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ABSTRACT The rapid evolution of wind energy in reducing CO2 emissions worldwide is undeniable,
which is, in fact, expected to continue or even increase its impressive yearly capacity growth. In this regard,
optimizing operations and maintenance of wind turbines (WTs) and farms is considered to be one of the
options for reducing the levelized cost of electricity of wind energy. This can be achieved by developing
innovative condition monitoring methods. To this end, the use of the windowed scalogram difference (WSD)
algorithm, based on wavelets, is proposed as an alternative solution, combined with current signature
analysis (CSA). The electric generator is one of the major contributors toWT failure rates and downtime, and
doubly-fed induction generators (DFIGs) are the dominant technology in variable-speedWTs. In the present
work, operational data on an in-service WT DFIG are analyzed over a period of eight months, in contrast
to the majority of the studies in this field, which rely on laboratory or simulated data. The evolution of the
fault, namely rotor mechanical asymmetry, at an early stage, is analyzed and quantified implementing WSD
to the stator current signals, supported by the previous diagnosis achieved through CSA. The combination
of CSA and WSD shows strong potential for diagnosing and tracking, respectively, incipient faults in
in-service WT DFIGs.

INDEX TERMS Conditionmonitoring, current signature analysis, doubly-fed induction generator, wavelets,
windowed scalogram difference, wind turbine.

I. INTRODUCTION
World wide climate change targets are set to reduce green-
house gases (GHG) emissions towards a more sustainable
world [1]. In Europe, the Strategic Energy Technology
Plan [2] aims at reaching net zero CO2 emissions by 2050.
In this regard, renewable energies are playing, and will
continue to play, a key role. Among these, wind energy
is the most promising and mature of the different renew-
able energy sources [3]. In fact, despite the COVID-19
pandemic, 2020 was the best year in history for the
global wind industry. With 93 GW of new installations,
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(of which 86.9 GW are onshore, 6.1 GW offshore) a global
cumulative wind power capacity was brought up to 743 GW
(of which 707.4 GW are onshore and 35.3 GW offshore) [4].
However, if the GHG emission targets are to be met, we need
to be installing around 180 GW per year, and thus this new
wind capacity record in 2020 fell short. Under this chal-
lenging scenario, it is crucial to reduce the levelized cost
of electricity (LCOE) of wind energy, which is expected
to be achieved through cost reduction from larger turbines,
innovations in operations and maintenance (O&M), novel
installations, and reduced investor risk [5]. The expectations
to 2030 are 25% and 55% average LCOE reductions for
onshore and offshore wind, respectively, compared to 2018
levels [5].
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Condition monitoring (CM) of wind turbines (WTs) is
the key to reduce O&M costs while achieving higher
availability [6]. The electric generator, together with the
drive train and blades, is considered one of the most critical
components within the WT [7]–[10]. Thus, considering the
importance of optimizing O&M, highlighted by the fact that
an increasing number of wind turbines (WTs) are reaching
the end of their expected 20-year lifetime, the present work
proposes a novel CM technique implemented on in-service
WT generators. Specifically, we analyze doubly-fed induc-
tion generators (DFIGs), which are the dominant technology
in variable-speed WTs [11], [12].

CM techniques for WT generators are mainly based on
vibration or electrical measurements [13]. Lately, artifi-
cial intelligence applied to SCADA data has also recently
proven successful in detecting different faults [14], although
it is more commonly used for gearbox components. Com-
bining different techniques for failure detection has also
been explored, towards failure detection, such as SCADA
data and vibrations [15] or joint current and vibration
analyses [16]–[18]. On the other hand, whilst vibration-based
techniques are limited tomechanical faults, electrically-based
methods can detect both mechanical and electrical faults [19].
These methods include current, voltage, instantaneous power,
and flux analyses [20], with current signature analysis (CSA)
being recognized as the leading option [21]–[23]. Recent
advances in CSA for WT generator applications were
reviewed by [24], showing that the technique has been
thoroughly studied. As can be concluded from this review,
however, the studies are mostly limited to laboratory exper-
iments and computer simulations. For example, rotor asym-
metry [25], [26] and bearing faults [27] were analyzed and
detected using test rigs, and inter-turn short circuit [28]
and winding faults [29] were simulated using different
computer models. CSA is also able to detect gearbox
faults, as proven experimentally by [30]–[33] or simulated
in [34], [35]. New signal processing approaches were pro-
posed by [36] for generator bearing faults and by [37]
for gearbox faults, again carried out in laboratory test
rigs.

