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ABSTRACT Reinforcement learning, which acquires a policy maximizing long-term rewards, has been
actively studied. Unfortunately, this learning type is too slow and difficult to use in practical situations
because the state-action space becomes huge in real environments. Many studies have incorporated human
knowledge into reinforcement Learning. Though human knowledge on trajectories is often used, a human
could be asked to control an AI agent, which can be difficult. Knowledge on subgoals may lessen this
requirement because humans need only to consider a few representative states on an optimal trajectory in
their minds. The essential factor for learning efficiency is rewards. Potential-based reward shaping is a basic
method for enriching rewards. However, it is often difficult to incorporate subgoals for accelerating learning
over potential-based reward shaping. This is because the appropriate potentials are not intuitive for humans.
We extend potential-based reward shaping and propose a subgoal-based reward shaping. Themethodmakes it
easier for human trainers to share their knowledge of subgoals. To evaluate ourmethod, we obtained a subgoal
series from participants and conducted experiments in three domains, four-rooms(discrete states and discrete
actions), pinball(continuous and discrete), and picking(both continuous). We compared our method with a
baseline reinforcement learning algorithm and other subgoal-based methods, including random subgoal and
naive subgoal-based reward shaping. As a result, we found out that our reward shaping outperformed all
other methods in learning efficiency.

INDEX TERMS Reinforcement learning, subgoals as human knowledge, potential-based reward shaping,
reward shaping.

I. INTRODUCTION
Reinforcement learning(RL) can acquire a policymaximizing
long-term rewards in an environment. Designers do not need
to specify how to achieve a goal; they only need to specify
what a learning agent should achieve with a reward function.
A reinforcement learning agent performs both exploration
and exploitation to find how to achieve a goal by itself.
It is common for the state-action space to be quite large
in a real environment like robotics. As the space becomes
larger, the number of iterations to learn the optimal policies
exponentially increases, and the learning becomes too slow
to obtain the optimal policies in a realistic amount of time.
Since a human could have knowledge that would be helpful to
such an agent in some cases, a promising approach is utilizing
human knowledge [1]. Wang and Taylor’s approach transfers
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a policy by requesting that a human selects an action for a
state during the learning phase [2]. Griffith et al. [3] used
interactive human feedback as direct policy labels.

The reward function is the most related to learning effi-
ciency. Most difficult tasks in RL have a sparse reward func-
tion [4]. The agent is not able to evaluate its policy due
to it and to learn the optimal policy. In contrast, learning
speeds up when the reward function is dense. Inverse rein-
forcement learning (IRL) [5] is the most popular method for
enriching the reward function. IRL uses an optimal policy
to generate a dense reward function. Recent studies have
utilized optimal trajectories [6]. There is the question of the
cost for the teacher in providing the optimal trajectories or
policies. Humans sometimes have difficulty providing these
because of the skills they may or may not have. In particular,
in robotics tasks, humans are required to have robot-handling
skills and knowledge on the optimal trajectory. We focus on
the knowledge of subgoals because there are no requirements
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for robot-handling skills. Humans need only to think of a few
subgoal states on the optimal trajectory in their minds. More-
over, trajectories that fail can be utilized. Potential-based
reward shaping is able to add external rewards while keeping
the optimal policy of the environment [7]. It is calculated as
the difference between the real-number functions (potential
function) of the previous and current state. Generally, a naive
idea of the potential function for utilizing the knowledge of
subgoals is high potential only for subgoal states. However,
the method cannot work well as shown in Section VI, so it
is not easy to incorporate the knowledge of subgoals over
potential-based reward shaping.

In this paper, we propose subgoal-based reward shaping
that accelerates learning by using the knowledge of sub-
goals with the original optimal policy remaining. Our method
focuses on a single agent setting for episodic tasks with MDP
with a single constant goal. The strength is that the reward
shaping needs only the knowledge of subgoals to accelerate
learning. Getting the subgoals does not require handling the
agent such as in the case of getting trajectories. Furthermore,
trajectories with failure can be utilized by extracting subgoals
from them. The main contributions of this work are:

• learning that is accelerating by reward shaping with a
sequence of subgoals,

• a user study for acquiring a sequence of subgoals and
a comparison between participants’ subgoals and ones
generated randomly,

• experimental results on three tasks that demonstrate
a significant improvement in learning efficiency com-
paredwith a baseline algorithm and a traditionalmethod.

The remainder of this paper is organized as the followings.
Section II reviews related work on RL and similar studies
to our reward shaping with subgoal knowledge. The pre-
liminaries including notations and algorithms for RL and
potential based reward shaping are described in Section III.
Then, we explain the definition of subgoals, a subgoal-based
reward shaping algorithm we proposed in Section IV. The
next Section V gives an overview of user study in which
we obtained subgoal knowledge from participants. The set-
ting and results of various experiments we conducted for
evaluation of our proposed method and descriptions on
three domains, four-rooms, pinball, pick and place tasks in
Section VI. In Section VII, discussions on subgoals given
by participants, hyper parameters tuning and others are dis-
cussed. The conclusion is provided in Section VIII.

