
Received May 28, 2021, accepted June 14, 2021, date of publication June 18, 2021, date of current version July 2, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090464

Deep Learning and Regularization Algorithms
for Malicious Code Classification
HAOJUN WANG 1, HAIXIA LONG 1, AILAN WANG 2, (Member, IEEE),
TIANYUE LIU1, AND HAIYAN FU1
1School of Information Science and Technology, Hainan Normal University, Haikou 571158, China
2Geneis Beijing Company Ltd., Beijing 100102, China

Corresponding author: Haixia Long (myresearch_hainnu@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61762034, in part by the Hainan
Provincial Natural Science Foundation of China under Grant 618MS057 and Grant 620MS046, in part by the Hainan Provincial Innovation
Research Team under Grant 2019CXTD405, in part by the Hainan Provincial Innovative Research Project for Postgraduates under
Grant Hys2020-334, in part by the Hainan Provincial Reform in Education Project of China under Grant Hnjg2020-31 and
Grant Hnjg2021ZD-15, and in part by the Education Department of Hainan Province of China under Grant Hnky2021-24.

ABSTRACT Network security has become a growing concern within the popularity and development of the
Internet. Malicious code is one of the main threats to network security. Different types of malicious code have
different functions and cause different harms. Therefore, improving the detection efficiency and recognition
accuracy of malicious code is becoming an urgent problem to be solved. While traditional machine learning
methods for malicious code detection largely depend on hand-designed features with experts’ knowledge of
the domain or focus on the images which come from malicious code binary files. These methods spend too
much time on feature extraction. With the emergence of a large amount of malicious code data, the efficiency
of traditional machine learning algorithms is getting worse and worse. In this paper, a workflow based on
deep learning is proposed to detect and classifymalicious codes. This workflow adopts a convolutional neural
network (CNN) and the regularization algorithms to classify malicious code with N_gram semantic feature
as input of the model. The convolutional neural network can automatically extract the features of malicious
code while avoiding the need for manual feature selection. Regularization algorithms not only speed up
the training process of the deep model but also improve the generalization ability in the case of effective
prevention of over-fitting of the model. The proposed method is compared with the state-of-the-art methods
and other deep learning models. Experimental results show that our workflow can improve the accuracy and
efficiency of malicious code classification.

INDEX TERMS Malicious code classification, deep learning, convolutional neural networks, N-gram,
regularization algorithm.

I. INTRODUCTION
Malicious Code has become one of the major threats to
network security. It is a software or code fragment com-
piled to destroy software and hardware devices, stealing user
information, disturbing user psychology, and interfering with
normal use without authorization. Malicious code refers to
the code that is artificially written or set and will cause harm
to the network or system [1]. Broadly speaking, malicious
code is also called malware which comes from merging the
two words ‘‘Malicious’’ and ‘‘Software’’ [2] or malicious
program. According to the definition of malicious code, mali-
cious code includes but is not limited to Computer Virus,

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

Worm, Trojan Horses, Rootkit, Spyware, Dishonest Adware,
Crime ware, Logic Boom, Back Door, Botnet, Phishing, Mal-
ice Script, Spam, Malware in Intelligent Terminal Device and
so on. Since malicious code is a program or code fragment
with special functions, it often causes a lot of potential harms,
such as destroying data, infringing on the system, stealing
information, and leaking privacy. In addition, malicious code
also has a unique ability to infect and spread. It can quickly
infect hosts and spread quickly in the local area network or
the internet.

With the emergence of malicious code technology, anti-
malicious code technology has also emerged. The two tech-
nologies are mutually interdependent and evolve with each
other. Malicious code detection is the primary technology
against malicious code. Its main purpose is to analyze the

91512 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-7426-2359
https://orcid.org/0000-0002-2484-9389
https://orcid.org/0000-0002-1329-017X


H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

characteristic of software or code to determine whether
it is malicious code. The accuracy of detection deter-
mines whether the harm caused by malicious code can be
eliminated. Traditional malicious code detection technology
requires manual feature extraction and identification of mali-
cious code source files, and comparisons of the extracted
features with a huge feature library to determine whether
it is malicious code. Therefore, the detection efficiency of
malicious code is relatively low and the accuracy of detection
relies on manually extracted features.

