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ABSTRACT Wind turbines (WTs) are often operated in harsh and remote environments, thus making them
more prone to faults and costly repairs. Additionally, the recent surge in wind farm installations have resulted
in a dramatic increase in wind turbine data. Intelligent condition monitoring and fault warning systems are
crucial to improving the efficiency and operation of wind farms and reducing maintenance costs. Gearbox
is the major component that leads to turbine downtime. Its failures are mainly caused by the gearbox
bearings. Devising condition monitoring approaches for the gearbox bearings is an effective predictive
maintenance measure that can reduce downtime and cut maintenance cost. In this paper, we propose a
hybrid intelligent condition monitoring and fault warning system for wind turbine’s gearbox. The proposed
framework encompasses the following: a) clustering filter- (based on power, rotor speed, blade pitch
angle, and wind speed signals)-using the automatic clustering model and ant bee colony optimization
algorithm (ABC), b) prediction of gearbox bearing temperature and lubrication oil temperature signals- using
variational mode decomposition (VMD), group method of data handling (GMDH) network, and multi-verse
optimization (MVO) algorithm, and c) anomaly detection based on the Mahalanobis distances and wavelet
transform denoising approach. The proposed condition monitoring system was evaluated using 10 min
average SCADA datasets of two 2 MW on-shore wind turbines located in the south of Sweden. The results
showed that this strategy can diagnose potential anomalies prior to failure and inhibit reporting alarms in
healthy operations.

INDEX TERMS Automatic clustering, condition monitoring, forecasting, GMDH neural network,
multi-verse optimization, wind turbine assessment.

I. INTRODUCTION
Wind energy is currently widely used in several countries
as a clean, cost-effective and sustainable source of renew-
able energy [1]. Wind turbines’ operation in harsh environ-
ment and in the presence of highly variant stochastic loads,
however, makes them prone to sensor, actuator and compo-
nent faults, thereby requiring increased frequency of planned
maintenance scheduling [2], [3]. This latter, however, leads
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to higher maintenance costs and increased downtime and
subsequently reduced power production. To lower the cost of
maintenance, decrease downtime and improve wind turbine’s
reliability, in the presence of faults, various condition mon-
itoring techniques based on data obtained by the wind tur-
bine’s Supervisory Control And Data Acquisition (SCADA)
system have been proposed in the literature [4]–[7].

Data-driven methods were recently shown to be quite
effective in condition monitoring [8], [9]. In [6], Banga-
lore and Bertling Tjernberg, introduced an artificial neu-
ral network (ANN) condition monitoring model according
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to data obtained from the SCADA system. The proposed
model was used for gearbox bearings with actual data from
onshore wind turbines [10]. In [11], Cheng et al. devel-
oped a novel method with a doubly fed induction genera-
tor (DFIG) stator current signal to diagnose faults in the wind
turbine drivetrain gearbox under nonstationary conditions.
In [12], Dao, et al., proposed a condition monitoring and
failure detection model based on the co-integration analysis
of SCADA data. This approach was able to appropriately
analyze nonlinear data trends, constantly monitor the wind
turbine, and reliably diagnose abnormal conditions. In [13],
Sun et al., proposed a model for wind turbine anomaly
detection based on various wind turbine condition parameter
prediction approaches and a fuzzy theory model. In [14],
Sanchez et al. developed a technique for fault detection for
WT considering model parametric uncertainties and noise
according to interval observers and analytical redundancy
relations. Zhang et al., presented a model to identifyWT state
parameters anomalies valid for condition parameters ranges
fluctuating within the SCADA alarm threshold [15]. Qu et al.
proposed a WT fault diagnosis technique with SCADA data
according to the expanded linguistic terms and rules through
non-singleton fuzzy logic [16]. In [17], deep neural network
(DNN)-based framework was considered to detect WT gear-
box faults. [18] developed a fault diagnosis system based
on adaptive neuro-fuzzy inference system and hybrid mod-
els. A multi-scale convolutional neural networks-based fault
diagnosis method was introduced in [19] for gearbox health
monitoring.