As can be deduced, data analyses of in-service WT DFIGs
are rarely found in the scientific literature, where the immense
majority of the published studies are carried out in laboratory
benches or using computer simulated data. The analysis of
operational data poses greater difficulties than laboratory or
computer-based experiments, since these are unaffected by
the grid and are not exposed to the actual unsteady load
characteristics of WTs, extreme weather conditions or other
external variables. Moreover, studies based on computer sim-
ulations or laboratory benches are performed under induced
faults, that is, the faults are known. In this regard and to the
best of our knowledge, only two research groups, besides
the authors of the current work, have published such oper-
ational data analyses [38], [39]. Both works diagnose gear-
box bearing fault through CSA, using the stator currents of
in-service WT DFIGs.

The present paper aims to provide further analyses of WTs
operating in the field with the ultimate goal of develop-
ing innovations in O&M. To this end, for the first time in
the scientific literature, the windowed scalogram difference
(WSD), a novel wavelet-based technique, is applied to the
stator current measurements of an in-service WT DFIG over
a period of eight months, being able to track and quantify the
evolution of a potentially developing fault.

Further to this introduction, the paper is structured as fol-
lows: Section II explains the novel method proposed in the
present work. Section III presents the data used for the anal-
ysis, including a summary of a previous study carried out by
the authors of the present work. The results of implementing
the novel method to the in-service WT DFIG are shown in
Section IV. Finally, the conclusions drawn from the analysis
are summarized in Section V.

II. WINDOWED SCALOGRAM DIFFERENCE
It is widely known that wavelet-based signal processing tech-
niques consider both time and frequency domains simul-
taneously, allowing the decomposition of any signal into
time scale components [40]. The Windowed Scalogram Dif-
ference (WSD) is a novel wavelet-based signal processing
technique developed and introduced by Bolós et al. in [41].
This method was originally intended to measure the degree
of non-periodicity of a time series, being more efficient than
other approaches, such as the windowed Fourier transform
(WFT), to that end. Indeed, the WSD can be considered as an
alternative to another tool widely used in wavelet analysis:
wavelet squared coherence (WSC). In some cases, the WSD
is able to detect certain features that the WSC is unable
to identify. Furthermore, the WSD gives greater flexibility
in allowing the change of window size depending on the
scale/horizon of interest [42]. Themathematical development
behind the technique is presented as follows.

The scalogram of a time series, f , at a given scale, s > 0,
is given by Equation 1 [43],

S(s) :=
(∫
∞

−∞

|Wf (s, u)|2 du
) 1

2

, (1)

The scalogram of f at s is then the L2–norm of Wf (s, u)
with respect to the time variable, u, and captures the energy of
the continuous wavelet transform (CWT) of the time series f
at this particular scale. Therefore, the scalogram allows the
most representative frequencies (or scales) of a signal to be
identified and detected, since such frequencies (or scales)
contribute more to the total energy of the signal.

From Equation 1, it is possible to define the windowed
scalogram for a specific time interval, [t0, t1], as defined
in Equation 2,

S[t0,t1](s) :=
(∫ t1

t0
|Wf (s, u)|2 du

) 1
2

, (2)

where τ = t1 − t0 is defined as the time radius. Note that
the windowed scalogram provides the relative importance of
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the different frequencies (or scales) around the given time
point ([t0, t1]).
Thewindowed scalogram concept can be redefined by con-

sidering the function decomposition of the discrete wavelet
transform (DWT) [44] and the use of the base 2 power
scales [41] as per Equation 3,

WSτ (t, k) :=
(∫ t+τ

t−τ
|Wf (u, 2k )|2 du

) 1
2

. (3)

By considering finite time series (t0, . . . , tN ) defined over
a discrete set of times, border effects arise in the windowed
scalogram for t−τ < t0 or t+τ > tN . In this case, Equation 3
can be redefined as Equation 4,

WSτ (t, k) :=
2τ
1t

(∫ tβ

tα
|Wf (u, 2k )|2 du

) 1
2

, (4)

where 1t = tβ − tα , tα := max(t − τ, t0) and tβ := min(t +
τ, tN ). The factor (2τ/1t) is variable, aimed at rectifying
different border effects within the time interval.

Thus, the windowed scalogram difference (WSD) of two
time series (f and g) with a time radius τ and centered at (t, k)
is defined as Equation 5,

WSDτ,r (t, k)

:=

(∫ k+r

k−r

(
WSτ (t, k)−WS ′τ (t, k)

WSτ (t, k)

)2

dk

) 1
2

, (5)

where WSτ (t, k) and WS ′τ (t, k) are the corresponding
windowed scalograms of the two time series (f and g), respec-
tively, see Equation 3.
Furthermore, in order to avoid extreme (and thus mislead-

ing) results when the windowed scalogram takes values near
zero, the WSD commutative version is more appropriate,
calculated as Equation 6,

WSDτ,r (t, k) :=
(∫ k+r

k−r

(
WSτ (t, k)−WS ′τ (t, k)

WSτ (t, k)
+

+
WSτ (t, k)−WS ′τ (t, k)

WS ′τ (t, k)

)2

dk

) 1
2

. (6)

Finally, similarly to Equation 4, the WSD (Equations 5
and 6) can also be expressed as Equation 7, to reduce such
WSD border effects,

WSDτ,r (t, k)

:=
2r
1k

(∫ kβ

kα

(
WSτ (t, k)−WS ′τ (t, k)

WSτ (t, k)

)2

dk

) 1
2

, (7)

where kα := max(k − r, 1 + log2(1t)), kβ := min(k +
r, log2(N1t/L)), and L is the size of the original wavelet
function.

