRk (k = 1, 2, · · · , f)).
Thus, S1 = S, n1 = n, initially. Additionally, without loss of
generality, c = log2(

nk
ln 2) is assumed to an integer in each

round Rk .
The basic idea of each round Rk is: the reader R con-

structs two arrays: B and D which will be used to determine
unique orders for some identified tags, and put some uniden-
tified tags to sleep, such that any unidentified tag enters the
sleep state with probability ε. Detailed steps of Rk (k =
1, 2, · · · , f) are shown below.
Step 1: The reader R broadcasts two parameters: nk and a

random number r for reader R as well as every unsorted tag t
to compute a hash function h(t) = H (tID, r) mod 2c+f+1−k ,
where H () is a hash function and tID is the 96-bit ID of tag t .
The value of h(t) is a binary number of (c+ f + 1− k) bits:
h(t) = v[0, 1, · · · , c+ f−k]. The bit sequence in v is further
divided into three disjoint segments, as shown in Eq. (1).

v1t = v[0, 1 · · · , c− 1] (c bits),

v2t = v[c] (1 bit),

v3t = v[c+ 1, c+ 2, · · · , c+ f − k] (f − k bits). (1)

These three segments are used for the following purposes,
respectively. (1) The binary number of v1t points to the loca-
tion in array B where tag t is mapped to; (2) the single bit v2t
is used for resolving hash collisions, if exactly one another
identified tag is mapped to the same position in B; (3) v3t
is used as the fingerprint of tag t and will be stored in a
corresponding cell of array D. More explanations will be
provided in the following steps.
Step 2:Upon receiving nk and r , each tag t in unsorted state

computes h(t) = (v1t , v
2
t , v

3
t) using its own ID tID.

Step 3: Reader R also produces the hash value h(t) =
(v1t , v

2
t , v

3
t) for each tag t ∈ Sk .

Step 4: Reader R constructs 2c cells for array B
(B[0, 1, · · · , 2c − 1]), where each cell B[i](0 ≤ i ≤ 2c − 1),
is a 1-bit, or 2-bit, or 3-bit string determined by rules of (2).

B[i] =



‘0’ if |{z ∈ Sk |v1z = i}| = 0;
‘10’ if |{z ∈ Sk |v1z = i}| = 1;

‘110’
if |{z ∈ Sk |v1z = i, v2z = 0}| = 1

and |{z ∈ Sk |v1z = i, v2z = 1}| = 1;
‘111’ otherwise.

(2)

FIGURE 3. State diagram of a tag t in the first phase of Psort.

Let N 10
t and N 110

t denote, respectively, the number of cells
of ‘10’ and ‘110’ that occur before cell B[v1t]. Let N

10 and
N 110, respectively, be the total number of cells of ‘10’ and
‘110’ among all 2c cells in B. Similarly, we can define N 111

t ,
N 111 and N 0. These notations are summarized in (3).

N b
t = |{B[i] = ‘b’, i = 0, 1, · · · , v1t − 1}|,
where b ∈ {‘10’, ‘110’, ‘111’}.

N b
= |{B[i] = ‘b’, i = 0, 1, · · · , 2c − 1}|,
where b ∈ {‘0’, ‘10’, ‘110’, ‘111’}.

(3)

Based on Eq. (2), the following two facts are true.
? If B[v1t] = ‘10’, then tag t is the only identified tag

mapped to this cell. Note that we will not count an
unidentified tag mapped to the same cell.

? If B[v1t] = ‘110’, then exactly two identified tags are
mapped to the same cell B[v1t]. Thus, in addition to tag
t , there exists another unique tag t ′ ∈ Sk mapped toB[v1t]
also. This collision can be resolved by the fact that v2t 6=
v2t ′ . Again, unidentified tags are not counted.

Step 5: Consider the set: Lk = {t ∈ Sk |B[v1t] =
‘10’ or ‘110’}, whose tags can be uniquely identified by
above observations. It is easy to see that the number of tags in
Lk is N 10

+ 2N 110. For example, in Fig. 4, N 10
= 3 (B[1] =

B[2] = B[6] = ‘10’) andN 110
= 1 (B[7] = ‘110’). Thus L =

{t3, t4, t2, t7, t5}. Note that both t5 and t7 map to B[7] but they
differ in bit v2t (v

2
t5 6= v2t7), as shown in Tab. 1. Thus, in this

step, reader R constructs arrayD[0, 1, · · · ,N 10
+2N 110

−1]
that has N 10

+ 2N 110 cells, one for each tag in set Lk . The
position in D for tag t is 1(t) determined by Eq. (4). The
value of D[i], i ∈ {0, 1, · · · , (N 10

+ 2N 110
− 1)} is a (f − k)-

bit long string (f = log2(1/ε)) which is copied from v3t ,
D[i] = D[1(t)] = v3t , called fingerprint of tag t .

1(t) =

{
N 10
t if B[v1t] = ‘10’

N 10
+ 2N 110

t + v2t if B[v1t] = ‘110’.
(4)

Step 6: After the construction of B and D, reader R broad-
casts array B and D out to all tags. This step needs a lengthy
explanation which is discussed in section III-B.
Step 7: Upon receiving B and D, a tag t shall make deci-

sions based on B[v1t] and D[1(t)] as follows:
(7.1) If B[v1t] = ‘0’, tag t enters into the deactivated state,

because by Eq. (2), no tag in Sk maps to B[v1t]. Tag t
must be an unidentified tag;

VOLUME 9, 2021 90273

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

TABLE 1. An example of the hash values for 7 tags.

FIGURE 4. An example of B and D according to Table 1.

(7.2) If B[v1t] = ‘10’ or ‘110’, then ifD[1(t)] = v3t , then tag
t gets a unique order1(t) = 1(t)+G, and enters into
the sorted state. Otherwise, t must be an unidentified
tag and enters into the sleep state.

(7.3) If B[v1t] = ‘111’, t updates G = G + N 10
+ 2N 110

and stays in unsorted state waiting for the start of next
round Rk+1.

Step 8: Reader R sets Sk+1 = Sk − Lk , and starts the next
round Rk+1.

The state diagram of a tag is as in Fig. 3. Clearly, by (7.2),
every tag t ∈ Lk enters into the sorted state.

B. HOW ARRAY B AND D ARE BROADCASTED AND
DECODED
In this section, we explain in detail how to implement
Step 6 in each round of the first phase of Psort discussed in
Section III-A.
Procedure 1 shows a pseudo-code on how reader R broad-

casts arrays B and D. The basic idea is to send B in a bit-wise
way. That is, in the first step, reader R transmits a sequence
(M1) of 2c bits, which consists of exactly one bit (the first
bit) from each cell of B in order. In the second step, reader R
transmits a sequence (M2) of bits which consists of the second
bit from each of those cells of B whose values are of 2-bit
string or 3-bit string. They are also the cells whose first bits
are ‘1’s. The third step transmits M3 which consists of the
third bit from each of those cells whose values are of 3-bit
strings. They are also those cells whose both first and second
bits are ‘1’s. Since the code of each cell is either a 1-bit,
or 2-bit, or 3-bit string, array B can be transmitted in 3 steps.
Recall that, here, the index of the 3 sequences starts from 0.
As an example, suppose we have a set of 7 identified tags:
S = {t1, t2, · · · , t7}, and their hash values are shown in Tab. 1.