Artificial intelligent approaches and deep learning tech-
niques were recently introduced to automaticallymake timely
decisions on the running health of wind turbines based
on massive data sets. Intelligent fault diagnosis typically
includes the following three steps: signal acquisition, feature
extraction, and fault recognition based on techniques such as
statistical learning theories, intelligent signal processing and
artificial intelligence techniques [17], [20]–[22]. Ongoing
research studies have shown that deep learning approaches
yield better efficiency and accuracy in monitoring the operat-
ing conditions of the turbine. Ref [23] utilized a linear support
vector machine to detect wind turbines’ faults. A hierarchical
event detection method based on spectral theory of multidi-
mensional matrix was proposed in [24] for the fault detection
of a power systems using massive data. A gearbox fault
diagnosis approach based on a novel hybrid feature reduction
approach was proposed in [25]. This approach mixed the
optimization objectives of the principal component analy-
sis (PCA) and locally linear embedding (LLE) to identify
a mapping that simultaneously responds to the optimization
objectives of PCA and LLE. A tacho-less order tracking tech-
nique was proposed in [26] to identifying WT gearbox faults
in non-stationary conditions, without the need for conven-
tional instantaneous angular speed (IAS) calculations. Risk
management techniques were considered in [27] to evaluate
the effects of some risk factors that affect the energy produc-
tion of awind farm.A data-drivenmodel was proposed in [28]

to assess the function of wind turbines at past and future
time intervals. Parametric Copula models were considered
in data [29] to accurately assess the performance of wind
turbines based on real data sets. An intelligent SCADA data-
driven, nonparametric approach was proposed in [30] for
wind turbine condition monitoring. The approach applied the
Gaussian process and regression tree techniques to calculate
the power curve of a wind turbine and subsequently deter-
mine functional anomalies based on a comparative analysis.
GP and regression models were developed using evolutionary
strategy algorithms [30]. To analyze the influence of wind tur-
bine operational variables on the precision of the model and
its uncertainty, a Gaussian Process (GP) was provided in [31].
The findings indicate that considering functional parame-
ters can enhance the performance of the GP model preci-
sion and eliminate the uncertainty in forecasting the power
curve.

Although intelligent methods have recently introduced to
WT condition monitoring, to the best of our knowledge,
none have considered a hybrid intelligent approach nor a
prediction model for parameter forecasting. These latter have
the ability to fully handle the uncertainties present in large
data sets, thus yielding better performance in terms of fault
detection, feature selection, signal decomposition, clustering,
and forecasting.

In this paper, we propose a hybrid intelligent condition
monitoring system for wind turbine’s gearbox. Its main con-
tributions are as follows:

• An ant bee colony algorithm (ABC)-based hybrid auto-
matic clustering filter model to cluster the signals
(i.e. wind speed, power production, rotor speed, and
pitch blade angle) affecting the gearbox performance.

• A deep learning prediction model based on GMDH
neural network and multi-verse optimization algorithm
for bearing temperature and lubrication oil temperature
forecasting.

• An anomaly detection strategy based on the Maha-
lanobis distance calculation and wavelet transform
de-noising method to detect possible anomalies and pre-
vent failure occurrence.

• Practical implementation of the proposed combined
deep learning model to the real SCADA data of
two on-shore wind turbines located in the south of
Sweden.

The remainder of this paper is organized as follows. Some
preliminaries are provided in section II. The proposed
anomaly detection model is detailed in section III. The exper-
imented results are given in section IV. Finally, some conclud-
ing remarks are provided in section V.

