
Received May 8, 2021, accepted June 13, 2021, date of publication June 18, 2021, date of current version June 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090366

Provisioning Computational Resources for
Cloud-Based e-Learning Platforms Using
Deep Learning Techniques
JORGE ARIZA, MIGUEL JIMENO , (Member, IEEE), RICARDO VILLANUEVA-POLANCO ,
AND JOSE CAPACHO , (Member, IEEE)
Department of Computer Science and Engineering, Universidad del Norte, Barranquilla 08001, Colombia

Corresponding author: Ricardo Villanueva-Polanco (rpolanco@uninorte.edu.co)

ABSTRACT The use of e-learning technologies is growing even faster due to the existing conditions
where virtual setups temporarily replace traditional classroom environments. Service infrastructure support
for e-learning has moved to the cloud. For this reason, the efficient provisioning of resources for such
platforms, which is achieved through prediction, is very relevant. The existing techniques for predicting the
use of resources in the cloud are not designed with e-learning’s specific requirements. This paper presents
a neural network-based model for predicting the usage of computational resources for e-learning platforms.
This model consists of a series of interconnected neural networks used to predict values for variables of
interest, such as Random Access Memory (RAM) usage and Central Processing Unit (CPU) usage. Using
data collected from a high school real scenario, we analyzed and used it to train and validate our neural
network-based model. This scenario consisted of a Moodle server deployed in a Google Virtual Machine
with a configured course and its contents. Each student performed a series of activities while connected to
it. Our proposed model achieves high accuracy. The obtained results are promising, paving the way towards
constructing software tools for provisioning computational resources on demand for e-learning platforms.

INDEX TERMS Availability, cloud-based e-learning platforms, resource consumption, prediction, deep
learning.

I. INTRODUCTION
The global e-learning market was worth $107 billion in 2015,
and calculations expected it to grow to more than $300 bil-
lion by 2025 (Global Industry Analysts, 2020) [1]. There
are more than $600 million e-learning students in India,
China, and the U.S. There is a growth in the use of tech-
nologies involved in e-learning which include mobile tech-
nologies, digital content, and online learning sources and
opportunities [2]. Also, with current worldwide conditions,
these numbers are expected to grow faster than expected.
Past studies in countries where e-learning is highly relevant
such as India have found an increasing research interest in
e-learning, which has focused mainly on Computer Science
but also includes topics such as engineering, medicine, and
social science [3]. Existing technologies used in e-learning
are based on end-user technologies and server-based tech-
nologies. End-user technologies are the ones students use to

The associate editor coordinating the review of this manuscript and

approving it for publication was Yu-Da Lin .

access the platforms, such as mobile or desktop applications,
and recently virtual and augmented technologies for hands-on
content delivered remotely. Server-side technologies store
the applications and data, where today, cloud-based services
are dominant. Courses range from micro-lessons for mobile
applications to Massive Open Online Courses [4]. An appro-
priate design of resource usage of the server-side services has
become relevant due to the increasing interest in e-learning
and the wide range of technologies used on both sides.

Resource provisioning on the cloud is a topic of study for
several years, focusing mainly on predicting virtual machines
resource usage in the cloud [5]. More specifically, cur-
rent work deals with resource placement and consolidation,
resource elasticity, and workload analysis and prediction.
Most of the existing work focuses on workload prediction
that studies historical cloud resources workload, and our
work also does so. The workload data used for such stud-
ies comes mostly from virtual machine utilization against
realistic job arrival statistics and sometimes from websites
utilization.

89798 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0001-5398-7070
https://orcid.org/0000-0002-8682-4830
https://orcid.org/0000-0002-9529-1327
https://orcid.org/0000-0001-5100-6072

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

We highlight the following aspects as critical problems for
which this paper presents a solution. First, there is no previous
study about the prediction of cloud resource consumption in
e-learning systems. This kind of system has particularities
that would make such a study pertinent. For example, the use
of video streaming, and online testing, both of which would
need different resource consumption requirements. Previous
studies have used dataset focused on jobs running on virtual
machines, which is very generic and with no specifications.
Multiple studies use Google’s traces, but although very com-
prehensive in terms of time and number of studied machines,
there are no specific characteristics about the traced jobs
that would make it easy to connect to an e-learning system.
Second, there is no study in the literature about resource
consumption from a well-known e-learning system such as
Moodle. It is necessary to understand the behavior of such
systems. Third, existing methodologies to monitor, predict
and adjust cloud resource consumption lack an essential step
to understanding the characteristics of the studied system.
Such a step should be essential to design the monitor phase
properly.

We next itemize all contributions of this paper:
• A cyclical methodology for characterizing cloud-based
e-learning systems, predicting resource consumption,
and applying the changes to the deployed resources

• An in-depth classification of e-learning systems based
on some variables of interest

• Aneural-network-basedmodel to predict resource usage
in e-learning systems

• A test of the model using real data from a Moodle
e-learning system

This paper is organized as follows. In Section II, we first
present the background work related to resource prediction
in the cloud and resource provisioning methodologies. Addi-
tionally, we highlight the lack of previous work focusing
on predicting resource consumption of e-learning systems.
In Section III, we propose a general resource provisioning
framework for the cloud that researchers could adapt to the
studied system. In Section IV, we then present a characteri-
zation of e-learning systems. Later, in Section V, we present
the monitoring and analysis components of the proposed
monitoring framework, focusing on the consumption pre-
diction for e-learning systems using real data collection.
We then evaluate the proposed model in Section VI and
finally present a discussion in Section VII and our conclu-
sions in Section VIII.

II. BACKGROUND WORK
A. RESOURCE PREDICTION IN THE CLOUD
The flexibility characteristic of cloud computing and the pay-
per-use model can lower the cost of use. However, maintain-
ing service level agreements (SLAs) with end-users forces
cloud customers to deal with cost/benefit trade-offs. The
trade-offs benefit from calculating the minimum amount of
resources that customers need to meet their SLA obligations.
Also, cloud clients’ workload varies over time. Therefore,

providers must justify the exchange according to the work-
load. Providers design autoscaling systems to automatically
balance the cost/benefit trade-off. There are two main classes
of autoscaling systems in the infrastructure as a Service (IaaS)
layer of cloud computing: reactive and predictive [6]. Reac-
tive autoscaling systems are the most widely used. These sys-
tems scale for service according to their performance. Among
the different algorithms used for predicting resources in the
cloud, we have those based on regression [7]. These algo-
rithms provide an optimal threshold range for the operation;
therefore, the SLA requirement is achieved inmost cases. The
standard error in the prediction is low, and this demonstrates
the effectiveness of the method. The classification-based
techniques obtain a better performance [8]. Some classifi-
cation methods include SVM, Randon Forest, and Neural
Network. Other works mix approaches, for example, SVR
and Kalman Filters. The algorithms’ objective is to guarantee
QoS, increase performance, and improve return on invest-
ment. These management and autoscaling approaches help
providers provision and de-provision virtual resources. How-
ever, a poor prediction can cause under or over-provisioning
problems, reducing cloud performance and leading to SLA
violations and wasted resources [8].