Therefore, the WSD allows the similarity level between
two times series (f and g) to be estimated for different finite
time intervals and frequency (scale) intervals. According
to [45], it is also worth highlighting that the great flexibility

of the WSD arises from the possibility of shifting the length
of time and scale windows. This WSD tool has been used in a
wide variety of applications and scientific disciplines, such as
image encryption [46], bio-medicine [47], meteorology [48],
engineering [49] or robotics [50]. In this regard, to the best
of the authors’ knowledge, this is the first time that WSD has
been implemented on current signals for condition monitor-
ing of WT DFIGs.

III. BACKGROUND OF THE DFIG UNDER STUDY AND
DATA USED
The DFIG under study comes from a 1.5 MW WT operating
in an European wind farm. A previous study of the DFIG
under analysis was presented in [51]. In the mentioned work,
the authors achieved the diagnosis of the DFIG using CSA
and validated it with advanced signal processing of vibration
measurements. Figure 1 depicts a DFIG diagram indicating
the stator- and rotor-side currents used for the analysis, and
the characteristics of the signals used are presented in Table 1.

FIGURE 1. DFIG diagram indicating current measurements.

TABLE 1. Characteristics of the signals used for the analysis.

The DFIG was originally misdiagnosed with a bearing
fault using root mean square (RMS) vibration analysis alone.
Anomalous RMS levels were observed in the drive-end
generator bearing, and the bearing was replaced. The
RMS vibrations decreased slightly, but a few days later,
the RMS vibrations rose to the level prior to the replacement.
A healthy bearing was unnecessarily replaced and, thus,
the actual fault continued. The chronological development of
these events is presented in Figure 2.
A subsequent analysis of the current signals through CSA

presented in [51] diagnosed the DFIG with rotor mechanical
unbalance. This analysis was based on the presence of rotor
mechanical related frequencies, these being fFRU and fRFS ,
calculated as Equations 8 and 9, respectively. The analysis is
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FIGURE 2. Chronological diagram of the DFIG under study.

summarized in Figure 3, showing the evolution of the current
spectra from January toAugust, and Tables 2 and 3, indicating
the fault frequencies observed in the spectra as previously
reported.

fFRU = fs

∣∣∣∣κp (1− s)± 1

∣∣∣∣ (8)

fRFS = fs (1± 2κs) (9)

FIGURE 3. Evolution of current spectra Jan–Aug.

TABLE 2. Fault-related frequencies calculated as per equations 8 and 9,
for -10% slip.

TABLE 3. Fault-related frequency harmonics found on the current spectra
from January 2016 to August 2016.

The aim of the abovementioned previous work [51] was
to achieve the correct diagnosis for the DFIG under study.
However, it failed to analyze the behavior of the target fault.

Thus, the goal of the present study is to observe the evolution
of a developing fault over time. To this end, in order to make
sure that the differences observed are caused by the target
fault and are not due to any other cause, the measurements
are chosen to meet steady-state conditions and the same
(or very similar) loading conditions. The loading condition
for each measurement is detailed in Table 4 and the criteria
used to select steady-state regime signals is explained as
follows:

TABLE 4. WT operating conditions for the selected measurements.

1) Each measurement is divided into eight parts. For each
part:
• The mains frequency of stator currents is calcu-
lated.

• The mains frequency of rotor-side converter cur-
rents is calculated.

• The RMS value of raw stator currents is calculated.
• The RMS value of raw rotor-side converter cur-
rents is calculated.

2) Then, the following criteria must be met:
• Themains frequencies of the stator currents remain
constant.

• The mains frequencies of rotor-side currents
remain constant.

• The differences between the RMS values of the
stator and rotor-side currents are lower than 1.5%.

IV. RESULTS
In the present work, WSD is implemented to analyze the
evolution of the current spectra of an in-service DFIG with
an incipient fault. As presented in Section III, CSA proved
to be successful in achieving the diagnosis of WT DFIGs.
However, CSA alone failed to provide the quantitative and/or
qualitative analysis of the evolution of a potentially devel-
oping fault. The interested reader can refer to the full study
in [51], summarized in Section III, to understand the difficulty
in comparing the various current spectra for the different
months. Thus, in order to overcome this limitation, WSD is
proposed.