II. Preliminaries
A. WAVELET TRANSFORM
There are two groups of wavelet transforms: continuous
wavelet transform (CWT) and discrete wavelet transform
(DWT). The CWT W(a,b) of signal f(x) considering a wavelet
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ϕ(x) was proposed in [32], [33]:

W(f ,a,b) =
1
√
a

+∞∫
−∞

f(x)φ( x−b
a

)dx (1)

In which a determines the wavelet spread and b char-
acterizes its central location. ϕ(x) represents the mother
wavelet. AW(a,b) coefficient indicates the extent to which the
scaled/translated mother wavelet and the main signal f(x) are
matched. Therefore,W(a,b) as the wavelet coefficients, which
are related to a specific signal, are the signal wavelet indicator
for the main wavelet. Because CWT can be obtained when
the mother wavelet is continuously scaled and translated,
substantial redundant data is produced. Thus, the scaling and
translating of themother wavelet may also be done by specific
scales and positions commonly on the basis of powers of two
or DWT [34]. Such technique was shown to be more effective
than the CWT [32]. Thee DWT of a signal f(t) is defined by:

W(m,n) = 2−(m/2)
T−1∑
t=0

f(t)ϕ( t−n.2m
2m

) (2)

where T represents the length of signal f (x). The scaling
and translation factors are functions of m and n as integer
variables (a = 2m, and b = n.2m); t indicates the discrete
time index.

B. VARIATIONAL MODE DECOMPOSITION
Dragomiretskiy and Zosso developed a Variational mode
decomposition (VMD) model as a novel signal decompo-
sition technique [35]. VMD provides better performance in
terms of sampling and noise than available methods, such
as EMD [35]. It is a complete non-recursive VMD model,
in which the modes are extracted at the same time. It follows
a group of modes along with their center frequencies in a
respective order. Hence, the modes collectively reproduce
the input signal, and each mode is smoothly following the
baseband demodulation [35].

min
uk ,wk

{∑
k

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ uk (t)

]
e−jwk t

∥∥∥∥2
2

}
s. t.

∑
k

uk = f (t) (3)

Themode uk should bemainly compact near the center pul-
sation wk [35]. The VMD enables estimating the bandwidth
through the H1 Gaussian smoothness of the demodulated
signal, i.e. the squared L2-norm of the gradient [35]. The set
ofK modes aswell as their center frequencies are respectively
presented with uk and wk . Moreover, the Dirac distribution is
shown with δ, the time script j2 = −1 is presented with t, and
the convolution operator is represented by ∗. The quadratic
penalty along with λ Lagrangian multipliers was expressed
to create an unconditional problem. The following completed
Lagrangian can be provided [35]:

L (uk .wk , λ) = α
∑
k

∥∥∥∥∂t [(δ (t)+ j
π t

)
× uk (t)

]

× e−jwk t
∥∥∥∥2
2
+

∥∥∥∥∥f −∑
k

uk

∥∥∥∥∥
2

2

+

〈
λ, f −

∑
k

uk

〉
, (4)

where the balancing factor related to the data-fidelity con-
straint is indicated with α. The alternate direction method
of multipliers can solve Eq. (4). The mode uk (w) in the
frequency domain is indicated using Eq. (5), the center fre-
quencies wk are demonstrated using Eq. (6), and Eq. (7) is
used to update λ. The mode uk (t) in the time domain can be
achieved as the real part in the inverse Fourier transform of
uk (w) using Eq. (5) [35]:

ûn+1k =

f̂ (w)−
∑
i6=k

ûi (w)+
λ̂(w)
2

1+ 2α (w− wk)2
(5)

wn+1k =

∫
∞

0 w
∣∣ûk (w) ∣∣2dw∫

∞

0

∣∣ûk (w) ∣∣2dw (6)

λ̂n+1 (w) = λ̂n (w)+ τ

(
f̂ (w)−

∑
k

∣∣ûi (w)∣∣) (7)

C. INTELLIGENT AUTOMATIC CLUSTERING
Cluster validity is associated with the statistical–
mathematical functions applied to quantitatively evaluate the
clustering algorithm findings. In general, the cluster validity
functions have two goals. 1) determine the clusters’ num-
bers, 2) indicate the related best partition. The best measure
for validity is obtained by repeatedly running the algorithm
using varied classes as input followed by selecting the data
partitioning [36]. A validity function is often needed to con-
sider the two partitioning features: a) Cohesion: patterns in a
cluster need to highly resemble one another. Patterns’ fitness
variance in a cluster can represent cohesion and compactness
in the cluster, b) Separation: separation of clusters is crucial.
The space between the cluster centers (Euclidean distance)
indicates cluster separation [37].