To improve the accuracy and speed up the efficiency of
malicious code detection, this paper presents malicious code
detection technology based on deep learning models and
regularization algorithms. Our research comes with the fol-
lowing contributions:

1) We provide a review of related work on malicious code
classification.

2) We use operation codes that are generated during the
disassembly of a large number of malicious code sam-
ples and then extracted operation code N-gram with
different n values. Based on the operation codeN-gram,
convolutional neural network (CNN), Gated Recurrent
Unit (GRU), and Support Vector Machine (SVM) are
trained.

3) Our model does not require any domain expert knowl-
edge, such as reverse engineering, binary disassembly,
assembly language. The performance with accuracy
0.98 and Macro-F1-score 0.95 of our model exceeded
some state-of-the-art methods.

4) Analyzing by performing classical machine learning
and deep learning architectures on large datasets with
a purpose to evaluate our proposed architectures in
terms of their efficacy in dealing with large datasets of
unknown types of malicious codes.

The rest of the paper is organized as follows. Section 2
presents related works of malicious code classification.
In Section 3, we present the methods used in this paper
which are consist of a convolutional neural network with
regularization algorithms, features extraction, and evaluation
metrics. Section 4 describes the experiments and results.
Lastly, Section 5 summarizes our research, highlighting the
limitation of the study and future research work.

II. RELATED WORK
Malicious code detection technology may be grouped
into static and dynamic detection technology according to
whether malicious code is running [3].

Static detection technology is a relatively basic and com-
monly used detection technology [4], [5]. In the case of
not running malicious code, the structure, flow, and func-
tion of the unexecuted program are analyzed through tech-
niques such as disassembly and decompilation to determine
whether it is malicious code or contains malicious code
fragments. Therefore, static detection is a well-established
method for malicious code detection. Commonly used
static detection technologies include signature detection

technology [6], heuristic scanning technology [7], integrity
detection technology, etc.

Dynamic detection technology [8]–[10] refers to whether
the target program contains malicious behavior by observ-
ing and analyzing the behavior of the program and com-
paring the changes in the program’s operating environment
when running the target program. Determine whether there
is malicious behavior by analyzing the characteristics of
one or more executions of the target program. The dynamic
detection technology can accurately detect the abnormal
attributes of the program, but it cannot determine whether a
particular attribute exists. Therefore, the dynamic detection
technology is incomplete. Commonly used detection tech-
niques include behavior monitoring detection, code simula-
tion detection, etc.

In recent years, there have been many kinds of research
on malicious code detection classification based on machine
learning. Especially in the case of a large amount of data,
many deep learning models [11] have highlighted their good
ability to solve large-scale malicious code problems. Most of
these studies can be grouped into static detection technology.

A. METHODS BASED ON CLASSIC MACHINE LEARNING
Naeem et al. [12] designed a malware classification sys-
tem (MICS) that first extracted hybrid features of malware
and then used SVM for classification. Their method achieved
97.4% classification accuracy while taking only 9339 sam-
ples from 25 malware families. While for small-scale anal-
ysis, their method achieved 99.6% classification accuracy
by taking only 5116 samples from 10 malware families.
Khalilian et al. [13] mined frequent sub-graphs from the
operation code graphs of metamorphic malware and adopted
J48, Naïve Bayes, and Logistic Regression to classify meta-
morphic malware. It is intended to alleviate the burden
of human experts and underlying costs. Zhang et al. [14]
proposed a static analysis method to classify ransomware
families based on the N-gram of Operation code. They
applied five machine learning algorithms (Decision Tree,
Random Forest, K-Nearest neighbor, Naïve Bayes, and Gra-
dient Boosting Decision Tree) to build a classifier with the
best accuracy of 91.43%. But they cannot distinguish well
all of the families of ransomware, like cryptowall, locky,
and reveton. Liu et al. [15] proposed a multi-layer learning
framework based on a bag-of-visual-words model to extract
robust texture feature representations of malware gray scale
images. This method has a high computational cost and may
not be effective against malware disguised with obfuscation
techniques.