Procedure 1 How Reader R Broadcasts B and D
For k = 1 to f = log2 (

1
ε
)

||* In each round Rk , R considers only the tags in Sk , which
is the set of identified tags that are in the unsorted state. *||

1: Based on two parameter nk (the size of Sk) and r
(a random number), reader R computes h(t) for
t ∈ Sk to construct a B and a D for round Rk ;
||*see Step 4 and Step 5 in Section III-A for the
details *||

2: R broadcasts nk and r out to tags;
3: R buildsM1, a bit-array that contains the first bits

in all the cells of B;
4: R buildsM2, a bit-array that contains the second

bits in all the cells of B; ||*the cells with value ′0′ are
omitted, since they contain only one bit.*||

5: R buildsM3, a bit-array that contains the third bits
in all the cells of B; ||*the cells with value ′0′ and ′10′

are omitted, since they do not contain 3 bits.*||
6: R broadcastsM1, M2, M3, and then D out;
7: R updates Sk to be Sk+1; End For

Fig. 4 shows that reader R constructs array B of 10 cells
according to Eq. (2). Thus, reader R shall broadcast three
bit arrays, M1 = (0, 1, 1, 0, 1, 0, 1, 1, 0, 0) (shown in pink
color), M2 = (0, 0, 1, 0, 1) (green color), and M3 = (1, 0)
(orange color).

In Procedure 2, we describe how an identified tag t extracts
the codeword of B[v1t] from M1, M2 and M3, and then calcu-
lates its order1(t). Note that It = N 10

t +N
110
t +N

111
t in line

3 is the position of the second bit of B[v1t] in M2, because
only those cells with value b ∈ {‘10’, ‘110’, ‘111’} have
their second bits transmitted in M2. For example, in Fig. 4,
t5 is hashed to the cell B[7] = ‘110’ (v1t5 = 7, see Tab. 1), and
the second bit of B[7] is sent in M2[4]. An important fact is
that tag t can get the value of (N 10

t +N
110
t +N

111
t) by counting

how many ‘1’s in M1 locating before M1[7]. Similarly, after
receiving the second bit, a tag can determine whether its code
has the third bit and if yes, where to find it in M3 (see line 6
of Procedure 2).

The transmission of array D is straightforward. Reader R
transmits arrayD cell by cell, fromD[0] toD[N 10

+2N 110
−

1], whereN 10
+2N 110 is the size of set Lk = {t ∈ Sk |B[v1t] =

‘10’ or ‘110’}. Since each cell consists of (f − k) bits, reader
R transmits a total of (f − k)(N 10

+ 2N 110) bits in this step.
Taking t2 in Fig. 4 as an example to see how a tag decodes

array B and D to determine its state and determine if it gets a
unique order. Tag t2 is hashed toB[6] (v1t2 = 6, see Tab. 1), and
B[6] = ‘10’. By lines 1 to 3 in Procedure 2, t2 gets the first
bit of B[6] which isM1[6] = ‘1’ and gets It2 = 3, since three
positions with value ‘1’ located beforeM1[6]. Then by lines 4
to 5, t2 gets the second bit ofB[6] which isM2[It2] = M2[3] =
‘0’. Because its second bit= 0, tag t2 finishes decoding from
array B and gets its order 1(t2) = N 10

t2 = 2 (B[1] = B[2] =
‘10’). Finally, t2 checks D[2] = ‘010’, then determines that
it is an identified tag and enters into the sorted state, because

90274 VOLUME 9, 2021

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

D[2] = v3t2 = ‘010’ (If not, t2 must be an unidentified tag and
would enter into the sleep state).

As another example, we look at t1, which is hashed to B[4].
By lines 1 to 3, t1 gets that the first bit of B[4] which is ‘1’,
and gets It1 = 2. By lines 4 to 6, t1 gets the second bit of B[4]
which is ‘1’, and gets It1 = 0. By lines 7 to 9, t1 gets the third
bit of B[4] (= ‘1’), and updatesG = G+3+2×1 (N 10

= 3
because there are three ‘0’s in M2, N 110

= 1 since there is
one ‘0’ in M3). Finally, tag t1 stays in the unsorted state and
goes back to line 1 when the next round starts.

Next, we show the case of an unidentified tag u. If u is
hashed to B[0] (v1u = 0), then by line 2 in Procedure 2, u
realizes that it is an unidentified tag and enters into the sleep
state. If u is hashed to B[6] (v1u = 6), then u will receive B[6]
and D[2] in the same way as tag t2 does, the only difference
is that u will be in the sorted state with a probability 2−3.
This is because: R knows the ID of t2, and sets D[2] to be
equal to v3t2 . Then the probability that the v3u equals to D[2]
is 2−3. Remember that all the hash values v3t , t ∈ S ∪ O
contain 3 bits, and these hash values are independent and
uniformly distributed random variables, thus v3t can take any
3-bit value with equal probability. In line 11 of Procedure 2, if
v3u = ‘010’, u will enter into the sorted state, and get an order
the same way as tag t2 does. If v3u 6= ‘010’, then u enters
into the sleep state. Theorem 2 shall formally prove that an
unidentified tag changes to the sorted state during the first
phase of Psort with a probability of ε.

C. THE SECOND PHASE OF PSORT
After the first phase, the unidentified tags will no longer be
considered, as we will prove in Theorem 2 that, after the first
phase, any unidentified tag u enters into the sleep state with
a probability of 1 − ε. Then the second requirement of the
tag-sorting problem is fulfilled.

However, after the first phase, there may exist a small
number of identified tags that still stay in the unsorted state,
thus we need the second phase to label all the remaining
identified tags and assign them with unique integers.

The second phase is simple. Because the reader R has the
complete knowledge of the IDs of identified tags in S, it
can predicate the decisions made on each of them, and find
out which of them are still in the unsorted state. Therefore,
in the second phase, reader R sends out the IDs of these tags
one by one (polling). Upon receiving an ID from reader R,
a tag t in the unsorted state does the followings:

(1) t updates its local counter G by one;
(2) t compares the received ID with its own ID, and if they

are the same, t shall enter into the sorted state, otherwise
t remains in the unsorted state.

It is straightforward to see that reader R can have all
remaining identified tags assigned with unique integers in
the second phase.