In terms of crisp clustering, Dunn’s index (DI) [38],
Calinski–Harabasz criterion [39], DB index [40], Pakhira
Bandyopadhyay Maulik (PBM) index [41], and the CS mea-
sure [42] are the most popular indexes. They are optimiz-
ing in nature and accurately yield the proper partitions.
Due to their optimizing feature, cluster validity indices
were shown to be the best tools along with the optimiza-
tion algorithms, such as PSO, GA, TS, etc. In this paper,
crisp clustering is performed using the Davies-Bouldin (DB)
function.
DB Function: It is regarded as a function of the sum of

the ratio of within-cluster scatters and between-cluster sep-
aration, which employs clusters and their sample mean. The
within ith cluster scatter is initially defined followed by the ith
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and jth clusters,

Si,q =

 1
Ni

∑
EX∈Ci

∥∥∥EX − Emi∥∥∥q
2

 1
q

(8)

di,j,t =


d∑
p=1

∣∣mi,p − mj,p∣∣t


1
t

=
∥∥ Emi − Emj∥∥t (9)

where Emi represents the ith cluster center, q indicates an inte-
ger, q and t are separately selectable, Ni shows the elements
numbers within the ith cluster Ci.
Ri,qt is then expressed as:

Ri,qt = max
j∈K ,i6=i

{
Si,q + Sj.q
di,j,t

}
(10)

Ultimately, the DB measure is determined as follows:

DB (K ) =
1
K

K∑
i=1

Ri,qt . (11)

The smallest DB(K ) index shows a valid optimal partition.

D. ARTIFICIAL BEE COLONY ALGORITHM (ABC)
Karaboga designed the ABC algorithm in 2005 [43] to
improve numerical function optimization with respect to
cooperative foraging and waggle-dancing of honey bees.
Detection of an optimal ABC solution is similar to the for-
aging process in bees. The location of the source is regarded
as a possible solution, and the nectar quantity in each source
is indicative of its fitness. Artificial bees can be classified into
employed and unemployed bees (i.e., onlooker and scout).
The scout and onlooker bees each occupy half of the colony.
As every food source is linked to one employed bee, the
number of employed bees represents the number of source
positions (solutions). There are four different phases in the
ABC algorithm: initialization, employed bee, onlooker bee,
and scout bee.

E. GMDH NEURAL NETWORK
A.G. Ivakhnenko developed GMDH as a heuristic self-
organizing approach employed by complex nonlinear sys-
tems [44]. It is an algorithm according to the self-organizing
data mining of the external criterion, in which the Volterra–
Kolmogorov–Gabor (VKG) polynomial indicates the associ-
ation of input and output factors in a network characterized
by different inputs and single output [44]:

ŷ = a0 +
m∑
i=1

aixi +
m∑
i=1

m∑
j=1

aijxixj

+

m∑
i=1

m∑
j=1

m∑
k=1

aijkxixjxk + . . . (12)

where the input variables and the unclear coefficients
are respectively presented with x1, x2, . . . , xm and a0,
a1, . . . , aijk , and the number of input variables is shown

with m. For the majority of cases, the VKG series general
equation can be simplified as a polynomial with second-order
relationship and two variables [45]:

ŷ = f̂ (x1, x2)

= a0 + a1x1 + a2x2 + a3x1x2 + a4x21 + a5x
2
2 (13)

An iterative method including training/testing phases
can construct using the Group Method of Data Han-
dling (GMDH) structure. Through training of a network,
unclear quadratic polynomial parameters can be determined
by reducing the number of errors between the model esti-
mated data and the experimental values:

Min

( Nt∑
i=1

[
ŷi − yi

]2
=

Nt∑
i=1

[
f̂
(
xip, xiq

)
− yi

]2)
, (14)

where Nt represents the training value number. In the testing
phase, the best combination of variables is chosen through
testing values [46]–[48]. The architecture of the GMDH deep
learning is depicted in Figure 1.

FIGURE 1. The structure of GMDH deep learning NN.