B. METHODS BASED ON DEEP LEARNING
Yan et al. [16] proposed a deep neural network that took
Convolutional Neural Networks (CNN) and Long-Short Term
Memory (LSTM) networks to automatically learning fea-
tures from the malicious files. It greatly reduced the cost
of artificial features engineering. Gibert et al. [17] trans-
formed the malware classification problem into time series

VOLUME 9, 2021 91513



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

classification problem by representing malware executable
as entropy value streams and then used CNN classifier to
learn optimal discriminant subsequences of the time series.
For the Microsoft dataset, this method achieved an accuracy
of 98.28%. Nevertheless, it cannot work well for malware
families with a small number of samples. For example, for
the Simda family with only 42 samples, the classification
accuracy was only 80.95%. Cui et al. [18] adopted the BAT
Algorithm (BA) and combinedwith the Convolutional Neural
Network (CNN) to improve the scheme proposed by Nataraj
to solve the over-fitting problem caused by the uneven num-
ber of samples of malicious code family. Ni et al. [19] have
designed a malware classification technique called MCSC
(Malware Classification using SimHash and CNN), which
converts the disassembled malware codes into gray images
based on SimHash and then identifies their families by a
convolutional neural network. Riaz Ullah Khan et al. [20]
have utilized two distinct models which are GoogleNet and
ResNet to identify the obscure or new sort of malware. They
got a testing accuracy of 74.5% on GoogleNet and 88.36%
precision on ResNet. Vinayakumar et al. [21] novelty in
combining visualization and deep learning architectures for
static, dynamic, and image processing-based hybrid approach
applied in a big data environment is the first of its kind
toward achieving robust intelligent zero-day malware detec-
tion. Overall, this paper paves way for effective visual detec-
tion of malware using a scalable and hybrid deep learning
framework for real-time deployments. Liu et al. [22] pro-
posed a visual detection method of malicious code based on
adversarial training (AT) and CNN, which not only improved
the detection accuracy of malware analysis but also prevented
potential attacks of related variants. The method achieved up
to 97.73% accuracy, along with 96.25% on average for all
malware tested.

C. METHODS BASED ON IMPROVEMENT DEEP LEARNING
Sepideh Mohammadkhani and Esmaeilpour [23] proposed a
newmethod for the detection of malware using reinforcement
learning. This method combined the trial and error mecha-
nism of reinforcement learning and the action optimization
strategy, as well as the mining of in-depth features of the
image by deep learning, to realize the identification of mali-
cious code. Venkatraman et al. [24] presented the use of
image-based techniques for detecting suspicious behavior of
systems and proposed the application of hybrid image-based
approaches with CNN-based deep learning architectures
for effective malware classification. They proposed two
CNN-based models: Unidirectional GRU (UniGRU) and
Bidirectional GRU (BiGRU) models, also measured and
compared the performance to other existing CNN architec-
tures like Unidirectional LSTM (UniLSTM ), and Bidirec-
tional LSTM (BiLSTM). They performed experiments on
two publicly available datasets: i) Microsoft Malware Clas-
sification Challenge (BIG, 2015) dataset and ii) Malimg
dataset. Their model obtained ∼96% accuracy on average,
however, the model did not consider the overhead time [24].

To ameliorate the lack of large publicly labeled datasets,
Singh et al. proposed a GAN-based generative model for
malware images and used the Malimg dataset to verify its
effectiveness [25]. It can be used as a data augmentation tech-
nique to generate high-quality synthetic samples. Paper [26]
investigates a central issue of how different hashing tech-
niques can be combined to provide a quantitative malware
score and to achieve better detection rates. They design and
develop a novel approach for malware scoring based on the
hashes results. The proposed approach is evaluated through
several experiments. The evaluation demonstrates a signifi-
cant improvement (>90%) in true detection rates of malware.

These technologies have broken through the shortcomings
of traditional malicious code detection. In terms of analyzing
a large number of variants and even unknown samples, and
improving the speed and accuracy of detection, they have
greatly improved the traditional malicious code detection
technology. Traditional machine learning-based approaches
often require pre-defining and extracting a set of features,
which is computationally intensive and unsuitable for han-
dling large amounts of data. Deep learning automates feature
engineering, avoiding the high cost of manual feature selec-
tion and enabling the extraction of effective features.