B. ALGORITHMS FOR RESOURCE CONSUMPTION
PREDICTION
There are many strategies for scheduling existing resources
and providing new cloud resources, especially using predic-
tion techniques. The authors of [9] presented an approach
to predicting cloud resource utilization at the task resource
level. They used ANN with a hidden layer, two input neu-
rons, one output neuron, and ten hidden neurons. Their algo-
rithm did not have a normalization technique to balance
neurons’ weights when new data was entered. In [10], they
proposed estimating resources in the cloud based on QoS
and Edge computing. To do this, they classify and compare
the resources according to the similarity of the Euclidean
distance. Then they used the gray matrix to correct the coin-
cidence function. The next step used the Markov regression
prediction method to analyze the available resources’ state
change and select the appropriate resource.

In [11], the authors try to avoid the overload of physical
machines using automated resource management to allocate
them dynamically. They developed an algorithm to predict
the future load of each virtual machine. For this, they used
EWMA to predict the CPU load on the server. The authors
of [12] used a Kalman-filter-based algorithm and an Adaptive
Neuro-Fuzzy Inference System (ANFIS). They obtained spe-
cific loads and eliminated the observation error. The results
obtained were compared with the ANFIS and ARIMA algo-
rithms with better outcomes. In [13], the authors used a
prediction system based on Functional Link Neural Networks
(FLNN). They used a genetic algorithm to train themodel and
thus increase the effectiveness of the forecast. The system
allowed multivariate data, and to test the model, they used
Google tracking data. The results show improvements when

VOLUME 9, 2021 89799

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

compared to traditional techniques. The authors of [14] pro-
posed an autoscaling algorithm based on dynamic thresholds
that they predict using Long Short-Term Memory Recur-
rent Neural Network (LSTM-RNN) and autoscaling facilities
based on predicted values. The experiments carried out show
substantial improvements in prediction compared to other
algorithms. In [15], they proposed a resource provisioning
method based on PaaS data processing environments’ utiliza-
tion rate. They used a clustering algorithm to dynamically
estimate and schedule batch applications’ workload based
on current and historical logs. The algorithm allows efficient
scheduling decisions. Authors achieved an increment of 10%
CPU usage and 20% RAM usage compared to static manage-
ment systems without significantly reducing service quality.
In [16], the authors propose a resource selection algorithm
in fog computing (FResS) that allows automatic selection
and allocation for IoT systems. The proposed model in the
article maintains a repository of performance data in the
form of execution records. When a new task starts execu-
tion, the system predicts its execution time through these
records, which allows calculating an estimate. The results
show an improvement in the end-to-end latency time of the
system. The work in [17] presents a workload predictor for
Edge Data Centers (EDCs). The predictor takes advantage of
the similarity between EDC workloads at a close physical
distance. It then applies a multivariate LSTM network to
achieve workload predictions for each EDC. Another work
proposed an energy-efficient virtual machine distribution
scheme that reduces communication and energy consumption
costs. It used an improved ant colony optimization approach
with self-adaptive parameters for fast convergence and high
search capacity [18]. The simulations showed improvements
in power consumption and communication costs compared
to other existing algorithms. The work in [19] proposed a
technique that uses the Savitzky-Golay (SG) filter to elim-
inate extreme points and noise, combined with the LSTM
algorithm to predict tasks in the following time interval; the
Adam optimizer is used to train the model. The results show
better results compared to some commonly used prediction
algorithms.

C. RESOURCE PROVISIONING METHODOLOGIES
Authors in [20] proposed an autonomous control loop called
MAPE (Monitor Analyze Plan Execute). Managed elements
represent any software or hardware element in the cloud
(CPU, operative system, application in the cloud, service in
the cloud, storage, or VM). The sensors collect information
from the environment. The Monitor step collects and filters
the data collected by the sensors, analyzes, and compares the
performance against its objectives. The Plan step determines
corrective actions to analyze. Finally, the Execute step exe-
cutes the reconfiguration, while the Effectors step applies the
changes. The proposal of our methodology derives from the
original MAPE loop and introduces new steps.

To coordinate the adaptation of services that make up the
monitor element of SAS (self-adaptive systems), the authors

of [21] proposed an extension of the MAPE-k architecture.
They added a second cycle in the upper part of the Monitor
element. This cycle manages the monitoring service adap-
tation process. This design decouples the SAS monitoring
services’ adaptation logic (Self-Adaptive Systems), allowing
the modules’ independent development. The work in [22]
proposed a self-adaptive software architecture called Proteus.
The main objective is to provide a context-sensitive solution
for specific quality attributes (availability and reliability). The
authors proposed to use it in dynamic systems applying repli-
cation and auto-configuration techniques. This architecture
consists of three components, which replicate in the nodes
that make up the system network, (1) monitoring subsys-
tem, (2) management service, and (3) context management
service. Our proposal in this paper works from the origi-
nal MAPE and proposes new steps that enrich the original
to allow the characterization of understudied systems such
as e-learning systems. These systems are not well studied
from the perspective of resource consumptionmonitoring and
prediction.

III. NEW CLOUD RESOURCES PROVISIONING
FRAMEWORK
In this section, we present a framework for provisioning cloud
resources for any kind of application. The framework builds
from a new version of the MAPE loop that includes new loop
steps. The loop is a theoretical proposal of how to monitor
and automatically control cloud applications. We show first
the new loop and propose the architectural framework that
implements it.

FIGURE 1. Resource monitoring cycle.

A. RESOURCE MONITORING METHODOLOGY
We first explain the methodology which we show in this
section. This methodology works as follows, and Figure 1
shows it:
• Characterize: In this step, researchers characterize the
type of systems they will study. The step consists
of describing the applications or information systems
of interest in terms of the kinds of offered services,
expected users, and other variables. The result of this

89800 VOLUME 9, 2021

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

step should be any taxonomy of the studied applications
or systems that fall into the studied category. In this
paper, we will apply the methodology to e-learning
systems.

• Monitor: Once the studied system’s characterization is
done, researchers will select a list of variables to mon-
itor. These variables of interest represent two aspects
of resource consumption: 1) the available computa-
tional resources for the running applications, and 2) the
communication links at disposal to those applications.
Now, monitoring tools could be cumbersome, depend-
ing on the accessibility of the studied system. The
ideal situation is when system architects can decouple
the monitoring process by watching different modules
simultaneously. Otherwise, they would have to monitor
the system as a whole, and it might not be helpful if
different components of the information system have
different resource consumption requirements. There is
enough literature about where and how to monitor cloud
systems, as shown in [23]. A set of continuously moni-
tored variables should generate a dataset that researchers
will use in the following phases.

• Analyze: Researchers will now use the data obtained
from the monitoring step using appropriate models.
These models will predict the behavior of the platform.
The works from [24] and [25] are helpful to select the
type of algorithms. The first work presents a survey
of algorithms used in the literature that perform work-
load analysis and prediction, based on [25]. That arti-
cle discussed distinct workload features, characteristics,
and which models are more convenient than others.
Researchers must consider the studied system’s char-
acterization and the monitored variables to select the
suitable model.