F. MULTI-VERSE OPTIMIZATION ALGORITHM
Seyedali Mirjalili et al. proposed the Multi-Verse Opti-
mization (MVO), as a nature-inspired heuristic optimization
algorithm in 2016 [49] inspired by the multiverse theory in
astrophysics. It uses 3 concepts in astrophysics, such as white,
black, and wormholes studying the universe evolution. While
presenting the MVO algorithm the terms are used as follows:
a solution is provided by the universe, an object is related to a
solution, generation/iteration can be indicated with time, and
a universe objective is shown with the inflation rate.

Regarding MVO, every solution equals a universe with
potential white, black, and worm holes. For improving each
solution quality, it is more probable for matter emitters (i.e.,
white holes) to be indicated in a solution characterized by
more proper objective value. Conversely, matter attractors
(black holes) are seen in a solution characterized by the
worse objective value. Therefore, values related to good
solution variables are transmitted to poor solutions, which
can improve poor solutions leading to the improvement of
the mean objective value from all solutions. The principal
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FIGURE 2. Framework of the proposed condition monitoring model.

mathematical model related to the algorithm is associated
with Eqs. (15) and (16):

x ji =

{
x jk r1 < NI (Ui)

x ji r1 ≥ NI (Ui)
(15)

x ji indicates the j
th object related to the ith universe, r1 repre-

sents a random number between 0 and 1, NI (Ui) indicates the
normal inflation rate related to the ith universe, and x jk shows
the jth object related to the k th universe.

x ji =



xj + TDR× ((Ubb − Lbb)× r4 × Lbb)
r3 < 0.5 & r2 < WEP

xj − TDR× ((Ubb − Lbb)× r4 × Lbb)
r3 ≥ 0.5 & r2 < WEP

x ji r2 ≥ WEP

(16)

where xj represents the jth centroid related to the most appro-
priate universe achieved, Ubb and Lbb present the upper and
lower bounds respectively, Traveling Distance Rate (TDR)
and Wormhole Existence Probability (WEP) are coefficients,
r2, r3 and r4 are random numbers between 0 and 1. WEP
indicates the potential existence of wormhole in the universes.
Through iterations, it experiences a linear increase to confirm
the exploitation. TDR indicates that an object moves through
wormhole all over the best universe. TDR experiences an
increase during algorithm to achieve clear exploitation all

over the best universe. The following equations indicate both
WEP and TDR:

WEP = Min+ Iteration×
(
Max −Min

L

)
(17)

TDR = 1−
Iteration

1/p

L
1/p

(18)

The minimum andmaximum values are demonstrated with
Min and Max (0.2 and 1, respectively), the current itera-
tion is shown with Iteration, the maximum iteration num-
ber indicates L, and the exploitation accuracy is presented
with p (typically, with the value of 6). The MVO algorithm
forms a group of random universes including objects aiming
at transferring from a high inflation rate universe to a low
inflation rate universe via white and black holes. Objects are
transported in random via wormhole all over the best uni-
verse, and the process is iterated to achieve a global optimal
solution [50].

III. PROPOSED ANOMALY DETECTION MODEL
The schematic of the proposed combined intelligent model
is proposed for bearing fault detection of wind turbine’s
gearbox based on temperature signals is illustrated in
Figure 2.
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The proposed model consists of the following five phases:
Phase 1 (Clustering Process): In this phase, three steps are

considered to process the SCADA data of wind turbines and
eliminate the outliers.

a) The proposed clustering method based on auto-
matic clustering and artificial bee colony algorithm
(DB-ABC) is applied to classify the data into different
clusters which indicate the various states under normal
operations.

b) The input signals have been decomposed using the
VMD decomposition model.

c) GMDH network has been applied as a main forecaster
engine to predict the output variables.

d) In order to optimize the parameters of the GMDH
network, the MVO optimization algorithm has been
used.

e) If the Mahalanobis distance of a record is not in the
range of 3 standard deviations from the means in each
cluster, it is an outlier record, which should be deleted
in the filter [51].

f) The operation data are standardized to the standard
normal distribution for eliminating the scale impact.