II. RELATED WORK
A. HUMAN KNOWLEDGE FOR REINFORCEMENT
LEARNING
There are many studies utilizing human knowledge to RL;
trajectory, policy, preference, action, feedback, and subgoal.
From policy or trajectory which human provides, IRL infers
an unobserved reward function [8]. It is known to be diffi-
cult to design the reward functions because of an unspeci-
fied reward [9] and a reward hacking [10]. The unspecified

reward is leaving out important aspects in reward design. The
reward hacking is short of reward design for penalizing all
possible misbehavior. Since the designer only provide the
policy or trajectories without defining the reward function
directly, the IRL overcomes these difficulties. The reward
function is modeled as a linear sum of weighted features,
and is acquired by a margin-based optimization [5] or an
entropy-based optimization [6]. Since the IRL generates a
rich reward function, it is also a powerful solution when an
environment has a sparse reward. The approach is same to
ours. The difference is that we use only some specific states as
subgoal.

In RL with human preferences [11], a human teacher
compares a pair of trajectory segments and select the better
one than the other one. The method learned a policy without
access to the environmental rewards and the human prefer-
ence predictor.

In dataset aggregation(DAGGER) [12], a human expert
selects an action in a state which an agent selects.

In the field of interactive reinforcement learning, a learning
agent interacts with a human trainer as well as the envi-
ronment [13]. The TAMER framework is a typical interac-
tive framework for reinforcement learning [14]. The human
trainer observes the agent’s actions and provides binary feed-
back during learning. Since humans often do not have pro-
gramming skills and knowledge on algorithms, the method
relaxes the requirements to be a trainer. We aim for fewer
trainer requirements, and we use a GUI on a web system in
experiments with navigation tasks.

B. SUBGOALS FOR REINFORCEMENT LEARNING
We consider the hindsight experience replay (HER) algo-
rithm [15], which uses subgoals. HER regards a failure as
a success in hindsight, and it generates a reward for the
failure. The algorithm interprets a failure as a process for
achieving a target, and it is really similar to a subgoal. HER
accelerates learning in amulti-goal environment.We focus on
a single-goal environment, but our method is compared with
a method with random subgoals. The method with random
subgoals is similar to HER.

Hierarchical reinforcement learning(HRL) utilizes sub-
goals. The option framework ismajor in the field of HRL. The
framework of Sutton et al. [16] was able to transfer learned
policies in an option. An option consists of an initiation set,
an intra-option policy, and a termination function. An option
expresses a combination of a subtask and a policy for it. The
termination function takes on the role of subgoal because it
terminates an option and triggers the switching to another
option. Recent methods have found good subgoals for a
learner simultaneously with policy learning [17], [18]. The
differences with our method are whether the policy is over
abstract states or not and whether rewards are generated. The
framework intends to recycle a learned policy, but our method
focuses on improving learning efficiency.

The RGoal architecture by Ichisugi et al. [19] deals with
recursive subgoals in HRL. The method solves a MDP
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with an augmented state space in which each subgoal has
a state space. In multitask settings, the method speeds up
learning by sharing subroutines between tasks. The objec-
tive is different from ours, and the paper suggests that a
non-hierarchical RL method is faster than HRL in single task
settings. Murata et al. [20] used subgoals for accelerating
learning in RL. A reward is generated upon the achievement
of each subgoal, and there is a Q-function for each sub-
goal. The policy selects an action according to the weighted
sum of Q-functions of subgoals and an original Q-function.
This method is applicable for only table-style value func-
tions. Our method can be applied to function-style value
functions.

There are a few methods that can be compared with our
method. For fair comparison, the objective of the method and
the input, which is a subgoal series should in this case, should
be the same as our method.

C. REWARD SHAPING
Reward shaping has been studied actively. Marom and Ros-
man [21] proposed the reward shaping based on Bayesian
methods called belief reward shaping(BRS). The expected
value over the estimated probability distribution of an envi-
ronmental reward over a state and an action is used as shaping
rewards. They proved that the policy learned by Q-learning
augmented with BRS is consistent to an optimal policy over
original MDP.

The landmark-based reward shaping of Demir et al. [22] is
the closest to our method. The method shapes only rewards
on a landmark using a value function. Their study focused
on a POMDP environment, and landmarks automatically
become abstract states. We focus on a Markov decision pro-
cess (MDP) environment, and acquire subgoals from human
participants.

Reward shaping in HRL has been studied in [23], [24].
Gao and Toni [23] showed that potential-based reward
shaping remains policy invariant to the MAX-Q algorithm.
Designing potentials every level is laborious work. We use a
single high-level value function as a potential, which reduces
the design load. Li et al. [24] incorporated an advantage
function in high-level state-action space into reward shaping.
The reward shaping method in [25] utilized subgoals that
are automatically discovered with expert trajectories. The
potentials generated every subgoal are different.

Potential-based advice is reward shaping for states and
actions [26]. Themethod shapes the Q-value function directly
for a state and an action, and it makes it easy for a human
to give advice to an agent regarding whether an action in an
arbitrary state is better or not. Subgoals showwhat ought to be
achieved on the trajectory to a goal. We adopted the shaping
of a state value function.

Harutyunyan et al. [27] has shown that the Q-values
learned by arbitrary rewards can be used for potential-based
advice. Themethodmainly assumes that a teacher negates the
agent’s selected action. The method uses failures in trial and
errors. In contrast, our method uses successes.