• Plan: Considering the data analyzed in the previous step,
researchers determine the actions to take. The previous
step’s results might influence workload prediction and
virtual machines and container placement and consol-
idation. According to [24], there is extensive literature
about the impact that component placement across the
edge-cloud data centers has on the overall system’s
performance. Architects and researchers could use opti-
mization algorithms to plan the most suitable placement.
This paper, however, focuses onworkload prediction and
how the plans deriving from themonitoring phase decide
the number of available resources, but researchers could
extend it to component placement or offloading and
server consolidation.

• Deploy: Apply the changes and deploy the solution
generated in the previous step, selecting the appropriate
resources. Depending on the designed plan, the deploy-
ment might imply different locations, types of datacen-
ters (edge and cloud), and a higher or lower number of
nodes to deploy. Researchers should also consider the
deployment costs using optimization algorithms in amix
of the plan and deploy phases.

• Run: This step generates the new system reconfiguration
of the virtual machines or containers, depending on the
system configuration.

This new loop introduces the Deploy step and differenti-
ates it from the Run step in the original MAPE loop. The
new Deploy step considers, when necessary, which cloud
resources to deploy. The system should smartly select the
resource to deploy, depending on the providers’ quality of
service. The system characterization is a step we are intro-
ducing but is not a looping component of the methodology.
The idea of the modified methodology is that researchers
and system architects could monitor any system, regard-
less of previous knowledge about the resource consumption
characterization. In this paper, we differentiate e-learning
systems because there is no previous work for resource
consumption prediction in these systems. Other researchers
could select another type with a particular behavior, such
as eBroker systems, IoT-based systems, or vehicle network
systems, and apply the proposed methodology. A character-
ization helps determine which subtypes are the most com-
mon, around which researchers will create the monitoring
architecture.

B. MONITORING FRAMEWORK ARCHITECTURE
Figure 2 shows the architecture of amonitoring system imple-
mentation that uses the proposed methodology. The architec-
ture is explained in general terms to monitor any application,
and it is inspired by the architecture presented in [26]. On top
of the figure, we have users accessing the application through
mobile andweb clients. Clients access the information system
architecture in the cloud service provider, and it is worth
depicting a typical tiered design with the following compo-
nents to clarify how the monitoring architecture deals with
each tier:
• Load balancers: they help balance the load between the
servers when multiple instances are available. A mon-
itoring architecture should also consider their burden,
although they do not represent a costly tier in the cloud
service architecture.

• Web servers: These servers compose the first tier to
attend and solve requests, usually through simple APIs
that the proposed architecture needs to monitor.

• Application servers: many cloud service designs dis-
tribute functionalities among microservices. Microser-
vices spread the application’s logic into simple,
indivisible services [27], [28]. Microservices allow easy
scalability and simple integration for easy updates of
only the necessary components. Containerization is
today used to deploy microservices, which enables
lightweight servers with high portability [29]. The archi-
tecture needs to take into account all these aspects to
allow smooth scheduling of the services.

• Database servers: usually the last tier of the architecture,
implemented using dedicated servers for exposing data
to the other servers. They are subject to monitoring to
predict changes in consumption when the load increases.

VOLUME 9, 2021 89801

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

FIGURE 2. Architecture of the monitoring framework.

We design the architecture to monitor all of these com-
ponents. We simplify the implementation and evaluation
of the architecture in the following sections by monitoring
servers on only one level of the service provider architecture.
Figure 2 also shows themonitoringmethodology components
that compose the loop part, depicted as boxes for each step
of the methodology. The characterization step is the first
step and researchers must perform it before entering the
monitoring loop.We explain now the system components that
implement the methodology in the architecture:

1) Monitor component: it feeds from a dataset generated
in real-time with cloud resources consumption histori-
cal data. The arrow that exits the cloud service provider
box brings the real-time measurement of the selected
variables, such as CPU, RAM, number of users, net-
work utilization, disk usage, among other variables.
This monitored data may be useful to identify inci-
dents that deviate from a dataset’s normal behavior,
which may indicate critical incidents, such as a tech-
nical malfunction of a component or denial of service
attacks [30].

2) Analyze components: here is where the prediction
model implementation lies. It feeds from the monitored
data to predict new values. And the model tuning ele-
ment refines the model every time usage information
arrives. This component outputs a plan that consists
of the predicted number of machines (either virtual
or containers) necessary to adapt to resource demand
changes.

3) Plan components: This component aims to filter the
scheduling plan for a posterior evaluation, and it
is composed of two subcomponents. The resource
evaluator determines the availability of the requested
resources. The plan creator then creates the final ver-
sion of the scheduling plan

4) Deployer components: this important component eval-
uates the most convenient deployment configuration
of containers or virtual machines. The Quality Assur-
ance (QA) Evaluator measures quality variables from
the cloud service providers, such as response times,
costs of available resources, network connection qual-
ity, among other variables. An optimization algorithm
could combine the results from the QA Evaluator and
optimize the component’s outcome to select the most
convenient configuration. The Provider Selector sub-
component uses the previous subcomponent result to
prepare resources, which might imply restarting dor-
mant services or moving configuration data.

5) Executer components: the architecture needs either a
Virtual Machine (VM) or Container Manager. They
will be in charge of executing the plan and making
the configurations requested by the previous compo-
nent. These managers are in direct connection with the
servers and determine which instances will be initiated
or terminated.

The components create a cycle by finally starting or stop-
ping services in the cloud service providers. Microservices
implemented in containers facilitate resource usage schedul-
ing plans, given that restarting or stopping containers is much
faster than with virtual machines. This architecture assumes
a large deployment of services across multiple containers or
virtual machines and the possibility of evaluating even several
cloud providers for an optimal selection of resources.

IV. CHARACTERIZATION OF E-LEARNING SYSTEMS
This section aims at characterizing the studied system, in our
case, an e-Learning system. The use of technological tools
in educational settings began several decades ago and has
evolved like technology. This constant evolution has raised
the need to evaluate systems from different perspectives. Said
perspectives had focused mainly on the educational objec-
tives of these tools and their usability [31], [32]. However,
there is no detailed monitoring of the resource consumption
of these services. This step is essential because e-learning
tools continuously migrate to the cloud [33] as software
companies offer their services to the cloud. Educational orga-
nizations are using the cloud to store their educational tools
for all the benefits it provides. In this section, we are cre-
ating a characterization of the e-learning systems available
now. We made a list of systems with no intention of being
exhaustive, given that a complete list would be too exten-
sive. Instead, the idea was to list examples of the popular
e-learning system types and determine which one might be
the most popular. The final objective is to select a type from

89802 VOLUME 9, 2021

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

which the prediction model will calculate future resource
consumptions.