In this paper, the data sets are classified into different clusters
based the wind power production, rotor speed, blade pitch
angle, and wind speed. These signals are considered since
they reflect various operation states of the system compo-
nents. Note that the blade pitch angle is considered as a
parameter for cluster filtering because the correlation of blade
pitch angel with the output variables is fairly high.

Figures 3-5 depict the power curve, rotor curve, and blade
pitch curve for wind turbine A, respectively.
Phase 2 (Forecasting Model): In this phase, a new hybrid

forecasting model based on variational mode decomposition,
GMDH neural network, and Multi-Verse optimization algo-
rithm is proposed for gearbox bearing temperature and gear-
box oil lubrication temperature forecasting. First, the VMD
method has been applied to decompose the two temperature

FIGURE 3. The power curve clustering for wind turbine A–a) before
clustering filter and b) after clustering filter.

FIGURE 4. The rotor curve clustering for wind turbine A–a) before
clustering filter and b) after clustering filter.

FIGURE 5. The blade pitch curve clustering for wind turbine A–a) before
clustering filter and b) after clustering filter.

signals into different frequencies (IMF1, IMF2, IMF3, and
IMF4). Second, a mixed data model based on variational
mode decomposition, power production, rotor speed, ambient
temperature, nacelle temperature, and the original signals
of gearbox bearing temperature and gearbox oil lubrication
temperature (with five lagged values) has been developed and
used as input parameters to increase the accuracy and stability
of the forecasting model:

Gearbox Bearing Temperature (GBT )

×



GBT (t−1),GBT (t−2),GBT (t−3),GBT (t−4),GBT (t−5)

IMF1GBT , IMF2GBT IMF3GBT , IMF4GBT

Power Production

Rotor Speed

Ambiant Temperature

Nacelle Temperature
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Gearbox Oil Lubrication Temperature (GOLT )

×



GOLT (t−1),GOLT (t−2),GOLT (t−3),GOLT (t−4),
GOLT (t−5)

IMF1GOLT , IMF2GOLT IMF3GBTGOLT , IMF4GOLT

Power Production
Rotor Speed
Ambiant Temperature
Nacelle Temperature

Third, the GMDH neural network applied as forecasting
engine to predict the two temperature signals. Fourth, in order
to obtain better forecasting results, the MVO algorithm has
used to optimize the GMDH network parameters. It means,
the parameters of GMDH network has been defined as an
optimization problem, then the problem optimized by MVO
algorithm. In addition, in evaluation part of the model, three
different error criteria (RMSE, MAE, and MAPE) have been
applied to assess the model performance. The mathematical
equations of the error criteria are calculated as follows:

RMSE =

√√√√ 1
m

m∑
i=1

(
xtruei − xpredictedi

)2 (19)

MAE =
1
N

N∑
i=1

∣∣xtruei − xpredictedi ∣∣ (20)

MAPE =
1
N

N∑
i=1

∣∣∣∣xtruei − xpredictedixtruei

∣∣∣∣× 100 (21)

where xtrue and xpredicted are respectively the true and the
predicted value. N is the number of samples. Figures 6 and 7

FIGURE 6. Decomposition results of the gearbox bearing temperature
and the gearbox oil lubrication temperature for wind turbine A in
January 2013.

FIGURE 7. Decomposition results of the gearbox bearing temperature
and the gearbox oil lubrication temperature for wind turbine B in
January 2014.

presented the decomposition signals of gearbox bearing tem-
perature and gearbox oil lubrication temperature for wind
turbines A and B, respectively.
Phase 3 (Anomaly Detection Analysis): In this phase,

the Mahalanobis distance is applied for assessing the devi-
ations between the true values of the temperature signals and
their forecasted values obtained from the hybrid forecasting
model (VMD-GMDH-MVO). This choice is motivated by the
fact that unlike the Euclidean distance, the Mahalanobis dis-
tance is scale-invariant, unit-less and considers the correlation
between different variables. Consider x and y generated by the
same probability distribution, their Mahalanobis distance can
be determined as follows:

MDi =
√
(xi − µ) Cov−1 (xi − µ)T (22)

where Cov represents the covariance matrix of x and y. While
Cov represents a unit variance matrix, the Mahalanobis dis-
tance is in accordance with the Euclidean distance. In this
phase, the absolute error of forecasted values and true temper-
ature measurements are firstly calculated. Then, the Maha-
lanobis distances of the errors compared with others that
are below the healthy states are determined as the assessed
indicators for measuring the deviations between the present
states and healthy operations.