D. THE ANALYSIS OF PSORT
In this section, we analyze the performance of Psort in theory.

Procedure 2 How a Tag t Receives B and D
Initialize a local variable G = 0; ||* tag t stores the number
of identified tags in sorted state, and updatesG in each round
Rk*||
For k = 1 to f = log2 (

1
ε
) ||*round Rk of the first phase

Psort*||
0: Receiving nk and r from R, tag t computes a hash

value h(t) = (v1t , v
2
t , v

3
t);||* see Step 1-2 in Section

III-A*||
1: ReceivingM1 from R, tag t checksM1[v1t];
2: If M1[v1t] = 0

Then tag t gets B[v1t] = ‘0’ and exits this procedure
by setting itself into deactivated state; ||* t knows
that it is an unidentified tag, and ignores all
further messages.*||

3: Else t gets It = N 10
t + N

110
t + N 111

t ;
EndIf

4: ReceivingM2, tag t checksM2[It];
5: If M2[It] = 0

Then tag t gets B[v1t] = ‘10’ and sets 1(t) = N 10
t ;

go to 10; ||*do not receiveM3 *||
6: Else t sets It = N 110

t + N 111
t ;

EndIf
7: ReceivingM3, t checksM3[It];
8: If M3[It] = 0

Then tag t gets B[v1t] = ‘110’ and sets
1(t) = N 10

+ 2 N 110
t + v2t ; go to 10;

9: Else t gets G = G+ N 10
+ 2N 110 and

B[v1t]= ‘111’; t stays in unsorted state; go to 1;
||* t knows all N 10

+ 2N 110 tags in Lk will change to
sorted state; t ignores D and waits for the next round
Rk+1 *||

EndIf
10: Receiving D, tag t checks D[1(t)];
11: If D[1(t)] = v3t

Then tag t gets its order 1(t) = 1(t)+G and
enters into sorted state; ||*t determines that
it is an identified tag*||

12: Else t exits this procedure by setting itself into
deactivated state; ||* t is an unidentified
tag*||

EndIf
End For
||* It in 3 is the position of the second bit of the cell B[v1t]
in M2, and It in 6 is the position of the third bit of B[v1t] in
M3;*||

Theorem 2: For any unidentified tag u ∈ O, the prob-
ability that u is in the sorted state is equal to ε, after the
f = log2 (

1
ε
) communication rounds in the first phase of Psort.

Proof: Before round Rk , there are nk = |Sk | iden-
tified tags staying in the unsorted state, and array B has
L = 2c cells, where c = log2(

nk
ln 2). The probabilities that

B[i] = ‘0’, ‘10’, ‘110’, ‘111’, i ∈ {1, · · · , nk} are denoted by
p0, p10, p110 and p111, respectively.

VOLUME 9, 2021 90275

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

FIGURE 5. Overview of the second phase of protocol Psort.

The hash values of h(t) = H (tID, r) mod 2c+f+1−k , t ∈
Sk ∪O (see Step 1 in Section III-A) are independent and uni-
formly distributed random variables.† Hence, v1t , v

2
t , v

3
t are

also independent and uniformly distributed random variables.
Remember that v1t ∈ {0, 1, · · · ,L − 1}, v2t ∈ {0, 1} and
v3t ∈ {0, 1, · · · , 2

f−k
− 1} (see Eq. (1)). Furthermore, it is

easy to get the following facts:

• p0 = (1 − 1/L)nk , because B[i] = ‘0’ if and only if
∀t ∈ Sk , v1t 6= i;

• p10 = nk (1/L)1(1 − 1/L)nk−1, because B[i] = ‘10’ if
and only if there is only one tag t ∈ Sk with v1t = i;

• p110 = 1
2

(nk
2

)
(1/L)2(1 − 1/L)nk−2, because B[i] =

‘110’ if and only if there are exactly two tags t1 and t2
from Sk having the same hash value v1t1 = v1t2 = i but
v2t1 6= v2t2 ∈ {0, 1};

• p111 can be computed from equation p0 + p10 + p110 +
p111 = 1.

Then because nk is relatively large, L = nk/ ln 2 and (1−
1/L)nk ≈ e−nk/L = 0.5, we can obtain:

p0 = (1− 1/L)nk ≈ e−nk/L = e−nk/(nk/ ln 2) = 0.5,

p10 = nk (
1
L
)1(1−

1
L
)nk−1 ≈

nk
nk/ ln 2

e−
nk

nk / ln 2 = ln(2)/2,

p110 =

(nk
2

)
2

(
1
L
)2(1−

1
L
)nk−2 ≈

n2k
4n2k/ ln

2(2)
e−

nk
nk / ln 2

= ln2(2)/8,

p111 = 1− 0.5− 0.5× ln 2− ln2(2)/8. (5)

By the state diagram shown in Fig. 3, an unidentified tag
u enters into the sorted state if and only if the following two
events: EBu and EDu , happen simultaneously:

(1) EBu represents the event that u is hashed into a cell B[v1u]
with value ‘10’ or ‘110’;

† As far as we know, almost all RFID protocols that are designed for
various purposes including cardinality estimation, missing tag detection,
unknown tag identification, and grouping, assume that the hash values of all
tags in an RFID system are independent and uniformly distributed random
variables, see [2], [30], [33]

(2) EDu represents the event that v3u (the fingerprint of u) is
equal toD[1(u)] (D[1(u)] stores the fingerprint of some
identified tag t with 1(t) = 1(u)).

Based on (5), we can get the probabilities of these two events:

Pr
(
EBu
)
= p10 + p110 = 0.5+ 0.5 ∗ ln 2, and

Pr
(
EDu
)
= (1/2)f−k = (1/2)log2(1/ε)−k .

Now, we analyze the decisions made by unidentified tags.
After receiving B and D, an unidentified tag u enters into the
sorted state with probability:

Xk = Pr(EBu)Pr(E
D
u) = [ln(2)/2+ ln2(2)/8]2kε. (6)

If unidentified tag u does not enter into the sorted state,
then it may enter into the sorted state in the following round
only if tag u is mapped to a cell with value ‘111’. Thus,
the probability that u stays in the unsorted state is Yk = p111.

For illustration, let α = ln(2)/2+ln2(2)/8. From the above
analysis, in round Rk , an unidentified tag u has probability
Xk = α2kε to enter into the sorted state and has probabil-
ity Yk = 0.5 − α to remain in the unsorted state. Then,
the probability that u wrongly decides it is an identified tag
after the log2 (

1
ε
) communication rounds (Perr), is computed

as follows:

Perr = X1 + Y1X2 + · · · +
∏f−1

j=1
YjXf +

∏f

j=1
Yj

= α21ε + (0.5− α)α22ε + · · · + (0.5− α)f−1α2f ε

+ (0.5− α)f

= αε
∑f−1

j=0
(0.5− α)j2j+1 + (0.5− α)f

= ε − ε((0.5− α)2)f + (0.5− α)f = ε. (7)

Note that
∏f

j=1 Yj is the probability that u stays in the
unsorted state after Rlog2 (1/ε), and then u is assumed to enter
into the sorted state in the second phase of Psort.
Theorem 3: Given a set S of n identified tags, and a

mis-assignment rate ε, let |R| denote the total number of bits
transmitted during the running of R1,R2, · · · ,Rlog2 (1/ε) in
the first phase. Then we have:

|R| = n log2(1/ε)+ 2n(1− ε1+β), (8)

where

β = log2 (1/(1− 0.5 ln 2)) ≈ 0.61. (9)

Proof: First we consider the number of bits that are
contained in array B and D in Rk , k ∈ {1, 2, · · · , f }. Array
B has nk/ ln(2) cells. The probabilities that a cell B[i] takes
value of ‘0’, ‘10’, ‘110’, and ‘111’ are given in Eq. (5). Then,
the number of bits contained in B in Rk is

|B| = (p0 × 1+ p10 × 2+ (p110 + p111)× 3) nk/ln(2)

= (2− ln 2/2)nk/ln(2). (10)

Second, from Section III-B, it is known that the number of
bits contained in array D is (2f−k)(N 10

+ 2N 110) bits in each
round Rk , k ∈ {1, 2, · · · , f }.