A. DEFINITIONS
The following is a list of essential definitions. We are not
defining all terms for space reasons, but only those that could
help clarify some topics.
• Learning Content Management System (LCMS): These
systems allow users to create and manage the learning
content, which enables users to acquire only one tool,
but at the same time, they centralize the service demand
on one tool. They are not as common as LMS, however.

• Learning Management System (LMS): This is the most
common category. For example, Google Classroom clas-
sifies as an LMS. Google integrates it with its multiple
set of tools for content creation, project management,
and scheduling. However, those are tools outside Google
Classroom.

• Student Information System (SIS): these are systems
that schools use to manage students’ information. They
are not directly related to the teaching process, but to
keep grading, transcripts, registering, attendance, among
other functionalities.

• Gamified learning tools: This is a type of software for
teaching students using a gamification methodology.

• Massive Open Online Course (MOOC): These are
courses that target the largest audiences, well beyond
what schools usually target. Architects need to design
these platforms for large audiences, where thousands
might take their classes. Given such expectations,
they need to invest more in infrastructure and not
have resource availability problems that other systems
encounter.

B. VARIABLES OF INTEREST
The following is a list of variables that will help classify
e-learning systems. The idea is not a classification based on
the tools’ educational perspectives but from the point of view
of computational resources consumption. The front-end per-
spective considers the variables that researchers can evaluate
in the front-end of the e-learning system. The variables are
the following:

1) TYPE OF END-USER CLIENT
Software companies develop some e-learning systems with
only a mobile end-user in mind. This client removes some
of the cloud server’s computational load because a mobile
application will perform some of the end user’s tasks. On the
other hand, some companies develop their e-learning systems
mainly for web clients. Although many of them offer mobile
clients, most of their users connect through web clients. The
load of the servers in the cloudwill be larger in these cases ref.

2) TYPE OF CONTENT
From a back-end perspective, the variables taken into
account evaluate the code located on the cloud servers.

The functionalities offered by the e-learning system may
differ depending on the size or specialization of the software.
The following are the typical types:
• Real-time video and audio sessions
• Content creation and sharing
• Tests and activities
• Bidirectional asynchronous interaction
To classify a type of content, we should consider also

computational requirements of the offered services, number
of users and expected usage time for that service. From
these characteristics, we will proceed now to list and classify
several well-known e-learning systems and applications.

C. SYSTEMS CLASSIFICATION
Table 1 shows the list of evaluated e-learning systems using
the previously defined variables of interest. Most of them
offer web interfaces for their users, while some of them also
use mobile applications. The video conference capabilities
for e-learning are helpful. However, it is uncommon to find
systems that offer video on top of all the other features. Most
of them rely on third-party services for video, which frees
computational resources on their cloud providers.

Figure 3 shows the distribution of system types, being
the LMS type the most common. As a conclusion of this
characterization, we can see that the monitoring and data
analysis of an LMS system would be reasonably represen-
tative of e-learning systems. Therefore, we select Moodle as
a candidate for applying the proposed control loop and the
framework implemented in this paper. The same approach
followed here applies to other LMS systems, for which other
researchers should get similar results.

FIGURE 3. Distribution of the examined e-learning systems.

V. MONITORING AND ANALYSIS OF THE INFORMATION
SYSTEM
In this section, we present the monitoring and analysis com-
ponents of the monitoring framework proposed previously.
First, the monitoring component is based on a setup for
data collection from an e-learning cloud service about the
variables of interest. We then present the analysis component
with a neural network-based model for predicting the usage
of computational resources for e-learning platforms.

VOLUME 9, 2021 89803

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

TABLE 1. List of e-learning systems.

For the monitoring component, we describe the method-
ology to gather our dataset and describe the dataset struc-
ture. We then describe our methods for data pre-processing
and present our neural-network-based model for predict-
ing the usage of computational resources for the studied
system.

A. MONITORING DATASET COLLECTION
In order to collect our data, we setup a Google cloud plat-
form (GCP) account and installed and deployed a cloud-based
Moodle server (version 3.6.8). On thisMoodle server, we cre-
ated six courses, with each having conferencing rooms,
questionnaires, activities such as assignments, forums, and
resources for the students to read online. The number of
participants was 234, and each participant was registered as a
student to one of the courses. A course had 39 students on

average. During two weeks, we collected data using GCP
software tools generated by the activities performed by the
students. The trace resulted in a dataset containing 17281
registers divided into 10 fields. Table 2 describes the structure
of the dataset, i.e., each field within a register, field data type,
unit, its minimum value, and maximum value.

B. DATA PREPROCESSING
To improve the quality of our data, we first remove regis-
ters where NaN values were found and additionally apply
a linear transformation to the variables X3,X4,X5,X6,X7 by
using the method Min-Max Scaler [58]. This transformation
method takes values x1, x2, . . . , xm and transforms them to
lie in a given interval [min,max]. Basically it calculates the
maximum xmax and the minimum xmin from the given values,
and then transforms xi to yi =

xi−xmin
xmax−xmin

(max − min) + min.

89804 VOLUME 9, 2021

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

TABLE 2. Description of data fields.

This is applied to the mentioned features to transform their
corresponding values to lie in the [0, 1] interval.

C. NEURAL-NETOWORK-BASED MODEL
In this subsection, we introduce a neural network architecture
for predicting the usage of computational resources. Our
architecture consists of two components: The first compo-
nent of this architecture consists of two recurrent neural net-
works (RNNs) with Long Short-TermMemory (LSTM) units
used to predict the number of events (X1) and the number
of connected users (X2) per minute respectively. The second
component consists of interconnected Fully Connected (FC)
neural networks for predicting various variables representing
computational resources.

We first describe the two RNNs that constitute the first
component. We use two recurrent networks with LSTM units
to predict the variables num_event and user_live. In partic-
ular, we see the problem of predicting these variables as a
sequence modeling problem [58].

The first RNN, denoted as N1, consists of several stacked
layers, and its goal is to predict the number of events (X1)
per minute. Let bs denote the batch size and sl denote the
sequence length. It has the following stacked layers: a conv1D
layer, three stacked bidirectional RNN layers with LSTM
units, three stacked dense layers, and a custom layer. The
conv1D layer extracts features from the input sequence (of
length 100 during training). Its configuration sets the number
of filters to 128, denoted as f, the kernel size to 5, the number
of strides to 1, padding to causal, and the activation function
to the rectified linear unit (ReLU) function [58]. This conv1D
layer receives as input a three dimensional array of size
bs × sl × 1 and outputs a three dimensional array with
shape bs × sl × f that is fed to three stacked bidirec-
tional layers having 128, 60, and 60 LSTM units respectively.
Each layer returns its full output to the next layer, i.e., an
three-dimensional array of shape bs× sl× (2 · nu), where
nu denotes the number of units. The last output is next fed
to three stacked dense layers with 30, 10, and one unit(s)
respectively, through which the three dimensional array input
is transformed to a final three-dimensional output of shape
bs × sl × 1. Each unit within the dense layers employs
the ReLU function as activation function. Finally, the custom
layer linearly transforms the entries of the last dense layer’s
output.