In addition, the calculated Mahalanobis distances are fil-
tered using the wavelet de-noising. They are decomposed at
various levels using the wavelet base functions (including
db6 at six levels denoising). The achieved detail coefficients
can be determined by the threshold at each level. Next,
the de-noised distances are formed according to the modified
coefficients as well as the wavelet base functions. Further-
more, the upper limit of the Mahalanobis distances related to
healthy states indicted by the threshold [51]. The de-noised
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Mahalanobis distances in healthy operations are calculated.
They are assumed to be demonstrated through a specific prob-
ability distribution. Due to the large samples, we regarded
normal distributions. Then, Kolmogorov-Smirnov test was
used to test the assumption and when accepted, the fitted
distribution is identified and the threshold can be determined
at a low probability (0.001). Otherwise, we test new proba-
bility distributions are until no rejection of the corresponding
assumptions [51].

A comparison is made between the de-noisedMahalanobis
distances with the obtained threshold. The WT is regarded as
healthy for the distance below the threshold and the lack of
anomalies in the component. If the distance value crosses the
threshold it triggers a warning that shows potential operation
risks; however, it is not dangerous. The alarm can be triggered
in cases of continuous warnings for more than 2 h, which can
warn operators about the possible beginning anomalies [51].

IV. EXPERIMENTAL RESULTS
In this paper, the SCADA data and maintenance information
of two wind turbines have been used in order to evaluate the
proposed model for anomaly condition monitoring of wind
turbine’s gearbox. The on-shore wind farm is located in the
south of Sweden [52]. The results of the analysis of each
turbine are separately described below.

A. FORECASTING RESULTS
Given the importance of predicting accuracy in anomaly
detection analysis for condition monitoring, we consider

TABLE 1. The results of the proposed prediction model for different
gearbox models in two case studies.

TABLE 2. Obtained MAPE values of the proposed model for the structural
analysis.

FIGURE 8. The predicted and true values of the proposed prediction
model in Turbine-A: a) the gearbox bearing model, b) the gearbox
lubrication model.

a deep learning-based combined model to predict the fol-
lowing two signals: gearbox bearing temperature and oil
lubrication temperature. This prediction model consists of
four parts: 1) clustering, 2) signal decomposition, 3) GMDH
neural network, and 4) multi-verse optimization algorithm.
Table 1 indicates the prediction results of the proposed model
for the gearbox bearing and lubrication temperature forecast-
ing for two wind turbines (Turbine-A and Turbine-B).

Based on the results depicted in Table 1, we can conclude
that the proposed prediction model (VMD-GMDH-MVO)
yields predictions with accuracy and reliability. In addition,
Table 2 indicates the obtained MAPE values of the proposed
model for the structural analysis: a) without VMDmodel, and
b) without MVO Optimizer.

Figures 8 and 9 show the predicted values and true values
and the error of the proposed model for the gearbox bearing
temperature and lubrication oil temperature forecasting in
turbines A and B, respectively.

The correlation of the predicted and true values and the
error distribution histogram of the proposed prediction model
in Turbines A and B are illustrated in Figures 10 and 11,
respectively.

Based on these Figures (10 and 11), the correlation plots
indicate the correlation between the true value and predicted
value. Note that the higher this correlation, the better the
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FIGURE 9. The predicted and true values of the proposed prediction
model in Turbine-B: a) the gearbox bearing model, b) the gearbox
lubrication model.

FIGURE 10. The correlation of the predicted and true values and the error
distribution histogram of the proposed prediction model in Turbine-A:
a) the gearbox bearing model, b) the gearbox lubrication model.

accuracy and performance of the proposed model. Addition-
ally, the error histograms show the error dispersion as well as
model probability distribution function.