90276 VOLUME 9, 2021

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

Since the size of (N 10
+ 2N 110) (= |Lk |) changes from

round to round, we need a more detailed analysis. Let us look
at the first roundR1. BecauseN1 = n, arrayB contains n/ ln 2
cells, N 10

= p10n/ ln 2 = n/2 and N 110
= p110n/ ln 2 =

n ln(2)/8, where p10 and p110 are probabilities given by
Eq. (5). Set L1 contains N 10

+ 2N 110
= (1/2 + ln(2)/4)n

identified tags. Now, the number of remaining unsorted iden-
tified tags for round R2 is:

n2 = n− (1/2+ ln(2)/4)n = (1/2− ln(2)/4)n = γ n,

where

γ = 1/2− ln(2)/4. (11)

Applying the same analysis for R2, · · · ,Rk−1, we get:

nk = γ k−1n, k ∈ {1, 2, · · · , f }, (12)

and the number of identified tags in Lk is:

nk − nk+1 = γ k−1n− γ kn = γ k−1(1− γ)n. (13)

Note that formula (12) and (13) are also true for N1 and L1.
Thus the number of bits in D for Rk is

|D| = γ k−1(1− γ)n(f − k). (14)

Therefore, we have |B|+|D| = (2−ln(2)/2)γ k−1n/ln(2)+
γ k−1(1− γ)n(f − k).

Finally, the total number of bits transmitted during the run-
ning of R1, · · · ,Rf , denoted by |R|, is obtained as follows:

|R| =
∑f

k=1
[(2−

ln 2
2

)
γ k−1n
ln 2

+ γ k−1(1− γ)n(f − k)]

=
n(2− ln 2

2)

ln 2

∑f

k=1
γ k−1+(1−γ)n

∑f

k=1
[γ k−1(f − k)]

=

(
n(2− ln 2

2)

ln 2
+ n(1− γ)f

)
1− γ f

1− γ

− n(1− γ)
(

1− γ f

(1− γ)2
−

f γ f

1− γ

)
=
n(2− ln 2

2)

ln 2
1− γ f

1− γ
+ nf (1− γ f)−n

1− γ f

1− γ
+ nf γ f

= n[
(2− ln 2

2)

ln 2
− 1]

1− γ f

1− γ
+ nf

= n
2 log2(e)− 1.5
0.5+ ln(2)/4

(1− ε1+β)+ n log2(1/ε) (15)

= 2n(1− ε1+β)+ n log2(1/ε). (16)

Remember that, in Eq. (15), we use the equality:

γ f = ε1+β , (17)

which is based on γ f = (1/2 − ln(2)/4)log2
1
ε =

(1/2)log2
1
ε (1 − ln(2)/2)log2

1
ε = ε1+β , where β is defined in

Eq. (9).

Theorem 4: Given a set S of n identified tags, a set O of
unidentified tags and an error probability ε, the total number
of bits transmitted by Psort, denoted by |Psort|, is

|Psort| = n log2(
1
ε
)+ 2n+ 94ε1+βn ≈ n(log2(

1
ε
)+ 2). (18)

Moreover, at the end of Psort, every identified tag t ∈ S is
in the sorted state and assigned with a unique order 1(t) ∈
{1, 2, · · · , n}.

Proof: Let S◦ be the set of the remaining unsorted
identified tags after the first phase of Psort, and N ◦ = |S◦|.
Since the first phase consists of f rounds, by Eq. (12), (11)
and (17), we have

N ◦ = γ f n = ε1+βn.

N ◦ is also the number of the identified tags staying in the
unsorted state when the second phase of Psort starts.
Since the second phase simply assigns each tag in S◦

by pooling their IDs, its communication cost is less than
96ε1+βn. Then by the communication cost of the first phase
which is shown in Eq. (8), we get (18) easily. The approxi-
mation used in (18) comes from the fact 94ε1+β ≈ 94ε1.61 is
much less than log2(

1
ε
) + 2. We should notice that the error

probability ε is typically set to be less than 10−2 in RFID
systems for keepingmost of unidentified tags from interfering
with identified tags.

Finally, as each tag poses a unique ID, it is clear that every
tag t ∈ S in the sorted state can get a unique order 1(t) ∈
{1, 2, · · · , n}.

Further, we present the minimal communication cost of
the existing state-of-the-art protocols capable of solving the
tag-sorting problem [29], [32]–[34] and compare it with
|Psort| to demonstrate the superiority of the proposed protocol
Psort.
Theorem 5: Given a set S of n identified tags, a set O

of unidentified tags and an error probability ε, the minimal
communication cost of the existing protocols [29], [32]–[34]
is

1.44n log2(1/ε)+ 2.71n, (19)

which is much larger than the communication cost of the
proposed protocol Psort.

Proof: The existing protocols [29], [32]–[34] in general
solve the tag-sorting problem by following two steps.
• Step-1: They encode the information of identified tags
into a Bloom filter, and send this filter out to deactivate
unidentified tags but keep identified tags active.

• Step-2: They inform identified tags of unique integers
by an aloha-like protocol. The basic idea is to randomly
hash tags to different slots of a communication frame,
and use the singleton slots to assign different integers to
different tags. Note that a slot is called a singleton slot if
there is exactly one tag hashed to this slot.

We analyze the minimal communication costs needed in
these two steps, which in turn provide the minimal communi-
cation cost of the existing protocols. Step-1 needs to send at

VOLUME 9, 2021 90277

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

least 1.44 n log2(1/ε) bits, because a Bloom filter requires
at least a number of 1.44 n log2(1/ε) bits to encode a set
of n identified tags and deactivate unidentified tags with a
probability of 1 − ε [38]. Step-2 requires a minimal com-
munication cost of 2.71 n bits because every communication
frame in an aloha-like protocol generally needs e ≈ 2.71 slots
to assign a unique integer to a tag, and each slot requires at
least one bit to represent [39]. So, we have (19) as theminimal
communication cost of the existing protocols, Clearly, (19) is
much larger than |Psort| (shown in (18)).

Lastly, we analyze the computational costs on the reader
side and the tag side. On the reader side, the average com-
putational cost depends on the expected number of times
the reader R executes the hash function h() (see Step 3 of
round Rk in section III-A). On the tag side, the average
computational cost depends on the expected number of times
the tag executes the hash function h() (see Step 2 of round
Rk in section III-A). Below is a detailed analysis. Note that
the second phase of Psort is omitted as this phase requires no
hash function.
Theorem 6: In Psort, the average computational cost of

reader R is O(n) and the average computational cost of a tag
t is O(1).