III. PRELIMINARIES
A. REINFORCEMENT LEARNING
Reinforcement learning is a framework for acquiring a pol-
icy maximizing future rewards through interactions between
an agent and an environment. This works under a Markov
decision process(MDP). A MDP is represented as a tuple
(S,A,T , γ,R), where S is a finite set of states, A is a set
of actions of k ≥ 2, T = P(st+1|st , a) is a state tran-
sition function, γ ∈ (0, 1] is the discount factor, and R
specifies a reward function. An agent has a policy π (a|s)
and a value function V (s), Q(s, a). There are two methods
for learning an optimal policy, the value-based method [28]
and the policy gradient-based method [29]. The value-based
method indirectly learns a policy by estimating the optimal
value function. The policy gradient-based method directly
learns the parameters of a policy.

B. POTENTIAL BASED REWARD SHAPING
Potential based reward shaping (PBRS) [7], [30] is an
effective method for keeping an original optimal policy in
an environment with an additional reward function. If the
potential-based shaping function F is formed as

F(st , st+1) = γ8(st+1)−8(st ) (1)

it is guaranteed that policies in MDPM = (S,A,T , γ,R) are
consistent with those inMDPM ′ = (S,A,T , γ,R+F).8(st )
is a function with a state st as an argument. Wiewiora showed
that a reinforcement learner with initialQ-values based on the
potential functionmake the same updates throughout learning
as a learner receiving potential based shaping reward [30].
We assume two learners L and L ′. L initializes the Q-value
to Q0(s, a) and updates its policy with an environmental
reward r and the shaping reward F . The Q-value of L ′ is
initialized to Q′0(s, a) = Q0(s, a) + 8(s), and L ′ uses only
the reward r . The Q-values are disassembled into the ini-
tial values Q0 and Q′0 and the updated values 1Q(s, a) and
1Q′(s, a) through learning, respectively. If L and L ′ learn on
the same sequence of experiences, 1Q(s, a) is always equal
to1Q′(s, a). Moreover, value-based policies of L and L ′ have
an identical probability distribution for their next action. Our
proposed method uses potential-based shaping rewards to
keep an optimal policy in an original MDP.

IV. SUBGOAL-BASED REWARD SHAPING
We propose subgoal-based reward shaping(SRS), which
incorporates human knowledge of subgoals into an algorithm
via reward shaping. In [7], it was mentioned that learning
sped up with a learned value function used as the potential
function. Since a policy learned with potential-based reward
shaping is equivalent to that with Q-value initialization with
the potential function [30], using the learned value function
for the potential function is equivalent to initializing the
value function with the learned value function. It is impos-
sible to prepare the learned values before learning. There-
fore, we consider an approximation of the optimal values by
using subgoals without a learned value function. To this end,
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FIGURE 1. Ordered subgoals.

we define the subgoal first, and we extend the potential-based
reward shaping, and then we propose a subgoal-based poten-
tial in this section.

A. SUBGOAL
We define a subgoal as a state s if s is a goal in one of the
sub-tasks decomposed from a task. In the option framework,
the subgoal is the goal of a sub-task, and it is expressed
as a termination function [16]. Many studies on the option
framework have developed automatic subgoal discovery [17].
We aim to incorporate human subgoal knowledge into the
reinforcement learning algorithm with less human effort
required. The property of a subgoal might be a part of the opti-
mal trajectories because a human should decompose a task to
achieve a goal. We acquire a subgoal series and incorporate
subgoals into our method in the experiments. The subgoal
series is written formally as (SG,≺). SG is a set of subgoals
and a sub-set of S. There are two types of subgoal series,
totally ordered and partially ordered as shown as Fig. 1.

With totally ordered subgoals, a subgoal series is deter-
ministically determined at any subgoal. In contrast, partially
ordered subgoals have several transitions to the subgoal series
from a subgoal. We used only the totally ordered subgoal
series in this paper, but both types of ordered subgoals can
be used with our proposed reward shaping. Since an agent
needs to achieve a subgoal only once, the transition between
subgoals is unidirectional.

B. POTENTIAL BASED REWARD SHAPING WIT STATE
HISTORY GUARANTEES THE POLICY INVARIANCE
We extended potential-based reward shaping to allow the
history of the states an agent visited as an input of a potential
function. Informally, if the potential function obtains the
history of states in the difference equation, the guarantees of
policy invariance remain. Formally,

F(ht , ht+1) = γ8(ht+1)−8(ht ) (2)

where ht is the history of the states that an agent visited
until state st , expressed as an equation, ht = [s0, · · · , st ].
To prove the policy invariance, we first define the return in
any arbitrary policy π when visiting a state sk in a discount
manner without shaping. Formally,

Uπ (sk ) =
∞∑
t=0

γ trt,π (3)

Note that t is a time step. The Q function can be rewritten
as follows:

Qπ (sk , a) =
∑
sk+1

P(sk+1|sk , a)Uπ (sk+1) (4)

Now consider the same policy but with a reward function
modified by adding a potential-based reward function of the
form given in Equation (2). The return of the shaped policy
Uπ,8 experiencing the same sequence sk+1 is,

Uπ,8(hk+1) =
∞∑
t=0

γ t
(
rt,π + F(ht+k , ht+k+1)

)
=

∞∑
t=0

γ t
(
rt,π + γ8(ht+k+1)−8(ht+k )

)
=

∞∑
t=0

γ trt,π −8(hk )

= Uπ (sk )−8(hk ) (5)

where hk = [s0, · · · , sk ] is written. Qπ,8 follows from
Equation (4) and is expressed as follows.