FIGURE 4. The second RNN of the first component of the neural network
architecture.

The second RNN, denoted as N2, is shown in Figure 4.
It is architecturally similar to the previous one. It consists
of several layers, and its goal is to predict the number of
connected users (X2) per minute. In particular, this second
network has the following stacked layers: a conv1D layer,
three stacked RNN layers with LSTM units, three stacked
dense layers, and a custom layer. The conv1D layer extracts
features from the input sequence (of length 100 during train-
ing). Its configuration sets the number of filters to 128,
denoted as f, the kernel size to 5, the number of strides to 1,
padding to causal, and the activation function to the rectified
linear unit (ReLU) function [58]. This conv1D layer receives
as input a three dimensional array of size bs × sl × 1 and
outputs a three dimensional array with shape bs×sl×f that
is fed to three stacked bidirectional layers having 128, 60, and

VOLUME 9, 2021 89805

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

FIGURE 5. The second component of the neural network architecture.

60 LSTM units respectively. Each layer returns its full output
to the next layer, i.e., an three-dimensional array of shape
bs×sl×nu, where nu denotes the number of units. The last
output is next fed to three stacked dense layers with 30, 10,
and one unit(s) respectively, through which the three dimen-
sional array input is transformed to a final three-dimensional
output of shape bs × sl × 1. Each unit within the dense
layers employs the ReLU function as the activation function.
Finally, the custom layer linearly transforms the entries of the
last dense layer’s output.

These networks were tuned manually after testing with
different possible configurations. Additionally, we use Huber
Loss (MSE) as loss function [58] and Adaptive Moment
Estimation (ADAM) algorithm as an optimization algo-
rithm during the training of each recurrent neural network
since these hyper-parameters are commonly used in predic-
tion/regression settings.

We now describe the second component of our neural
network architecture. It consists of a series of interconnected
FC neural networks (a box as shown by Figure 5). The first FC
neural network, denoted by N3, is fed the number of events
(X1) and the number of connected users (X2) per minute
(Output by N1 and N2 respectively) and returns the amount
of disk-written data in bytes per minute. The value predicted
by this first neural network and the number of events and
the number of connected users is passed to the next neural
network to predict ram usage in megabytes. This prediction,
along with the other three values, are passed to the next
neural network, N4, to obtain the amount of read-written
data in bytes. This algorithm continues until the CPU usage
variable is predicted. The reason for this particular order
to make predictions lies in the correlation matrix shown
in Figure 6. If we refer to the two independent variables
user_live and num_event , the correlation matrix suggests

FIGURE 6. Correlation matrix.

a way to set an order for prediction based on correlation.
In summary, the variables are predicted in the following
order disk_write, ram_usage, disk_read , instance_network ,
instance_network_rec and finally cpu_usage.

Let us denote Ni to be the FC neural network for i =
3, 4, . . . , 8. EachNi receives i−1 input variables, i.e. the val-
ues from X1,X2,N3(X1,X2), . . . ,Ni−1(X1, . . . ,Ni−2(. . .)),
where the first two are the variables user_live and num_event
and the remaining i − 3 values are the previous predictions.
Additionally, each FC neural network has four hidden layers
with 256, 128, 64 and 32 units respectively and a output layer
that consists of only one unit. Each unit within the hidden

89806 VOLUME 9, 2021

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

layers employs the ReLU function as activation function,
while the single unit of the output layer employs the identity
function as activation function.

The number of units for each hidden layer was chosen
after running a grid-search-like tuning algorithm as shown
by Algorithm 1. This algorithm constructs FC neural net-
works with m ∈ {3, 4} hidden layers with each having
a varying number of units, trains them for a fixed num-
ber of epochs and validates them, and then computes their
corresponding losses, choosing the configuration giving the
minimum loss value. After running it, we found that Nu =
[i − 1, 256, 128, 64, 32, 2] for i ∈ {3, 4, 5, 6, 7, 8}. Figure 7
shows the FC neural network N3.

Algorithm 1 Tunes Some Hyper-Parameters for FC Neural
Networks
1: function TUNINGFC(i, α, e,TrainingSet,ValidationSet)
2: min_loss←∞
3: Nmin = []
4: for m ∈ {3, 4} do
5: for j = 1 to 4 do
6: Create a FC neural network Ni with m + 2

layers
7: Set the number of input units for the layer 1

to i− 1
8: Nu← [i− 1]
9: nu← 2m+j

10: for l = 2 to m+ 1 do
11: Set the number of units for the layer l

to nu
12: Set ReLU as activation function for each

unit
13: Nu.append(nu)
14: nu← nu/2
15: end for
16: Set the number of units for the layer m + 2

to 1
17: Set identity function as activation function for

the unit.
18: Nu.append(1)
19: Set ADAM as optimizer with learning rate α.
20: Set loss function as MSE.
21: Train Ni with TrainingSet for e epochs.
22: Validate Ni with ValidationSet .
23: loss← Ni.loss()
24: if loss < min_loss then
25: Nmin← Nu
26: min_loss← loss
27: end if
28: end for
29: end for
30: return Nmin
31: end function

We use mean square error (MSE) as loss function [58]
and Adaptive Moment Estimation (ADAM) algorithm as an

FIGURE 7. FC neural network N3.

optimization algorithm during the training of each FC neural
network, since these hyper-parameters are commonly used in
prediction/regression settings.

VI. EVALUATION
In this section, we will present several scenarios designed to
evaluate our model.

A. FIRST SCENARIO
In this scenario, we describe the training and validation of
each neural network independently. Recall that the dataset is
divided into two parts: a training dataset consisting of 70% of
the original dataset and a validation dataset consisting of the
rest 30% of the original dataset.

We first described how we trained and validated the RNNs
N1 and N2. Recall that these are used for predicting vari-
ables X1 and X2, respectively. Since we modeled predicting
these variables as a sequence modeling problem, we used
a sequence of length 100 during training and validation.
In particular, forN1 we got a Huber loss of 1.4754 for training
and about 1.9755 for validation. On the other hand, for N2,
we got a Huber Loss of about 1.4411 for training and about
1.8755 for validation.

To train and validate our FC networksNi for i = 3, 4, . . . 8
we run Algorithm 1. After running it, we found each FC neu-
ral network should have four hidden layers with 256, 128, 64
and 32 units respectively. Table 3 shows the MSE losses
obtained for training and validation.

On the other hand, Figures (a), (b), (c) and (d) of 8 show
plots comparing the original values as stored in the validation
dataset and the corresponding value predicted by the respec-
tive neural network.

B. SECOND SCENARIO
In this second scenario, we describe how our complete model
is validated. Let us set V = [V1,V2,V3, . . . ,Vm], where
Vi = [vi,1, vi,2, . . . , vi,8] are the entries of our validation set
sorted by time. Let S1 = [s1,1, s1,2, . . . , s1,sl] be a sequence
of values (ordered by minute) from X1 preceding v1,1, and

VOLUME 9, 2021 89807

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

FIGURE 8. Comparison of the validation values with predicted values output by FC and RNN networks on input values from the validation dataset.

let S2 = [s2,1, s2,2, . . . , s2,sl] be a sequence of values
(ordered by minute) from X2 preceding v1,2. Algorithm 2
describes the process to validate our complete model.