Proof: Based on the proof for Theorem 3, we know only
a fraction of γ = 1/2 − ln(2)/4 ≈ 0.32 tags remain in the
unsorted state (γ is defined (11)). Based on Step 3 of round
Rk , reader R needs to compute the hash function h() again in
the next round Rk+1 for the tags in the unsorted state. Since
n tags stay unsorted initially, the expected number of times
that the reader R executes the function h() is n+ γ n+ γ 2 n+
· · · + γ dlog2(

1
ε
)e−1n = O(n).

Based on the proof for Theorem 3, we observe that a tag
t has a probability of γ to remain in the unsorted state in
each round Rk for k = 1 ∼ dlog2(

1
ε
)e. By Step 2 of

round Rk , any tag in the unsorted state needs to compute
the hash function h() again in the next round Rk+1. Hence,
the expected number of times that a tag calls function h() is
1+ γ + · · · + γ dlog2(

1
ε
)e−1
= O(1).

IV. PERFORMANCE EVALUATION
This section shows simulations comparing the proposed
protocol’s performance with other protocols. We choose to
compare Psort with three existing state-of-the-art protocols:
PIC [29], MIC [33], and TPP [34] each of which can effi-
ciently collect the information from a tag population. Because
when collecting the information from each tag, they implic-
itly assign an order (a unique integer) to each collected tag.‡

But these three existing protocols inherently do not possess
the ability to filter out unidentified tags before assigning
identified tags with unique integers. For a fair comparison,
we equip them with the classic Bloom filter for filtering
unidentified tags out. In particular, we choose to encode

‡A tag t can have its information successfully received by the reader R
if no other tags are sending messages back at the same when t sends its
information [10].

the information of identified tags into a Bloom filter and
then let the reader R send this Bloom filter out to deactivate
unidentified at the beginning of each of these three protocols.
Clearly, with the help of a Bloom filter, these protocols that
collect the information from tags can solve the tag-sorting
problem. Please note that, for each of the three protocols (PIC,
MIC, and TPP), the communication cost is the sum of the
communication cost for assigning tags unique integers and
the number of bits used by the Bloom filter.

A. SIMULATION SETTING
We set the simulation according to the specification of the
EPC C1G2 standard [10]. The transmission rate from the
reader to tags is set to be 26.5Kb/s, and there is an idle time
interval of 302µs separating two sequential transmissions.
With this time setting, it takes the reader Tid = 96

26.5Kb/s +

302µs = 3927µs to transmit a 96-bit string to tags. Since,
in the tag-sorting problem, tags need not send feedback to
the reader, the transmission rate from a tag to the reader is
not set in our simulation. It should be noted that setting other
transmission rates affect only the absolute communication
time used by each of the four protocols, not the comparison
conclusions.

We are mainly interested in the communication cost,
or communication time equivalently, of these four proto-
cols. Because it is usually the most time-consuming part
of RFID systems and thus affects the system efficiency
greatly [1]–[3], [24], [29], [30], [32], [35]–[37]. Remember
that the communication cost between RFID readers and tags
is viewed as a major issue, because, RFID readers commu-
nicate with tags through a low-speed link over which the
communication time largely determines the running time of
a tag-management protocol. The communication times of the
four protocols are measured with respect to n (the number of
the identified tags), m (the number of the unidentified tags),
and ε (the error probability). For this purpose, we set up 4
different scenarios, each of which bears a unique relationship
among n, m and ε. A detailed setting of the 4 scenarios is
described below.

• Scenario 1 varies n from 103 to 104, but keeps m and ε
fixed to 103 and 10−3, respectively;

• Scenario 2 increases m from 1 to 105, but sets n and ε
fixed to 103 and 10−3, respectively;

• Scenario 3 decreases ε from 10−1 down to 10−5, but
keeps n and m fixed to 104 and 104, respectively;

• Scenario 4 varies m from 101 to 106, but sets ε = 1/m
and n = 2× 104.

B. SIMULATION RESULTS
Fig. 6, 7, 8, and 9 display the communication times for the
different protocols in the four scenarios, respectively.We then
discuss these results in detail for each scenario.

The conclusion for Scenario 1 can be immediately drawn
from Fig. 6: with the increase of n, the communication times
of the four protocols increase linearly. This fact testifies: the

90278 VOLUME 9, 2021

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

FIGURE 6. Communication time for Scenario 1 where
n ∈ {103, 2× 103, · · · , 104} and m = 103, and ε = 10−3.

theoretical communication time of Psort increases linearly
with n, which is proven in Theorem 4. It is also evident from
Fig. 6 that Psort uses the shortest communication time out of
all four protocols. For example, when n = 104, the commu-
nication times of Psort, TPP, PIC andMIC are 4.9s, 7.2s, 7.0s,
and 7.3s, respectively. On average, the communication time
of Psort is at most 70% of the other three protocols.§

Based on Fig. 7, we can observe that the communication
time of Psort roughly remains unchanged with the increase
of m. This is because the tag sorting problem only requires
that every unidentified tag is kept from receiving any inte-
ger with the same user-specific probability ε no matter how
many unidentified tags are present. Indeed, the user-specific
probability ε can be viewed as the fraction of the unidentified
tags incorrectly receiving integers over all of the uniden-
tified tags. Specifically, suppose there are m unidentified
tags. Then, on average, there will be mε unidentified tags
incorrectly receiving unique integers. Hence, although the
communication time remains constant with the rise of the
number of unidentified tags, the number of unidentified tags
incorrectly receiving integers increases. This fact can also be
drawn from (18) of Theorem 4. In Fig. 7, it is very easy to
notice that Psort bears a communication time much less than
other protocols. For example, when m = 5000, Psort has a
communication time of 6.3s, while TPP, PIC, and MIC have
a communication time of 9.2s, 8.9s, and 9.3s, respectively.
Similar to scenario 1, the communication time of Psort is
about 70% of that of the other three protocols.

Fig. 8 demonstrates that the communication time of Psort
increases when ε decreases. In light of this fact, (18) of
Theorem 4 is valid. This figure also shows the comparison
result of the proposed Psort with the other three protocols. If
ε = 10−1, the four protocols roughly have the same commu-
nication time; but if ε ≤ 10−12, the communication time of
Psort becomes much less than that of the other three (no more
than 72% of the communication time of other protocols).

§ Note that, in our simulation, MIC, PIC, and TPP uses a bloom filter
to filter out unidentified tags when solving the tag-sorting problem, and
the minimal number of bits used by a classic Bloom filter for filtering out
an unidentified with a probability ε is log2(e) log2(1/ε) × n, which comes
section 2.2 of [38].

FIGURE 7. Communication time for Scenario 2 where
m ∈ {103, 2× 103, · · · , 104} and n = 104, and ε = 10−4.

FIGURE 8. Communication time for Scenario 3 where
ε ∈ {10−1, 10−2, · · · , 10−5} and n = 104, and m = 104.