III. METHODS
This paper presents a method to detect and classify malicious
code using N_gram feature extraction and regularization con-
volutional neural network based on batch normalization. The
structure diagram of the malicious code classification method
in the present study is shown in Fig.1.

FIGURE 1. Structure of the malicious code classification method.

A. CONVOLUTIONAL NEURAL NETWORK (CNN)
The convolutional neural network inherits the commonmulti-
layer perceptual machine (MLP) structure as a feed-forward
network. It contains multiple nonlinear feature transforma-
tions, where the parameters of the transformations are trained
using the Gradient Descent (GD)method. In the feed-forward

91514 VOLUME 9, 2021



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

neural network, the transformation process is as follows.

y = f

(
M∑
i=1

wixi + w0

)
(1)

where wi are the parameters (weights) of the neural network,
f is nonlinear functions that can approximate more complex
functions as more layers of the model are added.

The convolutional neural network model mainly contains
the following layers, as shown in Fig.2, usually convolutional,
activation, and pooling layers together, and can contain mul-
tiple convolutional and fully connected layers.

FIGURE 2. Convolutional neural network model.

The convolution layer uses a non-linear function and uses
a convolution filter to move in a predefined window to extract
features from data samples. The filter k discrete convolution
performed the following transformation on the input I :

(I × K )r,s =
h1∑

u=−h1

h2∑
v=−h2

Ku,vIr+u,s+v (2)

where h1 and h2 represent the size of convolution kernels, r, s
is the position of input I .

The filter is derived from the following formula:

K =

K−h1,−h2 · · · k−h1,h2
... K0,0

...

Kh1,−h2 · · · Kh1,h2

 (3)

The output of the convolutional layer (Y ) consists of a
series of feature diagrams, and the calculation formula for the
ith feature diagrams is:

Yi = Bi +
∑

Ki,j × Xj (4)

where B is the bias value.
It is mainly characterized by local perception, weight shar-

ing, and multi-convolution kernel. The former two mainly
play a role in dimensionality reduction, while the latter pro-
vides specific operations for the re-extraction of features
of different granularities. Fig.3. shows the structure of the
convolutional layer. Through reasonable extraction of convo-
lutional features, the convolutional neural network can help
us distinguish the difference between malicious code and
normal programs. The input matrix represents the features of
the operation code extracted by N_gram, and the filter slides
across the entire row of the matrix, similar to the application

FIGURE 3. Convolutional layer structure.

in natural language processing (NLP). The width of the filter
represents the width of the convolution kernel. Usingmultiple
convolution kernels to perform convolution operations on the
input sample matrix, and the size of the convolution kernel
can be selected arbitrarily. In the experiment, we can compare
the accuracy of malicious code detection and classification
in the case of different filters by changing the size of the
convolutional layer filter.

The pooling layer, also known as the down sampling layer,
takes the feature results extracted from the convolution layer
as input, and then further extracts the features to get deeper
features. There are two main types: Maximum Pooling and
Average Pooling. The former takes the maximum value in
each sampling, and the latter takes the average value. The
principle of the pooling layer can be expressed as:

pooling (xl−1) sl = f (βl · pooling(xl−1)+ bl) (5)

where, pooling(xl−1) is the pooling operation on the features
of the l − 1 layer, which is the output of the convolutional l
layer, f is the activation function, βl and bl are used for bias
of feature map output.

In general classification results were the output of the fully
connected layer of the model. Because the classification of
malicious codes is a multi-classification problem, and the
features of different malicious codes are mutually exclusive,
the Log softmax classifier is used for classification. It does
one more log operation on the softmax result. The function
can be expressed as the formula (6):

P(i) = log
exp(θTi x)
K∑
k=1

exp(θTk x)

(6)

where, θi and x are column vectors. The output value of
P(i) has be scaled between 0 and 1 by the softmax function.
In classification problems, θ is usually the parameter to be
sought, and P(i) is maximized by searching θi as the best
parameter.