Algorithm 2 Computes Measures Between the Validation
Values and the Predicted Values by the Complete Model
1: function VALIDATECM(S1, S2,V)
2: X̂ ← []
3: for i← 1 to m do
4: x̂1← N2(S1)
5: x̂2← N2(S2)
6: x̂3← N3 (̂x1, x̂2)
7: x̂4← N4 (̂x1, x̂2, x̂3)
8: x̂5← N5 (̂x1, x̂2, x̂3, x̂4)
9: x̂6← N6 (̂x1, x̂2, x̂3, x̂4, x̂5)

10: x̂7← N7 (̂x1, x̂2, x̂3, x̂4, x̂5, x̂6)
11: x̂8← N8 (̂x1, x̂2, x̂3, x̂4, x̂5, x̂6, x̂7)
12: X̂ .append([̂x1, x̂2, x̂3, x̂4, x̂5, x̂6, x̂7, x̂8])
13: S1.remove(1) // remove the first entry of S1.
14: S1.append(̂x1) // append x̂1 to S1.
15: S2.remove(1) // remove the first entry of S1.
16: S2.append(̂x2) //append x̂2 to S2.
17: end for
18: L = []
19: for j← 3 to 8 do
20: I1 = [V [i, j] for i← 1 to m];
21: I2 = [X̂ [i, j] for i← 1 to m];
22: L.append([MSE(I1, I2),MAE(I1, I2)]);
23: plot(I1, I2);
24: end for
25: return L
26: end function

Running Algorithm 2 computes two measures between
(MAE and MSE) the validation values for the variable Xi and

the corresponding values X̂i predicted by the complete model
for 3 ≤ i ≤ 8. In particular, Figure 9 shows plots comparing
the original values for X7 and X8, as stored in the validation
dataset, and the corresponding values X̂7 and X̂8 predicted by
the complete model.

C. THIRD SCENARIO
In this third scenario, we compare the values predicted by our
complete model with the actual values from our validation
dataset and values predicted by computing a moving average
with different window sizes. In particular, Figure 10 shows
plots comparing the validation values for X7 and X8, the cor-
responding values X̂7 and X̂8 predicted by the complete model
and the moving average with a window size of 5, 10, 20 data
points.

VII. DISCUSSION
An important question is comparing the possibility of using
Edge versus traditional cloud to deploy an e-learning system.
Even the consideration of a hybrid architecture mixing cloud
and edge services is possible. For example, some schools in
developing countries such as Colombia might benefit from
hybrid architectures to take advantage of existing in-house
infrastructure to decrease deployment costs. This alternative,
however, needs to be studied carefully to avoid paying extra
unnecessarily. Another option is the use of public access
points to deploy certain services from the e-learning systems.
For example, people in rural underserved locations across
Colombia widely use public access points. With the help
of local and national education agencies, such deployments
might be possible and decrease deployment costs. Such sce-
narios are beyond the scope of this paper but are very inter-
esting for future research works.

Researchers can use the contribution of this paper to esti-
mate the resource usage costs around which the architects

89808 VOLUME 9, 2021

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

TABLE 3. MSE losses for training and validation.

FIGURE 9. Comparison of the validation values and predicted values
output by the complete model.

FIGURE 10. Comparison of the validation values with the predicted
values output by the complete model and moving averages for various
window sizes.

could design their deployments properly. Also, the predic-
tion model may be extended to predict resources for the
following days with a granularity of hours and even min-
utes. This prediction granularity helps turn on or off virtual
machines’ containers as necessary before the consumption
peaks arrive to have just the necessary resources available.

An appropriate granularity selection derives from the most
cost-efficient consumption, and architects could optimize this
towards reducing costs.

There are some points worth discussing in this work that
might improve future researches. First, while Moodle is one
of the most used platforms, studying the system under mul-
tiple scenarios might be instrumental. Such scenarios might
include several ranges of concurrent users, several amounts
and types of educational resources, and extended periods of
trace time. The types of educational resources might imply
different types of requests to the servers and different compu-
tational loads. Another aspect that might be considered a lim-
itation is the available cloud resources for the study. We used
Google’s computational resources, although a combination
of multiple cloud providers might be interesting to observe
possible changes in the results. We consider, however, that
this consideration did not affect our results.

VIII. CONCLUSION AND FUTURE WORK
This work proposed a new framework for monitoring, mea-
suring, predicting, and deploying computational resources in
the cloud for e-learning information systems. The framework
builds from a resource monitoring cycle, an improved version
of the MAPE monitoring tool from IBM. This monitoring
cycle has the potential for applying it to multiple types
of applications. The main differentiating feature is the first
step, which characterizes the information system to be mon-
itored. This step ensures that architects or researchers take a
moment to describe clearly the system from a computational
resource consumption perspective. This perspective allows
them to compare systems with others for behavior similari-
ties. Also, such similarities could help classify new systems
from other systems, for which there are plenty of algorithms
and collected data, e.g., traditional websites. Therefore, this
characterization step might result in a new execution of the
monitoring cycle where there is no closely relatable collected
data. This is the case presented in this paper.

We achieved the implementation of the monitoring cycle
using a framework deployed in the cloud. We implemented
a small subset of the proposed framework components.
A future contributionwould be a detailed implementation that
shows interesting features. For example, some issues exist
regarding the difference in startup and stop times between
containers and virtual machine deployments. Researchers
should take these differences into account when running
the executor component of the framework. An optimization
algorithm could be used to balance the use of both platforms

VOLUME 9, 2021 89809

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

and help architects decide which combination to use in case
multiple nodes are necessary. Additionally, our model may be
enhanced to be able to detect anomaly behaviors, which may
help in identifying emergent cyber-attacks [30].

We devise the potential of the proposed framework
to understand particular information systems in terms of
resource consumption. The monitoring cycle should help
researchers better grasp the studied system and decide which
components to deploy with better information at hand. The
literature also shows the different prediction algorithms that
researchers can use depending on the variables available and
the target in mind.

REFERENCES
[1] E-Learning—Market Study by Global Industry Analysts, Inc.

Accessed: Feb. 26, 2021. [Online]. Available: https://www.strategyr.com/
market-report-e-learning-forecasts-global-industry-analysts-inc.asp

[2] A. Brown and T. Green, ‘‘Issues and trends in instructional technology:
Access to mobile technologies, digital content, and online learning oppor-
tunities continues as spending on IT remains steady,’’ inEducationalMedia
and Technology Yearbook, vol. 42, R. M. Branch, H. Lee, and S. S. Tseng,
Eds. New York, NY, USA: Springer, 2019, pp. 3–12.

[3] S. Gupta and S. Pandey, ‘‘Mapping of research publication on elearning
in India during 2009-2018: A scientometric study,’’ Library Philosophy
Pract., vol. 2624, pp. 1–12, Sep. 2019.