For example, when ε = 10−1, the communication times of
the Psort, TPP, PIC, and MIC are 3.1s, 3.3s, 3.1s and 3.4s
respectively; but when ε = 10−2, their communication times
are 3.6s, 5.3s, 5.0s, and 5.3s, respectively. The reason is that
when ε is relatively large, protocol Psort uses a small number
of bits to filter unidentified tags out, and thus it cannot reuse
many of these bits when assigning integers to identified tags.
However, when ε is relatively small, the number of bits for
filtering unidentified tags out becomes large, then Psort can
reuse many of these bits for assigning integers to identified
tags. This fact is in line with Theorem 4, which indicates
that when ε is large, the subpart 94ε1+βn becomes a large
overhead that we cannot omit safely, but when ε turns to be
small, this subpart decreases quickly to 0. We should notice
that, in a practical RFID system, ε usually needs to be set
small, especially for those busy or mobile RFID systems [2],
[30], [34], [50].

Fig. 9 shows that Psort’s communication time increases
slower than that shown in Fig. 6 and 8, when both m and ε
increase. Similar to Fig. 6-8, we observe that Psort’s commu-
nication time is about 71% of that of the other three protocols.

In summary, for scenario 1-4, the proposed protocol Psort
reduces the communication time by 30% on average. Psort’s
high efficiency of stems from the fact that: there are usually

VOLUME 9, 2021 90279

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

FIGURE 9. Communication time for Scenario 4 where
m ∈ {103, 2× 103, · · · , 2× 104}, ε = 10/m and n = 104.

FIGURE 10. The empirical probability mass function of random variable Z
for m = 100 and ε = 1

10 .

FIGURE 11. The empirical probability mass function of random variable Z
for m = 100 and ε = 1

20 .

a large number of bits used for filtering unidentified tags out,
and Psort can effectively reuse many of these bits to assigning
identified tags unique integers, while the other protocols
cannot.

Next, the practical accuracy of the proposed protocol Psort
is evaluated by counting the actual total number of unidenti-
fied tags incorrectly receiving integers during one execution
of Psort. For illustration, let us use Z to represent this num-
ber. Clearly, Z is a random variable because every unidenti-
fied tag incorrectly receives a unique integer with the same

FIGURE 12. The empirical probability mass function of random variable Z
for m = 100 and ε = 1

100 .

FIGURE 13. The empirical probability mass function of random variable Z
for m = 1000 and ε = 1

50 .

probability ε set by the user. Then, the empirical probabil-
ity mass function of Z is investigated with 104 indepen-
dent trials, and each trial consists of the following three
steps:

s-1 We choose m unidentified tags and n identified tags
randomly from the set of all possible tags;

s-2 We use the proposed protocol to solve the tag-sorting
problem over these m+ n tags;

s-3 We record the number of the unidentified tags that incor-
rectly receive unique integers in this trial.

We show the empirical probability mass function of Z with
different values of m and ε. Please note that since n (the
number of identified tags) is irrelevant to Z (all tags make
their decisions locally and independently), it is fixed to 103 in
all trails. First, we set m = 100, and compute three empirical
probability mass functions of Z with three different values of
ε: 1

10 ,
1
20 , and

1
100 , respectively. The three empirical probabil-

ity mass functions are shown in Fig. 10, 11, and 12. Second,
we change m to 1000, and then compute random variable
Z ’s empirical probability mass functions with three different
values of ε: 1

50 ,
1

100 , and
1

200 , respectively. The three empirical
probability mass functions are shown in Fig. 12, 13, and 14.

Fig. 10-15 show that random variable Z is highly concen-
trated to its mathematical expectation E[Z] = εm, which
is represented by a red-dot line in each figure. For example,

90280 VOLUME 9, 2021

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

FIGURE 14. The empirical probability mass function of random variable Z
for m = 1000 and ε = 1

100 .

FIGURE 15. The empirical probability mass function of random variable Z
for m = 1000 and ε = 1

200 .

in Fig. 12, the probability that Z >4 E[Z] is only 3 × 10−3;
in Fig. 15, the probability that Z >3 E[Z] is only 4 × 10−4.
We may also explain these experimental results with a brief
theoretical analysis as follows. Let O represent the set of
unidentified tags. Let Xt be a random variable defined for
an unidentified tag t ∈ O such that Xt = 1 represents the
event that t incorrectly receives a unique integer in a trial, and
Xt = 0 otherwise. Then, We have Z =

∑
t∈O Xt . Since each

unidentified tag incorrectly receives a unique integer with the
same probability ε, we have Pr(Xt = 1) = ε, E[Xt] =
ε, and then E[Z] = E[

∑
t∈O Xt] = εm. Furthermore,

since each unidentified tag makes decision independently,
we can use the Chernoff bound to random variable Z and
get an inequality: Pr(Z >4 E[Z]) = Pr(

∑
t∈O Xt > (1 +

3)εm) <
(

e3

(1+3)1+3

)εm
< (0.08)εm. It is now clear that

random variable Z is highly concentrated to its expectation
E[Z], as m (the number of unidentified tags) is usually large
in RFID systems where new tags arrive continuously. Hence,
in practice, we can roughly take E[Z] = εm as a reliable esti-
mation of the actual number of unidentified tags incorrectly
receiving integers during one execution of protocol Psort.

V. CONCLUSION
This paper investigates the tag-sorting problem, which sub-
stantially affects the efficiency of RFID systems for IoT
networks. A fast sorting protocol Psort is designed for this

problem, and is shown to be able to put the set S of identified
tags into a certain order by assigning them with unique inte-
gers (orders) from {1, 2, · · · , |S|} and keep unidentified tags
from receiving these integers. The communication time of
protocol Psort is rigorously analyzed in theory.With extensive
simulations, the practical communication time of Psort is
carefully tested and shown to be much less than that of the
existing protocols. All these results indicate the superiority
of the proposed protocol Psort.

REFERENCES
[1] H. Landaluce, L. Arjona, A. Perallos, F. Falcone, I. Angulo, and

F. Muralter, ‘‘A review of IoT sensing applications and challenges using
RFID and wireless sensor networks,’’ Sensors, vol. 20, no. 9, p. 2495,
Apr. 2020.

[2] L. Zhang, W. Xiang, and X. Tang, ‘‘An efficient bit-detecting protocol for
continuous tag recognition in mobile RFID systems,’’ IEEE Trans. Mobile
Comput., vol. 17, no. 3, pp. 503–516, Mar. 2018.

[3] B. Baruah and S. Dhal, ‘‘An IoT based secure object tracking system,’’
Wireless Pers. Commun., vol. 106, pp. 1209–1242, Feb. 2019.

[4] N. B. Soni and J. Saraswat, ‘‘A review of IoT devices for traffic manage-
ment system,’’ in Proc. Int. Conf. Intell. Sustain. Syst. (ICISS), Dec. 2017,
pp. 1052–1055.

[5] S. Misbahuddin, J. A. Zubairi, A. Saggaf, J. Basuni, S. Wadany, and
A. Al-Sofi, ‘‘IoT based dynamic road traffic management for smart cities,’’
in Proc. 12th Int. Conf. High-Capacity Opt. Netw. Enabling/Emerg. Tech-
nol. (HONET), Dec. 2015, pp. 1–5.

[6] Z. Liu and K. Ota, Smart Technologies for Emergency Response and
Disaster Management. Hershey, PA, USA: IGI Global, 2017.