B. ANOMALY DETECTION ANALYSIS
In this section, the results of fault detection analysis in the
wind turbine’s gearbox using the gearbox bearing tempera-
ture and oil lubrication temperature is presented using real
data of wind turbines A and B.
Wind Turbine A: Real SCADA data from January 2013 to

December 2014 was used to train the proposed model. The
performance of the model was then tested using data from
January 2015 to November 2015. During the course of this
period, a fault was detected in the pump of gearbox of Turbine
A on 11 September 2015. The obtained anomaly detection
results based on two target variables (gearbox bearing model
and gearbox lubrication model) are highlighted in Figure 12.

FIGURE 11. The correlation of the predicted and true values and the error
distribution histogram of the proposed prediction model in Turbine-B:
a) the gearbox bearing model, b) the gearbox lubrication model.

FIGURE 12. The anomaly analysis results during condition monitoring
period time for Turbine A- a) gearbox bearing model and b) gearbox
lubrication model.

According to the results provided in Figure 12, the first
alarm in the bearing model occurred on January 1st at 20:40,
and the first alarm in lubrication model occurred on February
2nd at 11:20. All the remaining warnings and alarms for the
gearbox bearing and lubrication model for different models
are illustrated in Table 3. The results show that more warnings
and alarms are reported in the lubrication model than the
bearing model.

Note that our testing was performed using raw data-sets
and no mitigating actions were performed by the operators
during the selected time interval, hence the increased num-
ber of warnings. Furthermore, in order to better monitor
the results of wind turbine A, the monthly warnings and
alarms for VMD-GMDH-GA, VMD-GMDH-PSO, and the
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TABLE 3. The warnings and alarms information reported in Turbine-A. TABLE 3. (Continued.) The warnings and alarms information reported in
Turbine-A.

FIGURE 13. Comparison of a) the gearbox bearing model and b) the
gearbox lubrication model in terms of warnings.

proposed model are provided in Figures 13 and 14. In these
figures, the warnings and alarms rates of different models
have been compared with the proposed model for a) the gear-
box bearing model and b) the gearbox lubrication model from
January 2015 to November 2015. Regarding these results, the
maximum of warnings and alarms rates of VMD-GMDH-
GA, VMD-GMDH-PSO, and the proposed model are dedi-
cated to October 2015, February 2015, and November 2015
respectively.
Wind Turbine B: Data of wind turbine B was selected

from January 2014 to December 2014 for training and Jan-
uary 2015 to August 2015 for testing. Note that no fault was
reported during the selected monitoring time. The obtained
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FIGURE 14. Comparison of a) the gearbox bearing model and b) the
gearbox lubrication model in terms of alarms details.

FIGURE 15. The anomaly analysis results during condition monitoring
period time for Turbine B- a) gearbox bearing model and b) gearbox
lubrication model.

anomaly detection analysis results in this case are illustrated
in Figure 15.

The above results indicate that the proposedmethod did not
detect nor report any failure, and are in agreement with the
actual condition of wind turbine B. This, hence, confirms the
prediction accuracy and good performance of the proposed
approach.

V. CONCLUSION
This paper proposed a combined intelligent model for the
condition monitoring of wind turbine’s gearbox. The pro-
posed approach implements a novel hybrid forecasting model
combine automatic clustering, variational mode decompo-
sition, GMDH network, and multi-verse optimization algo-
rithm to accurately forecast gearbox bearing and lubrication
temperature. In the condition monitoring phase, the predicted
and true values have been evaluated by the Mahalanobis
distances and wavelet transform de-noising method. The pro-
posed model was implemented to the SCADA data of two
on-shore wind turbines. The obtained results showed that the
proposed model was able to accurately predict important sig-
nals such as bearing and oil lubrication temperatures. Further-
more, in the anomaly detection analysis phase, the proposed
model was shown to detect possible anomalies and notify
potential operation risks long before failure events, thus pre-
venting unscheduled downtimes, reducing maintenance cost
and improving wind turbine’s reliability. Our future work will
focus on assessing the robustness of the proposed model in
the presence of various realistic faulty scenarios.
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