[4] D.Ni and J. Lee, ‘‘An analysis of research trends inmobile learning through
comparison between Korea and China,’’ Educ. Technol. Int., vol. 20, no. 2,
pp. 169–194, 2019.

[5] J. Zhang, H. Huang, and X. Wang, ‘‘Resource provision algorithms in
cloud computing: A survey,’’ J. Netw. Comput. Appl., vol. 64, pp. 23–42,
Apr. 2016.

[6] A. Y. Nikravesh, S. A. Ajila, and C.-H. Lung, ‘‘Measuring prediction sen-
sitivity of a cloud auto-scaling system,’’ in Proc. IEEE 38th Int. Comput.
Softw. Appl. Conf. Workshops, Jul. 2014, pp. 690–695.

[7] W. Zhong, Y. Zhuang, J. Sun, and J. Gu, ‘‘A load predictionmodel for cloud
computing using PSO-based weighted wavelet support vector machine,’’
Appl. Intell., vol. 48, no. 11, pp. 4072–4083, 2018,

[8] M. Masdari and A. Khoshnevis, ‘‘A survey and classification of the work-
load forecasting methods in cloud computing,’’ Cluster Comput., vol. 23,
no. 4, pp. 2399–2424, Dec. 2020.

[9] M. Borkowski, S. Schulte, and C. Hochreiner, ‘‘Predicting cloud resource
utilization,’’ in Proc. 9th Int. Conf. Utility Cloud Comput., Dec. 2016,
pp. 37–42.

[10] G. Li, J. Song, J. Wu, and J. Wang, ‘‘Method of resource estimation
based on QoS in edge computing,’’ Wireless Commun. Mobile Comput.,
vol. 2018, pp. 1–9, Jan. 2018.

[11] P. Vignesh and S. A. M. Musthafa, ‘‘Enhanced efficient load prediction
algorithm in cloud computing,’’ Int. J. Grid Distrib. Comput., vol. 8, no. 5,
pp. 9–14, 2015.

[12] J. Sun and Y. Zhuang, ‘‘The cloud computing load forecasting algorithm
based on Kalman filter and ANFIS,’’ in Proc. 4th Int. Conf. Machinery,
Mater. Comput. Technol., 2016, pp. 565–569.

[13] T. Nguyen, N. Tran, B.M. Nguyen, and G. Nguyen, ‘‘A resource usage pre-
diction system using functional-link and genetic algorithm neural network
for multivariate cloud metrics,’’ in Proc. IEEE 11th Conf. Service-Oriented
Comput. Appl. (SOCA), Nov. 2018, pp. 49–56.

[14] A. A. Shahin, ‘‘Automatic cloud resource scaling algorithm based on long
short-term memory recurrent neural network,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 7, no. 12, pp. 1–7, 2016.

[15] H. Truta, J. L. Vivas, A. Brito, and T. Nobrega, ‘‘A predictive approach
for enhancing resource utilization in PaaS clouds,’’ in Proc. Symp. Appl.
Comput., Apr. 2017, pp. 384–391.

[16] N. Mostafa, I. A. Ridhawi, and M. Aloqaily, ‘‘Fog resource selection using
historical executions,’’ in Proc. 3rd Int. Conf. Fog Mobile Edge Comput.
(FMEC), Apr. 2018, pp. 272–276.

[17] C. Nguyen, C. Klein, and E. Elmroth, ‘‘Multivariate LSTM-based
location-aware workload prediction for edge data centers,’’ in Proc. 19th
IEEE/ACM Int. Symp. Cluster, Cloud Grid Comput. (CCGRID), May 2019,
pp. 341–350.

[18] W. Wei, H. Gu, W. Lu, T. Zhou, and X. Liu, ‘‘Energy efficient virtual
machine placement with an improved ant colony optimization over data
center networks,’’ IEEE Access, vol. 7, pp. 60617–60625, 2019.

[19] J. Bi, S. Li, H. Yuan, Z. Zhao, and H. Liu, ‘‘Deep neural networks for
predicting task time series in cloud computing systems,’’ in Proc. IEEE
16th Int. Conf. Netw., Sens. Control (ICNSC), May 2019, pp. 86–91.

[20] I. B. M. Redbooks, A Practical Guide to IBM Autonomic Computing
Toolkit. New York, NY, USA: IBM, 2004.

[21] E. Zavala, ‘‘Towards adaptive monitoring services for self-adaptive soft-
ware systems,’’ in Proc. Int. Conf. Service-Oriented Comput. in Lecture
Notes in Computer Science, L. Braubach, J. M. Murillo, N. Kaviani,
M. Lama, L. Burgueño, N. Moha, andM. Oriol, Eds. New York, NY, USA:
Springer, 2018, pp. 357–362.

[22] G. J. Guerrero, ‘‘Proteo a self-adaptive software architecture to sup-
port quality attributes in ubiquitous systems,’’ Ph.D. dissertation,
Dept. Softw. Eng., Univ. Granada, Granada, Spain, 2018. Accessed:
Jun. 21, 2021. [Online]. Available: https://dialnet.unirioja.es/servlet/
tesis?codigo=150988

[23] K. Fatema, V. C. Emeakaroha, P. D. Healy, J. P. Morrison, and T. Lynn,
‘‘A survey of cloud monitoring tools: Taxonomy, capabilities and objec-
tives,’’ J. Parallel Distrib. Comput., vol. 74, no. 10, pp. 2918–2933,
Oct. 2014.

[24] T. L. Duc, R. G. Leiva, P. Casari, and P.-O. Östberg, ‘‘Machine learning
methods for reliable resource provisioning in edge-cloud computing: A
survey,’’ ACM Comput. Surv., vol. 52, no. 5, pp. 1–39, Oct. 2019.

[25] M. C. Calzarossa, L. Massari, and D. Tessera, ‘‘Workload characteriza-
tion: A survey revisited,’’ ACM Comput. Surv., vol. 48, no. 3, pp. 1–43,
Feb. 2016.

[26] M. Ghobaei-Arani, R. Khorsand, and M. Ramezanpour, ‘‘An autonomous
resource provisioning framework for massively multiplayer online games
in cloud environment,’’ J. Netw. Comput. Appl., vol. 142, pp. 76–97,
Sep. 2019.

[27] J. Carvalho, D. Vieira, and F. Trinta, ‘‘Greedy multi-cloud selection
approach to deploy an application based on microservices,’’ in Proc.
27th Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process. (PDP),
Feb. 2019, pp. 93–100.

[28] P. Di Francesco, P. Lago, and I. Malavolta, ‘‘Architecting with microser-
vices: A systematic mapping study,’’ J. Syst. Softw., vol. 150, pp. 77–97,
Apr. 2019.

[29] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang, ‘‘Orchestra-
tion of containerized microservices for IIoT using docker,’’ in Proc. IEEE
Int. Conf. Ind. Technol. (ICIT), Mar. 2017, pp. 1532–1536.