[7] O. Salman, I. Elhajj, A. Kayssi, and A. Chehab, ‘‘Edge computing enabling
the Internet of Things,’’ in Proc. IEEE 2nd World Forum Internet Things
(WF-IoT), Dec. 2015, pp. 603–608.

[8] X. Liu, J. Cao, Y.Yang,W.Qu, X. Zhao, K. Li, andD.Yao, ‘‘Fast RFID sen-
sory data collection: Trade-off between computation and communication
costs,’’ IEEE/ACM Trans. Netw., vol. 27, no. 3, pp. 1179–1191, Jun. 2019.

[9] X. Wang, Y. Gao, Y. Yang, X. Zheng, X. Wu, and W. Zhao, ‘‘An efficient
protocol for the tag-information sampling problem in RFID systems,’’
Mobile Netw. Appl., pp. 1–12, Mar. 2021. [Online]. Available: https://link.
springer.com/article/10.1007/s11036-021-01738-0, doi: 10.1007/s11036-
021-01738-0.

[10] EPCglobal. (2018). EPC Radio-Frequency Identity Protocols Generation-
2 UHF RFID Standard, Specification for RFID Air Interface Protocol for
Communications at 860 MHz–960 MHz, Version 2.1. [Online]. Available:
https://www.gs1.org/sites/default/files/docs/epc/gs1-epc-gen2v2-uhf-
airinterface_i21_r_2018-09-04.pdf

[11] A. Nordrum, ‘‘The Internet of fewer things [news],’’ IEEE Spectr., vol. 53,
no. 10, pp. 12–13, Oct. 2016.

[12] J. Feng, Z. Liu, C. Wu, and Y. Ji, ‘‘Mobile edge computing for the
Internet of vehicles: Offloading framework and job scheduling,’’ IEEEVeh.
Technol. Mag., vol. 14, no. 1, pp. 28–36, Mar. 2019.

[13] Z. Liu, T. Tsuda, H. Watanabe, S. Ryuo, and N. Iwasawa, ‘‘Data
driven cyber-physical system for landslide detection,’’Mobile Netw. Appl.,
vol. 24, no. 3, pp. 991–1002, Jun. 2019.

[14] C. Wu, Z. Liu, D. Zhang, T. Yoshinaga, and Y. Ji, ‘‘Spatial intelligence
toward trustworthy vehicular IoT,’’ IEEE Commun. Mag., vol. 56, no. 10,
pp. 22–27, Oct. 2018.

[15] Z. Liu, J. Li, X. Chen, C. Wu, S. Ishihara, Y. Ji, and J. Li, ‘‘Fuzzy logic-
based adaptive point cloud video streaming,’’ IEEE Open J. Comput. Soc.,
vol. 1, pp. 121–130, 2020.

[16] C.Wu, Z. Liu, F. Liu, T. Yoshinaga, Y. Ji, and J. Li, ‘‘Collaborative learning
of communication routes in edge-enabled multi-access vehicular environ-
ment,’’ IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 4, pp. 1155–1165,
Dec. 2020.

[17] Y. Gao, Y. Cui, X. Wang, and Z. Liu, ‘‘Optimal resource allocation for
scalable mobile edge computing,’’ IEEE Commun. Lett., vol. 23, no. 7,
pp. 1211–1214, Jul. 2019.

[18] Z. Zhou, H. Yu, C. Xu, Z. Chang, S. Mumtaz, and J. Rodriguez, ‘‘BEGIN:
Big data enabled energy-efficient vehicular edge computing,’’ IEEE Com-
mun. Mag., vol. 56, no. 12, pp. 82–89, Dec. 2018.

[19] Z. Liu, S. Ishihara, Y. Cui, Y. Ji, and Y. Tanaka, ‘‘JET: Joint source and
channel coding for error resilient virtual reality video wireless transmis-
sion,’’ Signal Process., vol. 147, pp. 154–162, Jun. 2018.

VOLUME 9, 2021 90281

http://dx.doi.org/10.1007/s11036-021-01738-0
http://dx.doi.org/10.1007/s11036-021-01738-0

Y. Yang, X. Wang: Fast RFID Tag Sorting at the Edge for IoT

[20] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-
vey on Internet of Things: Architecture, enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[21] Z. Zhou, J. Feng, L. Tan, Y. He, and J. Gong, ‘‘An air-ground integration
approach for mobile edge computing in IoT,’’ IEEE Commun. Mag.,
vol. 56, no. 8, pp. 40–47, Aug. 2018.

[22] X. Wang, Z. Liu, S. Ishihara, Z. Dang, and J. Li, ‘‘A near-optimal protocol
for the subset selection problem in RFID systems,’’ in Proc. 16th Int. Conf.
Mobility, Sens. Netw. (MSN), Dec. 2020, pp. 33–42.

[23] D. J. Yeager, A. P. Sample, J. R. Smith, and J. R. Smith, ‘‘WISP: A
passively powered UHF RFID tag with sensing and computation,’’ in
RFID Handbook: Applications, Technology, Security, and Privacy. 2008,
pp. 261–278.

[24] X. Liu, X. Xie, S. Wang, J. Liu, D. Yao, J. Cao, and K. Li, ‘‘Efficient range
queries for large-scale sensor-augmented RFID systems,’’ IEEE/ACM
Trans. Netw., vol. 27, no. 5, pp. 1873–1886, Oct. 2019.

[25] S. Zhang, X. Liu, S. Guo, A. Y. Zomaya, and J. Wang, ‘‘Why queue up?
Fast parallel search of RFID tags for multiple users,’’ in Proc. 21st Int.
Symp. Theory, Algorithmic Found., Protocol Design Mobile Netw. Mobile
Comput., Oct. 2020, pp. 211–220.

[26] H. Chen, G. Ma, Z.Wang, Q.Wang, and J. Yu, ‘‘MAC:Missing tag iceberg
queries for multi-category RFID systems,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 10, pp. 9947–9958, Oct. 2018.

[27] Z. Zhou, H. Liao, B. Gu, K. M. S. Huq, S. Mumtaz, and J. Rodriguez,
‘‘Robust mobile crowd sensing: When deep learning meets edge comput-
ing,’’ IEEE Netw., vol. 32, no. 4, pp. 54–60, Jul. 2018.

[28] X. Wang, Z. Liu, Y. Gao, X. Zheng, X. Chen, and C. Wu, ‘‘Near-optimal
data structure for approximate range emptiness problem in information-
centric Internet of Things,’’ IEEE Access, vol. 7, pp. 21857–21869, 2019.

[29] X. Xie, X. Liu, K. Li, B. Xiao, and H. Qi, ‘‘Minimal perfect hashing-based
information collection protocol for RFID systems,’’ IEEE Trans. Mobile
Comput., vol. 16, no. 10, pp. 2792–2805, Oct. 2017.

[30] X.Wang, Z. Liu, Y. Gao, X. Zheng, Z. Dang, and X. Shen, ‘‘A near-optimal
protocol for the grouping problem in RFID systems,’’ IEEE Trans. Mobile
Comput., vol. 20, no. 4, pp. 1257–1272, Apr. 2021.