Qπ,8(sk , a) =
∑
sk+1

P(sk+1|sk , a)Uπ,8(hk+1)

=

∑
sk+1

P(sk+1|sk , a) (Uπ (sk+1)−8(hk ))

=

∑
sk+1

P(sk+1|sk , a)Uπ (sk+1)

−

∑
sk+1

P(sk+1|sk , a)8(hk )

= Qπ (sk , a)−8(hk ) (6)

Given by Equation (6),8 does not have action a in param-
eters. As 8 is independent of the action taken, in any given
state, the best action remains constant regardless of shaping.
Therefore, we can conclude that the guarantee of policy
invariance remains.

C. SUBGOAL-BASED POTENTIALS
The subgoal-based potential is the main part of our method.
We design potentials that utilize subgoals to approximate of
the optimal value functions. Generally, the larger the optimal
value is, the closer a state is in an environment with only goal
reward. We consider subgoal achievement as approaching the
goal, and we design a potential that grows every subgoal
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FIGURE 2. Potential function for subgoals.

achievement. Formally, we define subgoal-based potentials
as

8(h) = η ∗ c(h) (7)

where η is a hyper parameter, and c(h) is a function for
calculating the number of achieved subgoals in a visited state
sequence of h from the last achieved subgoal. An output
sequence of the potential function is shown in Fig. 2.
Fig. 2 shows the sequence of an agent achieving three

subgoals. When the agent achieves sg1, the potential function
generates η ∗ c(h). Upon the achievement of sg2, this value
becomes larger than sg1 because c(h) increases.

D. WHOLE ALGORITHM
The pseudocode is shown in Algorithm 1:

Algorithm 1 Subgoal Potential-Based Reward Shaping
Ensure: γ, η, SG
1: s← s0, h← [], h′← []
2: repeat
3: Choose a according to π
4: Take a in s, observe s′, r
5: h′← h
6: Append s′ into h′

7: 8(h′) = η ∗ c(h′)
8: F(h, h′) = γ8(h′)−8(h)
9: Update value function and policy with F(h, h′)
10: s← s′, h← h′

11: until termination.

Though we consider totally ordered subgoals in the experi-
ments, we can easily extend the algorithm with a sequence of
partially ordered subgoals. We modify only the function c(h)
for partially ordered subgoals. After an agent takes an action
a and receives a state s′ from an environment, the state s′

is added to the history of states h′. The calculation of 8
involves h and h′. The function 8(h) is used for computing
F(h, h′). Even if we only give subgoals without a sequence,
the algorithm can work. Since they are partially ordered
subgoals that have only a single tier of a sequence of subgoals,
the extension mentioned above is available.

FIGURE 3. UI for acquiring subgoals.

V. USER STUDY: HUMAN SUBGOAL ACQUISITION
In this section, we explain a user study done to acquire human
knowledge of subgoals. We used navigation tasks in two
domains, four-rooms and pinball, that express the state space
spatially. Additionally, we conducted a pick and place task,
which is a basic robotics task and one for which humans can
have difficulty controlling the robot.

A. NAVIGATION TASK
An online user study done to acquire human subgoal knowl-
edge using a web-based GUI in Fig. 3 was conducted.

We recruited 10 participants who consisted of half graduate
students in the department of computer science and half
others(6 males and 4 females, ages 23 to 60, average of 36.4).
We confirmed they did not have expertise on subgoals in the
two domains. Participants were given the same instructions
as follows for the two domains, and they were then asked
to designate their two subgoals both for the four-rooms and
pinball domains in this fixed order. The number of subgoals
was the same as the hallways in the optimal trajectory for
the four-rooms domain. The instructions explained to the
participants what the subgoals were and how to set them
through the GUI shown in Fig. 3. Also, specific explanations
of the two task domains were given to the participants. In this
experiment, we acquired just two subgoals for learning since
they are intuitively considered easy to give on the basis of the
structure of the problems. We considered the two subgoals to
be totally ordered ones.

B. PICK AND PLACE TASK
A user study for the pick and place task was also done
online. Since it was difficult to acquire human subgoal knowl-
edge with a GUI, we used a descriptive answer-type form.
We assumed that humans use subgoals when they teach
behavior in a verbal fashion. They state not how to move
but what to achieve in the middle of behavior. The results
of this paper minorly support this assumption. We recruited
five participants who were amateurs in the field of com-
puter science(3 males and 2 females, ages 23 to 61, average
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FIGURE 4. Three domains.

of 38.4). The participants read the instructions and then typed
the answer in a web form. The instructions consisted of a
description of the pick and place task, a movie of manipulator
failures, a glossary, and a question on how a human can
teach successful behavior. The question included the sentence
‘‘Please teach behavior like you would teach your child.’’
This is because some participants answered that they did not
know how to teach the robot in a preliminary experiment.
We imposed no limit on the number of subgoals.

VI. EXPERIMENTS FOR EVALUATION
As mentioned above, we conducted experiments to evaluate
our proposed method in three domains: four-rooms, pinball,
and pick and place. The four-rooms and pinball domains are
navigation tasks in which an agent travels to its goal with
the shortest number of steps. The pick and place domain is
a robotics task. A robot aims to pick up an object and bring it
to a target space. Fig. 4 shows images of the three domains.