The loss function used in the model is the cross-entropy
loss function, and its formula is as follows:

Loss = −
∑

i
qi lgαi (7)

VOLUME 9, 2021 91515



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

where, αi is the confidence that the model predicts that it is
the ith type of malicious code, and qi indicates which type the
malicious code sample belongs to by truth. If the sample is k ,
then qk = 1 and other values are 0.
The activation function of the model uses Rectifier Linear

Unit (ReLU). Compared with the activation functions such as
Sigmoid and Tanh, the calculation of the ReLU is simpler,
and the characteristics of the function help the training and
convergence of the neural network model. The formula is
shown as follows:

Re LU (x) = max(0, x) (8)

B. BATCH NORMALIZATION
Each iteration of the neural network during the training pro-
cess changes the parameters of each layer, which leads to a
constant change in the distribution of the input data of the
subsequent layers of the neural network, which will become
more and more variable as the deep network is multi-layered,
and to solve this problem, Batch Normalization is introduced,
which has a regularization effect in the application. Normal-
ization gives the data a zero mean and unit variance, and the
data are transformed as follows.

x ′ =
x − E(x)
√
Var(x)

(9)

Assuming that the input data of each iteration during train-
ing are X = {x1, x2, . . . , xm}, and the learning parameters are
γ, β, the process of the Batch Normalization algorithm is as
follows:

1) calculate the mean:

µβ =
1
m

m∑
i=1

xi (10)

2) calculate the variance:

σ 2
β =

1
m

m∑
i=1

(xi − µβ ) (11)

3) normalization:

x̂l =
xi − µβ√
σ 2
β + ε

(12)

4) data scaling and translation:

yi = γ x̂i + β (13)

The Batch Normalization described above is the process
during training, and only one sample at a time is predicted
during the testing phase, so there is no µβ and σ 2

β . At this
point, the mean and variance computed during the training
phase can be used. This is done by using the mean value
calculated for each iteration of the training as the mean value
for the test, and the variance is an unbiased estimate of the
variance of each iteration.

Batch Normalization has the following advantages: 1) Gra-
dient disappearance and gradient explosion can be avoided.

The more and more skewed distribution is forced back to a
more standard distribution so that the activated input value
falls in the area where the nonlinear function is more sen-
sitive to the input. In this way, a small change in the input
will lead to a larger change in the loss function, which can
make the gradient becomes larger and avoid the problem of
gradient disappearance. 2) The training speed is accelerated.
The larger the gradient means that the convergence rate of
learning is fast, which can greatly accelerate the training
speed. 3) Improving model generalization ability. Because
batch standardization is not applied to the entire data set,
but to mini-batch, some noise will be generated, which can
improve the generalization ability of the model.

The loss function used in the model is cross-entropy. The
cross-entropy ismainly used to determine the proximity of the
actual output and the expected output, depicting the distance
between the actual output probability and the expected out-
put probability, i.e., the smaller the cross-entropy, the closer
the two probability distributions, which is calculated by the
following formula.

H (p, q) = −
∑
x

(p(x) log q(x)+ (1− p(x)) log(1− q(x)))

(14)

In the formula, p represents the expected output, q is the
actual output, and H (p, q) is the cross entropy.

C. CNN MALICIOUS CODE DETECTION CLASSIFICATION
BASED ON BATCH NORMALIZATION
Since the executable program instructions of the malicious
code are equivalent to a piece of text, when choosing a mod-
eling method, there are certain similarities with the content
of the processing text, and the convolution filter can be used
to extract information and high-level feature detection for
short text.

The N-gram-based convolutional neural network is com-
posed of multiple convolutional layers and pooling layers.
The malicious code classification model used in this imple-
mentation consists of two convolutional layer blocks, two
pooling layers, and two full connection layers. Each convolu-
tion block is composed of two convolution layers, using 5×5
and 3 × 3 small convolution kernels respectively. Compared
with the large convolution kernels, the small convolution
kernels increase the depth of the neural network model and
the number of nonlinear conversions, while ensuring that
fewer parameters can be used to learn more complex features.
The convolutional layer extracts features from the data while
keeping the input size unchanged; the pooling layer plays
the role in the second feature extraction; the fully connected
layer is mainly to achieve the final classification. The detailed
parameters are shown in Table 1.

The complete algorithm of CNN_BN is presented in Alg. 1

D. DATA SETS
The data set used in this article is from the malicious code
classification data set used in the Kaggle Machine Learning

91516 VOLUME 9, 2021



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

TABLE 1. Convolutional neural network model parameters.