[30] R. J. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, 3rd ed. Hoboken, NJ, USA: Wiley, 2020.

[31] A. Oztekin, Z. J. Kong, and O. Uysal, ‘‘UseLearn: A novel checklist and
usability evaluation method for eLearning systems by criticality metric
analysis,’’ Int. J. Ind. Ergonom., vol. 40, no. 4, pp. 455–469, Jul. 2010.

[32] A. Oztekin, D. Delen, A. Turkyilmaz, and S. Zaim, ‘‘A machine learning-
based usability evaluation method for eLearning systems,’’ Decis. Support
Syst., vol. 56, pp. 63–73, Dec. 2013.

[33] N. Ganesan, ‘‘Migration of an e-learning model to the cloud,’’ J. Int.
Technol. Inf. Manage., vol. 22, no. 3, pp. 19–36, 2013.

[34] Blackboard CourseSites. [Online]. Available: https://www.coursesites.
com/

[35] Canvas Overview. Accessed: Mar. 3, 2021. [Online]. Available: https://
www.instructure.com/canvas

[36] Chamilo.org Asociación Chamilo. Accessed: Mar. 3, 2021. [Online].
Available: https://chamilo.org/en/

[37] Coursera | Build Skills With Online Courses From Top Institutions.
Accessed: Mar. 3, 2021. [Online]. Available: https://www.coursera.org/

[38] Duolingo—Learn a Language for Free. Accessed: Mar. 3, 2021. [Online].
Available: https://www.duolingo.com/

[39] Edmodo. Accessed: Mar. 3, 2021. [Online]. Available: https://new.
edmodo.com/

[40] edX | Free Online Courses by Harvard, MIT, & More. Accessed:
Mar. 3, 2021. [Online]. Available: https://www.edx.org/

[41] EvolMind. EvolMind—The LMS. Accessed: Mar. 3, 2021. [Online]. Avail-
able: https://www.evolmind.com/en

[42] GeoGebra | Free Math Apps—Used by Over 100 Million Students
& Teachers Worlwide. Accessed: Mar. 3, 2021. [Online]. Available:
https://www.geogebra.org/

[43] Google Classroom. Accessed: Mar. 3, 2021. [Online]. Available:
https://classroom.google.com/u/0/h

[44] IXL | Maths and English Practice. Accessed: Mar. 3, 2021. [Online].
Available: https://uk.ixl.com/

[45] Khan Academy | Free Online Courses, Lessons & Practice. Accessed:
Mar. 3, 2021. [Online]. Available: https://www.khanacademy.org/

89810 VOLUME 9, 2021

J. Ariza et al.: Provisioning Computational Resources for Cloud-Based e-Learning Platforms

[46] Knewton—Achievement Within Reach. Accessed: Mar. 3, 2021. [Online].
Available: https://www.knewton.com/

[47] Kornukopia—Cloud Based Learning Management System. Accessed:
Mar. 3, 2021. [Online]. Available: https://kornukopia.com/.

[48] Moodle—Open-Source Learning Platform | Moodle.org. Accessed:
Mar. 3, 2021. [Online]. Available: https://moodle.org/

[49] NEO LMS—The World’s Best LMS for Schools and Universities.
Accessed: Mar. 3, 2021. [Online]. Available: https://www.neolms.com/

[50] Quizlet. Accessed: Mar. 3, 2021. [Online]. Available: https://quizlet.com/
[51] Schoology—Learning Management System. Accessed: Mar. 3, 2021.

[Online]. Available: https://www.schoology.com/homepage
[52] Scratch—Imagine, Program, Share. Accessed: Mar. 3, 2021. [Online].

Available: https://scratch.mit.edu/
[53] Studyx—Global Platform for Education Exchange. Accessed:

Mar. 3, 2021. [Online]. Available: https://studyx.co/en/
[54] Udemy—Online Courses. Accessed: Mar. 3, 2021. [Online]. Available:

https://www.udemy.com/
[55] Udacity. Accessed: Mar. 3, 2021. [Online]. Available: https://www.

udacity.com
[56] WebAssign. Accessed: Mar. 3, 2021. [Online]. Available: https://www.

webassign.net/
[57] Wolframalpha: Making the World’s Knowledge Computable. Accessed:

Mar. 3, 2021. [Online]. Available: https://www.wolframalpha.com
[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cam-

bridge, MA, USA: MIT Press, 2016. [Online]. Available: http://www.
deeplearningbook.org

JORGE ARIZA received the bachelor’s degree
in computer science and engineering from Uni-
versidad Simón Bolívar, in 2007. He is cur-
rently pursuing the master’s degree in computer
science and engineering with the Universidad
del Norte. He has been working as a Soft-
ware Engineer and a DevOps Engineer with a
public high school in Colombia, where he also
teaches programming courses. His e-mail address
is marizaj@uninorte.edu.co.

MIGUEL JIMENO (Member, IEEE) was born in
Barranquilla, Colombia, in 1979. He received the
degree in computer science and engineering from
the Universidad del Norte, Colombia, in 2002,
and the master’s degree in computer science and
engineering and the Ph.D. degree in computer
science from the University of South Florida,
in 2007 and 2010, respectively. His research
interests include cloud computing, deep learning,
and cloud deployments of e-learning systems and

healthcare information systems, from which he has published multiple arti-
cles. His experience started as a Software Engineer, then a ResearchAssistant
as a Ph.D. Student and currently as an Associate Professor at the Universidad
del Norte. He was awarded a grant from Fulbright to execute an applied
research project in the area of healthcare in rural settings, in 2011.

RICARDO VILLANUEVA-POLANCO received
the bachelor’s degree from the Universidad del
Norte, in 2008, the master’s degree in computer
science and engineering from the Universidad
de los Andes, in 2010, and the Ph.D. degree in
information security from Royal Holloway, Uni-
versity of London, in 2018. He is currently an
Assistant Professor at the Department of Com-
puter Science and Engineering, Universidad del
Norte, Barranquilla, Colombia. His research inter-

est includes cyber-security, in particular reliability of distributed systems
(e.g., peer-to-peer systems and cloud systems) and applied cryptography
(e.g., post-quantum cryptography, cryptographic protocols, and side-channel
attacks on cryptographic implementations).

JOSE CAPACHO (Member, IEEE) received the
bachelor’s degree in systems engineering from
the Universidad Industrial de Santander (UIS),
Colombia, in 1982, the master’s degree in edu-
cation from Pontificia Universidad Javeriana,
Colombia, in 1996, and the Ph.D. degree in learn-
ing processes in virtual spaces from the University
of Salamanca, Spain, in 2008. He is currently an
Assistant Professor at theDepartment of Computer
Science and Engineering, Universidad del Norte,

Barranquilla, Colombia. He has participated in the renewal accreditation
process of the Systems Engineering Program with Accreditation Board for
Engineering and Technology, Inc., from 2013 to 2015 and in 2021. His
current research interests include e-learning and virtual education.

VOLUME 9, 2021 89811