As explained in Section II, WSD is able to esti-
mate the similarities between two time series for different
finite time and frequency intervals. This analysis is pre-
sented both qualitatively, using a graphical color scale, and
quantitatively, analyzing the percentage of dissimilarities.
Figures 4, 5 and 6 illustrate the qualitative results of applying
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FIGURE 4. Phase a. Evolution of current spectra, comparing January with
the next 7 months (Feb – Aug).

WSD to the stator current measurements (Phases a, b and c,
respectively) of the DFIG under study. Then, the quantitative
analysis is presented.

Regarding the qualitative analysis, since the objective of
the present work was to estimate the divergence over time
of the target frequencies (Table 2), as opposed to estimating
the similarities as per the original algorithm, in the present
color scale, red represents the highest dissimilarity and blue
the highest similarity. To this end, January is taken as the

FIGURE 5. Phase b. Evolution of current spectra, comparing January with
the next 7 months (Feb – Aug).

reference, and each of the following months until August is
compared to January. Figure 4(a) represents the divergence
of the stator current spectra in February compared to that
in January, Figure 4(b) represents the divergence between
March and January, and so on up until Figure 4(g) repre-
senting the divergence between August and January. The
same procedure was followed for the three stator current
phases, a, b and c.
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FIGURE 6. Phase c. Evolution of current spectra, comparing January with
the next 7 months (Feb – Aug).

As can be observed looking at each WSD individually,
the largest dissimilarities (red bands) appear in the region
of 30 Hz and 70 Hz, corresponding to fFRU . Smaller, but still
significant differences (red and orange spots), can be seen
around 40 Hz and 60 Hz, and 20 Hz and 80 Hz, belonging
to fRFS . When looking at theWSDs as a whole for eachmonth
compared, a clear evolution of the fault from February to
August cannot be determined. It appears that the compar-
isons obtained in April, May and July produce the largest

differences, showing larger red areas. The lowest divergences
are observed for the comparisons achieved for March and
June, which agrees with Table 3, where fewer fault-related
frequencies appear in those months. Note that all mentioned
observations apply to all three phases (Figures 4, 5 and 6),
i.e., no differences were observed between phases.

In order to quantify the results, the numerical values
obtained from the raw WSD matrix around the frequencies
of interest (the fault-related frequencies presented in Table 2)
were averaged and the dissimilarity percentage was calcu-
lated. The results are shown in Figure 7. As can be seen, all
frequencies of interest present a soft incremental tendency,
except for component fRFS with κ = −3. The largest differ-
ences are obtained for April, May and July, and the lowest for
March and June, thus confirming the conclusions drawn from
the graphical analysis.

FIGURE 7. WSD percentage variation of fault related frequencies.

V. CONCLUSION
With the objective of optimizing O&M costs towards reduc-
ing the LCOE of wind energy, the present paper introduces an
innovative CMwavelet-basedmethod applied to an in-service
WT generator, which is one of the most critical components
regarding the availability and reliability of WTs.

The machine under study had been previously diagnosed
with rotor mechanical unbalance using CSA, validated with
advanced vibration analysis. This study, however, failed to
investigate the evolution of the fault over the period explored.

In the present study, for the first time in the scientific
literature, WSD was implemented to the stator currents of a
WT DFIG operating in the field, in contrast to the majority of
the published studies, which are based on laboratory benches
or computer simulations. WSD is a novel wavelet-based
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technique able to estimate the similarities between two time
series in the time-frequency domain. This technique allowed
us to compare the fault-related frequencies present in the
stator current signals, the dissimilarities in this case, thus
allowing the evolution of the previously diagnosed fault to
be tracked and quantified. The results of the analysis were
presented graphically comparing the reference month (Jan-
uary) to each of the following months until August, as well
as quantitatively analyzing the percentage of dissimilarities.
Both the graphical and the quantitative analyses proved to be
successful in tracking the target (fault-related) frequencies.

In conclusion, CSA is able to identify the fault, how-
ever, it is limited to quantify and track its evolution. On the
other hand, whilst WSD is able to overcome this limitation,
the method alone is not able to achieve the diagnosis. Thus,
the combination of CSA (able to achieve a diagnosis) and
WSD (able to track and quantify the evolution of the fault)
shows strong potential in developing CM for WTs. In this
regard, predictive maintenance techniques based on CM are
applied individually to each WT in the wind farm, such
as commercial CM systems based on oil analysis, SCADA
and/or vibration data. The analysis of the current spectra
proposed towards monitoring the induction generator is also
performed individually and, therefore, it can be easily applied
to any WT fleet size, following the same procedure that the
mentioned commercial systems.
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