Algorithm 1 CNN_BN
Input: The malicious code file after the N-gram extraction
feature, The number of iterations epochs
Output:Malicious code classification results r
1: for epoch in epochs do
2: for each malicious code xi in malicious code do
3: The convolution layer convolves with xi
4: Batch normalization is carried out for the result after
convolution according to Eq.(10-13).
5: Further extraction of features according to Eq.(5).
6: Fully connected and Log softmax
7: get a result ri
8: end for
9: Repeat step 2-7 until epoch = epochs, while disrupting
the malicious code file
10: end for
11: get result r

Challenge, a machine learning-based data analysis compe-
tition hosted by Microsoft in 2015. This data set has been
used in the papers of Gibert et al. [17], Kalash et al. [27], and
Xiao et al. [28]. It contains 10868malicious code samples and
is divided into 9 different types. The size of the data is nearly
200 GB. In the current experiment, 80% of the 10868 samples
are used as the training data set and the remaining 20% as the
test set. Details are shown in Table 2.

The distribution of sample categories and quantity in the
dataset is shown in Fig.4.

E. FEATURE EXTRACTION
In the entire process of malicious code detection and classifi-
cation, feature extraction is one of the most important steps.

TABLE 2. Malicious code datasets.

FIGURE 4. Dataset distribution.

The quality of feature selection directly affects the perfor-
mance of model classification. This paper uses the Operation
code feature extraction method based on N-gram.

Operation code is part of a machine language instruction.
It selects the operation to be performed. A complete class of
machine language instructions consists of a specification of
one or more operands or an operation code. The operations
of an operation code can include arithmetic, data manipula-
tion, logical operations, and program control.

The N-gram model is widely used in natural language
processing, information querying, bioengineering, and other
fields. In [29], researchers presented technology that auto-
matically detects the n-gram and clustering coefficient-based
malware mutants and that automatically groups the different
types of malware. They verified our system by applying
more than 2600 malicious codes. The proposed technol-
ogy does more than just respond to malware as it can also
provide the ground for the effective analysis of new mal-
ware, the trend analysis of a malware group, the automatic
identification of specific malware, and the analysis of the
estimated trend of an attacker. In [30], a detailed investi-
gation has been performed to evaluate the effectiveness of
unigram, bigram, and trigram with stacked generalization.
It’s been found that with stacking, unigram provides more
than 97% of accuracy which is the highest detection rate

VOLUME 9, 2021 91517



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

against bigram and trigram. Wu et al. [31] present a malware
classification method based on malware binaries, command
sequences, and meta-features. They extracted key patterns
of interaction behavior using an n-gram model. The results
demonstrate 96.70% accuracy, with high precision and recall.
Muhanmmad et al. [32] investigated an alternative method
for malware detection that is based on N-grams and machine
learning. They use a dynamic analysis technique to extract an
Indicator of Compromise (IOC) for malicious files, which are
represented usingN-grams. In [33] researchers designed a sit-
uational awareness and analysis system for massive android
malware detection which is using N-gram model extract fea-
tures from App’s smali code and DEX file. N-gram model
is based on an assumption that words occurring at the nth
position are only related to the (n − 1)th word, and the
probability of occurrence of the whole sentence is the product
of the probability of occurrence of each word. The main
idea of n-gram is that, in a given text, starting from the first
character of the text data, sliding on the text with the size of n
characters, to produce a partially overlapping and continuous
short segment of length N (gram). Using the N_gram model
to express text information can improve the accuracy of text
similarity measurement. Malicious code is essentially a text
language, which also has structural and semantic features,
so N_gram can be used as a feature analysis and extraction
method for malicious code.

To extract operation code from PE files, we need to dis-
assemble the samples. Disassembly translates the machine
instructions stored in the PE files into a language that is
more easily readable by human beings. In the experiment,
we use IDA Pro to realize disassembly. Generate ASM file
to store assembly instructions and extract operation code
sequence from ASM file. Finally, the operation code N-gram
is generated according to different n values. In the field
of deep learning, a large number of features will not only
increase the training time of the model, but also sometimes
cannot improve the accuracy of the model, or even reduce the
accuracy. Therefore, we select the operation code whose text
frequency is more than 500 times is retained as a feature. The
process is shown in Fig. 5.