[31] R. Pan, Z. Li, J. Cao, H. Zhang, and X. Xia, ‘‘Electrical load tracking
scheduling of steel plants under time-of-use tariffs,’’ Comput. Ind. Eng.,
vol. 137, Nov. 2019, Art. no. 106049.

[32] S. Chen, M. Zhang, and B. Xiao, ‘‘Efficient information collection pro-
tocols for sensor-augmented RFID networks,’’ in Proc. IEEE INFOCOM,
Apr. 2011, pp. 3101–3109.

[33] Y. Qiao, S. Chen, T. Li, and S. Chen, ‘‘Tag-ordering polling protocols in
RFID systems,’’ IEEE/ACM Trans. Netw., vol. 24, no. 3, pp. 1548–1561,
Jun. 2016.

[34] J. Liu, B. Xiao, X. Liu, and L. Chen, ‘‘Fast RFID polling protocols,’’ in
Proc. 45th Int. Conf. Parallel Process. (ICPP), Aug. 2016, pp. 304–313.

[35] Y. Zhang, S. Chen, Y. Zhou, and Y. Fang, ‘‘Missing-tag detection with
unknown tags,’’ IEEE/ACM Trans. Netw., vol. 28, no. 3, pp. 1297–1310,
Jun. 2020.

[36] J. Yu, W. Gong, J. Liu, L. Chen, K. Wang, and R. Zhang, ‘‘Missing tag
identification in COTS RFID systems: Bridging the gap between theory
and practice,’’ IEEE Trans. Mobile Comput., vol. 19, no. 1, pp. 130–141,
Jan. 2020.

[37] X. Liu, S. Chen, J. Liu, W. Qu, F. Xiao, A. X. Liu, J. Cao, and J. Liu, ‘‘Fast
and accurate detection of unknown tags for RFID systems—Hash colli-
sions are desirable,’’ IEEE/ACM Trans. Netw., vol. 28, no. 1, pp. 126–139,
Feb. 2020.

[38] A. Broder and M. Mitzenmacher, ‘‘Network applications of Bloom filters:
A survey,’’ Internet Math., vol. 1, no. 4, pp. 485–509, Jan. 2004.

[39] S.-R. Lee, S.-D. Joo, and C.-W. Lee, ‘‘An enhanced dynamic framed slotted
ALOHA algorithm for RFID tag identification,’’ in Proc. 2nd Annu. Int.
Conf. Mobile Ubiquitous Syst., Netw. Services, 2005, pp. 166–172.

[40] L. Shangguan and K. Jamieson, ‘‘The design and implementation of a
mobile RFID tag sorting robot,’’ in Proc. Int. Conf. Mobile Syst., Appl.,
Services, Jun. 2016, pp. 31–42.

[41] J. Lai, C. Luo, J. Wu, J. Li, J. Wang, J. Chen, G. Feng, and H. Song,
‘‘TagSort: Accurate relative localization exploring RFID phase spectrum
matching for Internet of Things,’’ IEEE Internet Things J., vol. 7, no. 1,
pp. 389–399, Jan. 2020.

[42] J. Xu, L. Yang, Q. Liu, J. Hu, and T. Song, ‘‘A sorting algorithm for RFID
tags moving on a conveyor belt,’’ in Proc. IEEE Int. Conf. RFID (RFID),
Apr. 2018, pp. 1–7.

[43] F. Bernardini, A. Buffi, D. Fontanelli, D. Macii, V. Magnago, M. Marracci,
A. Motroni, P. Nepa, and B. Tellini, ‘‘Robot-based indoor positioning
of UHF-RFID tags: The SAR method with multiple trajectories,’’ IEEE
Trans. Instrum. Meas., vol. 70, pp. 1–15, 2021.

[44] A. Tzitzis, S. Megalou, S. Siachalou, T. Yioultsis, A. Kehagias,
E. Tsardoulias, A. Filotheou, A. Symeonidis, L. Petrou, and
A. G. Dimitriou, ‘‘Phase relock-localization of RFID tags by a moving
robot,’’ in Proc. 13th Eur. Conf. Antennas Propag. (EuCAP), 2019,
pp. 1–5.

[45] C. Li, E. Tanghe, D. Plets, P. Suanet, N. Podevijn, J. Hoebeke, E. D. Poorter,
L. Martens, and W. Joseph, ‘‘Phase-based variant maximum likelihood
positioning for passiveUHF-RFID tags,’’ inProc. 14th Eur. Conf. Antennas
Propag. (EuCAP), Mar. 2020, pp. 1–5.

[46] Z. Li, C. He, J. Li, and X. Huang, ‘‘RFID reader anti-collision algorithm
using adaptive hierarchical artificial immune system,’’ Expert Syst. Appl.,
vol. 41, no. 5, pp. 2126–2133, Apr. 2014.

[47] F. Campioni, S. Choudhury, and F. Al-Turjman, ‘‘Readers scheduling
for RFID networks in the IoT era,’’ in Proc. IEEE Int. Conf. Commun.
Workshops (ICC Workshops), May 2018, pp. 1–6.

[48] B. Cao, Y. Gu, Z. Lv, S. Yang, J. Zhao, and Y. Li, ‘‘RFID reader anti-
collision based on distributed parallel particle swarm optimization,’’ IEEE
Internet Things J., vol. 8, no. 5, pp. 3099–3107, Mar. 2021.

[49] L. Xie, H. Han, Q. Li, J. Wu, and S. Lu, ‘‘Efficient protocols for collecting
histograms in large-scale RFID systems,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 26, no. 9, pp. 2421–2433, Sep. 2015.

[50] L. Zhu, X. Wang, Y. Yang, S. Xu, X. Wu, W. Zhao, and H. Feng, ‘‘EPC-
based efficient tag selection in RFID systems,’’ IEEE Access, vol. 8,
pp. 20546–20556, 2020.

[51] P. Šolić, J. Radić, and N. Rožić, ‘‘Energy efficient tag estimation method
for ALOHA-based RFID systems,’’ IEEE Sensors J., vol. 14, no. 10,
pp. 3637–3647, Oct. 2014.

[52] X. Liu, H. Qi, K. Li, I. Stojmenovic, A. X. Liu, Y. Shen,W.Qu, andW.Xue,
‘‘Sampling Bloom filter-based detection of unknown RFID tags,’’ IEEE
Trans. Commun., vol. 63, no. 4, pp. 1432–1442, Apr. 2015.

YANGZHAO YANG received the Ph.D. degree
from the University of Science and Technology
of China, Hefei, China, in 2014. He is a Senior
Researcher with Shenzhen Cyberaray Network
Technology Company Ltd., Shenzhen, China. His
current research interests include artificial intelli-
gence and social networks.

XIUJUN WANG received the Ph.D. degree in
computer software and theory from the University
of Science and Technology of China, in 2011.
He is currently an Associate Professor with the
School of Computer Science and Technology,
Anhui University of Technology. His research
interests include data stream processing, random-
ized algorithm, and the Internet of Things.

90282 VOLUME 9, 2021