We compared human subgoal-based reward shap-
ing (HSRS) with three other methods. They were a base-
line RL algorithm, random subgoal potential-based reward
shaping (RSRS), and a naive subgoal reward method (NRS).
As mentioned in Section II, there are a few methods that
can be compared with our method. For fair comparison,
the objective of the method needs to be the same as well
as the input, that is, a subgoal series. RSRS is a similar
approach to the HER algorithm. NRS is a simple method, and
many algorithm designers should come up this approach first.
In NRS, the function 8(s) in potential-based reward shaping
generates a scalar value η just when an agent visits a subgoal

state. The potential function is written formally as follows.

8(s) =

{
η s = sg
0 s 6= sg

(8)

The difference from our method is that the positive poten-
tial is only for subgoals. A separate baseline RL algorithm
was implemented for each domain. This is to show that our
method can be adapted to various RL algorithms. The differ-
ent baseline RL algorithms are used each domain to show the
availability for several RL algorithms. The reward shaping
method, HSRS, RSRS, and NRS were implemented in the
baseline algorithm. HSRS used the participants’ subgoals
described in Section V.

Each domain had 20 subgoals the same as the number
of participants’ subgoals. For pick and place, we generated
two random observations with ranges as subgoals. The sub-
goals of pinball and pick and place had these ranges because
both domains had a continuous state space. We evaluated
the learning efficiency with the time to threshold and the
asymptotic performance [31] in terms of human subgoal
knowledge effects. The time to threshold was the number
of episodes to get below a predefined number of threshold
steps. The asymptotic performance was the final performance
of learning. All the experiments were conducted with a PC
[Ryzen 9 5950X, 16 cores(3.4GHz), 128 GB of memory].

A. NAVIGATION IN FOUR-ROOMS DOMAIN
The four-rooms domain had four rooms, and the rooms were
connected by four hallways. The four-rooms domain is a
common RL task. In this experiment, learning consisted
of 1000 episodes. An episode was a trial run until an agent
reached a goal state successfully or when 1000 state actions
ended in failure. A state was expressed as a scalar value
labeled through all states. An agent could select an action
from up, down, left, and right. The agent’s action failed with
a probability of 0.33, and another random action was then
performed. A reward of +1 was generated when the agent
reached a goal state. The start state and goal state were placed
at a fixed position. The agent repeated learning 100 times.

1) ALGORITHM SETUP
SARSA is a basic RL algorithm. We used SARSA as a base-
line RL algorithm. The value function was in table form. The
policy was soft-max. We set the learning rate to 0.01 and the
discount rate to 0.99. The function c(h) counted the number
of subgoals in a sequence in order from the front of a state
sequence h. We set η to 0.01 for HSRS, RSRS and NRS
after grid search was performed on grids of 0.01, 0.1, 1, 10,
and 100.

2) SUBGOALS
Fig. 5 shows the subgoal distribution acquired from the partic-
ipants and the random subgoal distribution in the four-rooms
domain.

The numbers in the cells stand for the frequencies of the
subgoals in Fig. 5; higher values are in yellow and lower
values are in orange. The number in a cell was the frequency
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FIGURE 5. Subgoal distributions of a four-rooms domain.

FIGURE 6. Learning curves compared with three methods.

at which the participants selected that cell as a subgoal. These
subgoals are totally ordered subgoals. As shown in Fig. 5(a),
participants tended to set the subgoals in the hallways. In
Fig. 5(a), the color of the start point, the goal, and subgoals
are blue, red, and green, respectively. HSRS and NRS used
the subgoals as shown in Fig. 5(a), and RSRS used as shown
in Fig. 5(b).

3) RESULTS
We show the results of the learning experiment. Fig. 6 shows
the learning curves of our proposed method and the three
other methods.

We plotted HSRS with an average totaling 1000 learnings
over all participants. RSRS was also averaged by 1000 learn-
ings over all participants. SARSAwas averaged by 100 learn-
ings because it does not use subgoals. NRS had almost the
same conditions as HSRS. HSRS seemed to have the fewest
steps for almost all episodes. The performance of RSRS was
close to HSRS but worse than HSRS. NRS had the worst
performance. This shows the difficulty of transformation
from subgoals into an additional reward function. We also
performed an ANOVA for the time to reach the thresh-
old among HSRS, RSRS, SARSA, and NRS. The analysis
showed a significant difference at the level of p < .01 among
these methods. The Holm-Bonferroni method was used for
sub-effect tests. We set the thresholds to 500, 300, 100, and
50 steps. Table 1 shows the mean episodes and the standard
deviations of the compared methods for each threshold step.

TABLE 1. Mean and standard deviation:mean(S.D.).

TABLE 2. Summary of ANOVA and sub-effect tests for time (episode) to
threshold steps. ∗ stands for p < .05.

TABLE 3. Asymptotic performances in four-rooms domain. Ind.
is indicator, and S.D. is standard deviation.

FIGURE 7. Asymptotic performance in four-rooms domain.

Table 2 shows the results of the sub effect tests by the
Holm-Bonferroni method for HSRS, RSRS, SARSA and
NRS.

As shown in Tables 1 and 2, HSRS, RSRS, and SARSA
were significantly lower than NRS but did not have signif-
icant differences between the three of them. From Table 1,
HSRS shortened the number of learnings by up to 18 episodes
from SARSA. Table 6 shows the asymptotic performances of
all four methods, and Fig. 7 shows them by box plot.
Therewere no significant differences among the fourmeth-

ods in terms of asymptotic performance.