FIGURE 5. The process of the operation code generation.

In the experiment, we collected ASM files generated
by disassembly from open sources and divided the train-
ing set and test set according to the ratio of 8:2. And the
2-gram, 3-gram, and 4-gram sequences of operation codes are
extracted from each ASM file.

F. EVALUATION METRICS
The deep learning used in this article belongs to the field of
machine learning, and malicious code detection belongs to
the multi-classification problem in machine learning prob-
lems. We use the following evaluation metrics to evaluate the
performance of the model.

TP: If the sample is a positive class and is predicted as a
positive class, it is a true positive.

FP: If the sample is a negative class and is predicted as a
positive class, it is called a false positive.

TN: If the sample is a negative class and is predicted to be
a negative class, it is called a true negative class.

FN: If the sample is a positive class and is predicted as a
negative class, it is called a false negative.

Accuracy: indicates the accuracy of classification, that is,
in a given sample, the proportion of the number of correctly
classified samples to the total sample. The calculation for-
mula is:

Accuracy =
TP+ TN

TP+ FN + TN + FP
(15)

Precision: refers to the proportion of truly correct samples
among the samples whose prediction results are positive. The
calculation formula is:

Pr ecision =
TP

TP+ FP
(16)

Recall (recall rate): refers to the proportion of samples that
are predicted to be positive in the total positive samples. The
calculation formula is:

Re call =
TP

TP+ FN
(17)

F1-score: It is a blend of precision and recall. Because
the precision and recall are mutually exclusive, when one
increases, the other one tends to decrease correspondingly.
In order to reconcile the two indicators, F1-score is intro-
duced, and its calculation formula is:

F1 = 2×
Pr ecision× Re call
Pr ecision+ Re call

(18)

Macro-average F1: F1’s macro average score is defined
as the arithmetic average of the F1 scores of each category,
that is, comprehensive and equal consideration of the accu-
racy of each category. It can well reflect the classification
performance of the model for all classes, and its calculation
formula is:

Macro− average =
1
n

n∑
i=1

F1 (19)

ROC curve: refers to the receiver operating characteristic
curve, which is a comprehensive indicator that reflects the
sensitivity and specificity of continuous variables, and uses
the composition method to reveal the relationship between
sensitivity and specificity. The range of the horizontal and
vertical coordinates of the ROC curve is [0, 1]. Generally,
the larger the area formed by the ROC curve and the x-axis,
the better the performance of the model.

91518 VOLUME 9, 2021



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

IV. EXPERIMENTS AND RESULTS
To verify the performance of the sequences of operation codes
which are extracted from ASM files, we use 2-gram, 3-gram,
and 4-gram sequences of operation codes in experiments.
Fig. 6 shows the accuracy on testing dataset of three N-grams
on dataset. It can be observed that 3-gram is the most suitable
sequences of operation codes.

FIGURE 6. The accuracy curves of three N-gram.

To demonstrate the performance of the CNN_BN model,
the experimental results of CNN_BN are compared with
the results of the support vector machine of the traditional
machine learning model, the GRU model based on the recur-
rent neural network model, and the convolutional neural net-
work without Batch Normalization respectively.

Table 3 shows the performance of each machine learn-
ing model on the testing data set. The higher the value of
Accuracy, Precision, Recall, and F1-score, the better the per-
formance of the model is. It can be seen from Table 3 that
the performance of the traditional machine learning model
SVM is not as good as that of the deep learning model.
In addition, the overall performance of the recurrent neural
network is not as good as that of the convolutional neural
network. Although CNN obtains the best precision value,
we select the best model according to the Macro F1-score.
This is because accuracy and precision can be misleading
measures in datasets including class imbalance. For instance,
a model can correctly predict the value of the majority class
for all predictions and achieve high classification accuracy
while making mistakes on the minority and critical classes.
The macro F1-score metric penalizes this kind of behavior
by calculating the metrics for each label and finding their
un-weighted mean. The highest Macro F1-score (0.95) is
reached by CNN_BN. So, the CNN_BN model has the best
performance in malicious code detection.