B. NAVIGATION IN PINBALL DOMAIN
The navigation task in the pinball domain involves moving a
ball to a designated target by giving it velocity. The pinball
domain makes it difficult for humans to control the ball
because it needs them to control the ball with delicate actions.
Delicate control is often necessary in the control domain. It is
easier to give a subgoal than trajectories in this domain.

The difference with the four-rooms domain is the contin-
uous state space over the position and velocity of the ball
on the x-y plane. An action space has five discrete actions,
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FIGURE 8. Subgoal distributions of a pinball domain.

four types of force and no force. In this domain, a drag
coefficient of 0.995 effectively stops ball movements after
a finite number of steps when the no-force action is chosen
repeatedly; collisions with obstacles are elastic. The four
types of force are up, down, right, left on a plane. An episode
terminates with a reward of +10,000 when the agent reaches
the goal. Interruption of any episode occurs when the episode
takes more than 10000 steps. Learnings of the methods are
repeated 100 times from scratch, and we used the results to
evaluate the learning efficiency.

1) ALGORITHM SETUP
We used the actor-critic algorithm(AC) [32] as the baseline
RL algorithm. AC is a basic RL algorithm that directly
optimizes a policy with parameters using the value function.
A policy with parameters is called the actor part, and a
value function is the critic part. Both parts needed to update
parameters. We used AC as the critic with linear function
approximation over a Fourier basis [33] of order 3. A subgoal
had only a center position and a radius in this domain. The
radius was the same as that of the target. We assumed that
a subgoal was achieved when the ball entered a circle with
the center position and radius at any velocity. We used a
soft-max policy as the actor. The learning rates were set to
0.01 for both the actor and the critic. The discount factor
was set to 0.99. The parameters for HSRS, RSRS, NRS,
and η were set to 100 after a grid search on grids of 10,
100, 1,000, and 10,000. The function c(h) was almost the
same as in the four-rooms domain excluding the judgement
of whether a state is a subgoal. We compared HSRS with the
three other methods in terms of learning efficiency with the
time to threshold. We defined this threshold in this domain as
the number of episodes required to reach the steps.

2) SUBGOALS
Fig. 8 shows the subgoal distribution acquired from the par-
ticipants and the random subgoal distribution in the pinball
domain.

The participants focused on four regions of branch points
to set subgoals in comparison with random subgoals from
Fig. 8(a) and Fig. 8(b). HSRS and NRS used the subgoals
as shown in Fig. 8(a), and RSRS used those as shown
in Fig. 8(b).

FIGURE 9. Learning curve in pinball domain.

TABLE 4. Mean and standard deviation: mean(SD).

TABLE 5. Summary of ANOVA and sub effect tests for time(episode) to
threshold steps. Otherwise is abbreviated to o.w., and n.s. means not
significant. ∗ stands for p < .05.

3) RESULTS
Fig. 9 shows the learning curves. It took an average shift
of 10 episodes.

HSRS mostly performed the best of the three methods.
The performance of RSRS was close to HSRS but worse
than HSRS. We evaluated the learning efficiency by using
the time to threshold. We used each learning result smoothed
by using a simple moving average with the number of time
periods being 10 episodes, and we performed a Student’s
t-test to confirm the difference among the three methods.
Table 4 shows the mean and standard deviations, and Table 5
summarizes the results for the time to threshold, where Thres.
is the number of steps. From the result of the ANOVA, there
was a significant difference at the level of p < .01 among
the four methods for 1000, 2000, and 3000, and there was a
difference at p < .05 for 500. The Holm-Bonferroni method
was used for the sub-effect tests.

From Table 5, HSRS and RSRS had fewer steps than AC
for the thresholds of 3000, 2000, and 1000, which was signif-
icant. There was no significant difference between HSRS and
RSRS for any of the thresholds. Table 6 shows the asymptotic
performances of all four methods, and Fig. 10 shows them by
box plot.

Therewere no significant differences among the fourmeth-
ods in terms of asymptotic performance. Our method with
random and human subgoals lead to more efficient learning
than the basic RL algorithm in the pinball domain.
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TABLE 6. Asymptotic performances in pinball domain. Ind. is indicator,
and S.D. is standard deviation.

FIGURE 10. Asymptotic performance in pinball domain.

C. PICK AND PLACE
We used a fetch environment based on the 7-DoF Fetch
robotics arm of OpenAI Gym [34]. In pick and place,
the robotic arm learns to grasp a box and move it to a
target position [35]. We converted the original task into
a single-goal reinforcement learning framework because
potential-based reward shaping is not developed to deal with
the multiple goals [7]. The dimension of observation is larger
than the previous navigation tasks, and the action is contin-
uous. An observation is 25-dimensional, and it includes the
Cartesian position of the gripper and the object as well as the
object’s position relative to the gripper. The reward function
generates a reward of −1 every step and a reward of 0 when
the task is successful. In [35], the task is written about in
detail.

1) ALGORITHM SETUP
We compared HSRS with RSRS, NRS, and DDPG [36]
in terms of learning efficiency with the time to threshold
and asymptotic performance. HSRS, RSRS, and NRS used
DDPG as a base. We defined this threshold in the task
as the number of epochs required to reach the designated
success rate. The asymptotic performance was the average
success rate between 190 and 200 epochs. Ten workers stored
episodes and calculated the gradient simultaneously in an
epoch. HSRS and NRS used ordered subgoals provided by
five participants. RSRS used subgoals randomly generated.
The learning in 200 epochs took several hours. We used
an OpenAI Baselines [37] implementation for DDPG with
default hyper-parameter settings. We built the hidden and
output layers of the value network over abstract states with
the same structure as the Q-value network. We excluded the
action from the input layer. The input of the network was
only the observation of subgoal achievement, and the network
learned from the discount accumulated reward until subgoal
achievement. A subgoal was defined from the information in
the observation. We set the margin to ±0.01 to loosen the

FIGURE 11. Example of subgoals from participant in a pick and place
domain.

FIGURE 12. Learning curves in pick and place task.

severe condition to achieve subgoals. ηwas set as 1 for HSRS,
RSRS, and NRS. The learning repeated 10 times, and the
results were averaged over 10 learnings.

2) SUBGOALS
All five participants determined the subgoal series, the first
subgoal was reaching the location available to grasp the
object, and the second subgoal was grasping the object.
Fig. 11 shows the example of the subgoal series in pick and
place domain.

3) RESULTS
Weused the subgoal series for the input of ourmethod. Fig. 12
shows the learning curves of HSRS, RSRS, NRS, and DDPG.

As shown in Fig. 12, the results were averaged across five
learnings, and the shaded areas represent one standard error.
The random seeds and the locations of the goal and object
were varied every learning. HSRS worked more effectively
thanDDPG, especially after about the 25th epoch. The perfor-
mances of RSRS and NRS were similar. NRS had the worst
performance through almost all epochs.

Table 7 shows the mean episodes and the standard devia-
tions of the compared methods for each threshold steps.

Table 8 shows the asymptotic performances of all four
methods, and Fig. 13 shows them by box plot.

HSRS was significantly different from RSRS and NRS at
0.6 in terms of the time to threshold. For the rest, there were
no differences in both the time to threshold and the asymptotic
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TABLE 7. Mean and standard deviation in pick and place:mean(S.D.).

TABLE 8. Asymptotic performances in pick and place. Ind. is indicator,
and S.D. is standard deviation.

FIGURE 13. Asymptotic performance in pick and place task.

performance, but HSRS was the best compared with the other
three methods.

In this section, we evaluated our method for four-rooms,
pinball, and pick and place. In all domains, HSRS performed
better than the other three methods in terms of the time
to threshold and the asymptotic performance. There was,
in particular, a significant difference between HSRS and AC
as the baseline RL algorithm for pinball. The performance
of RSRS was close to HSRS in the four-rooms and pinball
domains. In contrast, RSRS performed the second worst of
all for pick and place. The results showed the subgoal-based
reward shaping with human knowledge of subgoal improved
the learning efficiency from the baseline RL algorithm, and
the human knowledge was more useful for SRS than random.
The naive reward shaping made the learning efficiency worse
than the baseline RL algorithm, so it is not easy for designers
to incorporates the knowledge of subgoal over PBRS. This is
why we proposed SRS, and SRS could improve the learning
efficiency just by providing the subgoal series.

VII. DISCUSSION
A. ANALYZING PERFORMANCES
There was a small difference between HSRS and RSRS in
the four-rooms domain from Fig. 6 and the pinball domain
from Fig. 9. The difference between HSRS and RSRS was
large in the pick and place domain. Approximately 65% of
states generated randomly were in an optimal trajectory for
the four-rooms domain. The pinball task seemed to have
approximately 20% of states generated randomly in the opti-
mal trajectory. There was no state generated randomly in an

FIGURE 14. Results of grid searches.

optimal trajectory in the pick and place task. The random
subgoals were better in the four-rooms and pinball domains
than in the pick and place task. This is because these two
domains might have had more states in the optimal trajectory
than the pick and place task.We think that the small difference
between HSRS and RSRS was caused by the domains having
states in the optimal trajectory. The pick and place task has a
large state space, so the random subgoals are not likely to be
placed on the optimal trajectories. The larger the state space
becomes, the larger the difference between HSRS and RSRS
may become.

Potential-based reward shaping keeps a policy invariant
from the transformation of a reward function. From the exper-
imental results in the pinball domain, the asymptotic perfor-
mances of HSRS were statistically significantly lower than
RSRS. There was no significant difference in the four-rooms
domain. As shown in Fig. 6, the performance was clearly
asymptotic at the 121th of 1000 episodes. The learning was
clearly asymptotic as the 200th episode for the pinball domain
in Fig. 9. Since our proposed method is based on PBRS,
RSRS converges to the same performance as HSRS if learn-
ing continues.

B. TUNING HYPER PARAMETERS
Fig. 14 shows the results of grid searches. In the searches,
we used only a single participant’s subgoals which were
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randomly selected, and the number of learnings was a half
that of the experimental results.

As seen in this figure, our method was significantly sensi-
tive to the hyper parameter η. A wrong η such as η = 1 in the
four-rooms domain could deteriorate the performance of the
method. This may incur a cost for tuning hyper parameters.
To solve this problem, we must fit η to the optimal value.
The environmental rewards of goals were 1 and 10,000 for
four-rooms and pinball, respectively. The best η was 0.01 for
four-rooms and 100 for pinball. Both η were one-hundredth
of the environmental rewards.

C. LIMITATIONS
1) DIFFICULTIES OF HYPER PARAMETERS
Since we didn’t know the preferable hyper parameter η
explicitly, we tuned hyper parameters by grid searches. The
traditional reward shaping method has tackled the same prob-
lem. The SARSA-RS method uses a value function over
abstract states as a potential function [38]. The method
doesn’t require hyper parameters of the potential function.
If we can make SARSA-RS incorporate a series of subgoals,
we can ignore the hyper parameter η because η can be
obtained through learning. To do this, we proposed dynamic
trajectory aggregation in another paper [39]. Themethod uses
a sequence of subgoals to build abstract states. The part of
a trajectory until subgoal achievement becomes an abstract
state, and the part until the next subgoal achievement becomes
another abstract state. The value of the abstract states is used
for shaping. With the method, the designer provides only a
sequence of subgoals.

2) TEACHING KNOWLEDGE OF SUBGOALS
Our method depends on whether the teacher can provide
the sequence of subgoals in a task, and can be used to
the task which the teacher can provide it. The limitation
of subgoals is that no established method to provide them,
and it may depend on individual intuitive consideration. For
the four-rooms domain, as shown in Fig. 5, almost all the
subgoals were located within the right-top and right-bottom
rooms. From this, we think that many participants tended
to consider the right-down path as the shortest one. This
may mean humans abstractly have a common methodology
and preference for giving subgoals. Additionally, there was
the interesting observation that half of the participants set a
subgoal in the hallways.

For the pinball domain, as shown in Fig. 8, the subgoals
were scattered at the gap between objects and at the branch
points. They seem to be at the change points of actions on an
optimal trajectory. We can consider that the repeated actions
are composed in a macro-action. This is a similar approach
to [40].

For the pick and place task, five participants provided the
same subgoals. The way to provide subgoals was different
from the other tasks. We used the descriptive answer-type
form. These results almost show the tendency for people to
provide similar subgoals exists.

We consider that people change a strategy for providing
subgoals in response to the task properties, especially envi-
ronment structure. The test for this hypothesis is future work.

3) DIFFICULTIES OF PROVIDING SUBGOALS
There are other limitations and future work regarding this
work. We implicitly assumed that a human can set subgoals
more easily than providing the optimal trajectories from a
start state to a goal state, which is conventional human knowl-
edge that improves efficiency of reinforcement learning with
IRL. We need to verify this assumption by conducting exper-
iments with participants to measure the cognitive load in
setting various subgoals and trajectories.

The ease of providing subgoals may depend on the kind of
task. We think that there are two steps that a human can take
to set subgoals in a task. In the first, the human comes up
with an optimal trajectory for a task. The optimal trajectory
includes subgoals. If the human cannot come up with this
trajectory, he or she cannot know the subgoals. In the second,
the human selects states as subgoals in a trajectory. The
trajectory includes states, and the human must prioritize them
because the high-prioritized states become subgoals. A task
in which a human can process these two steps easily would
be an appropriate one for subgoals.

We plan to conduct a large user study to make clear what
the best task for providing subgoals is. The viewpoint of the
human teacher may be a factor. For this, we can consider a
bird’s-eye view and a first-person view as levels. The naviga-
tion tasks in this paper involved a bird’s-eye view. An exam-
ple of a task with a first-person view is a first-person shooter
game such as ViZDoom [41]. Our hypothesis is that a task
with a bird’s-eye view is more suitable for providing subgoals
than one with a first-person view. Another factor may be the
explainability of the optimal trajectories. The trajectory of the
four-rooms domain is easy for a human teacher to explain,
such as explaining that the agent should first go the top-right
hallway and then the bottom-right hallway. The teacher can
select subgoals easily in this domain like the top-right and
bottom-right hallways. In the Hand Manipulation task [35],
it is hard for the teacher to explain how the robotic hand
of the agent shold move. It may be also difficult for the
teacher to select subgoals. These are related to explicit and
implicit knowledge, respectively. Our hypothesis is that a task
including an optimal trajectory that the teacher can explain is
more suitable than one in which the teacher cannot explain
the trajectory under subgoal settings. Future work is also to
test these hypotheses in a large user study.

VIII. CONCLUSION
In reinforcement learning, learning a policy is time-
consuming. We aim for accelerating learning with reward
transformation based on human subgoal knowledge. The dif-
ficulty of integrating subgoal knowledge into the potentials
was a problem in improving learning efficiency. We proposed
a method by which a human deals with several characteristic
states as a subgoal. We defined a subgoal as the goal state

VOLUME 9, 2021 97567



T. Okudo, S. Yamada: Subgoal-Based Reward Shaping to Improve Efficiency in RL

in one of the sub-tasks into which a human decomposes a
task. The main part of our method is an approximation of the
optimal value function with subgoals. We collected ordered
subgoals from participants and used them for evaluation.
We evaluated navigation for four-rooms, pinball, and a pick
and place task. The experimental results revealed that our
method with human subgoals enabled faster learning com-
pared with the baseline method, and human subgoal series
were more helpful than random ones. The availability of our
method depends on the ease of getting subgoals. The limita-
tions of subgoals are that there is no established methodology
for giving them and what kinds of tasks are suitable for them
is unknown. Elucidating this is our future work.
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