To further evaluate the performance of our approach,
we compared CNN_BN with state-of-the-art methods in the
literature that have evaluated their models on the dataset

TABLE 3. Performance of the models.

TABLE 4. Performance of methods evaluated on the microsoft malware
classification challenge.

TABLE 5. Performance of CNN_BN on 9 categories.

provided for Kaggle’s Microsoft Malware Classification
Challenge. The results are shown in Table 4. As a whole,
CNN_BN algorithm obtains better results compared with
state-of-the-art methods referring to the values of Accuracy
(0.98) and Macro-F1-score (0.95). The values of Precision
and Recall are not mentioning in the state-of-the-art methods.

Tables (5-8) show the classification performance of the
models CNN_BN, CNN, GRU, and SVM on each cate-
gory of malicious code, respectively. From the average val-
ues of nine categories, CNN_BN model achieves the best
Recall (0.94) and F1-score (0.95), the CNN model obtains
the best Precision (0.97). On the other hand, the Recall is
0.75 and the F1-score is 0.78 of the SVM algorithm, both of
Recall and F1-scoce are 0.85 for GRU model. On the whole,
the CNN_BNmodel is outperforming the other three models.
Neural networks and in particular convolutional neural net-
works have recently attracted the academic community due
to their advantages in processing raw data and their ability to
learn features by themselves.

To show the performance of the three neural networks in
malicious code classification more intuitively, Fig.7 shows
the loss curves and accuracy curves of the three neural net-
workmodels on the training data sets and the testing data sets.
Fig.7 (a) and (b) show the loss curves and accuracy curves
of the three kinds of neural networks on the training data

VOLUME 9, 2021 91519



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

FIGURE 7. The loss curve and accuracy curve of the three neural network
models. (a) and (b) on the training data sets, (c) and (d) on the test data
sets.

sets, and Fig.7 (c) and (d) show the loss curves and accuracy
curves on the testing data sets respectively. The smaller the
loss value is, or the greater the accuracy value is, the better

FIGURE 7. (Continued.) The loss curve and accuracy curve of the three
neural network models. (a) and (b) on the training data sets, (c) and
(d) on the test data sets.

TABLE 6. Performance of CNN on 9 categories.

TABLE 7. Performance of GRU on 9 categories.

the classification performance of the model will be. As shown
in Fig.7 (a) and (c), the red curve is remarkably smaller than
the blue or green line. It can be seen from Fig.7 (b) and (d),
the red line is greater than the blue or green line. The results
once again indicating that the proposed predictor is indeed
much better than GRU and CNN predictors. Most important
of all, the error of the convolutional neural network is indeed
reduced by Batch Normalization.

To provide an intuitive comparison, the graph of Receiver
Operating Characteristic (ROC) is utilized to show the advan-
tage of CNN_BN. Fig.8 shows the ROC curves for the four

91520 VOLUME 9, 2021



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

TABLE 8. Performance of SVM on 9 categories.

FIGURE 8. ROC curves for the four models.

FIGURE 9. A confusion matrix for CNN_BN.

models. The area under the ROC curve is called AUC (area
under the curve). The greater the AUC formed by the ROC
curve with the abscissa, the better the predictor will be. As we
can be seen, the AUC value of CNN_BN is 0.97 which is
remarkably greater than SVM and GRU. Compared with the
AUC value (0.96) of CNN model, although CNN_BN has
a little improvement, it is anticipated that CNN_BN will
become a useful high throughput tool in this important area,

FIGURE 10. A confusion matrix for CNN.

FIGURE 11. A confusion matrix for GRU.

or at the very least, play a complementary role to the existing
methods.

The confusion matrix values are composed of the true
position rate and the false negative rate of the malicious code
classification. The abscissa in the confusion matrix repre-
sents the neural network prediction classification, the ordi-
nate represents the true classification, and the numbers on the
diagonal mean the number of correct classifications by the
neural network. The numbers outside the diagonal represent
the number of inconsistencies between the predicted classi-
fications and the true classifications, indicating the number
of incorrect classifications by the neural network. Figs. 9-12
show the confusion matrix of the four algorithms in the

VOLUME 9, 2021 91521



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

FIGURE 12. A confusion matrix for SVM.

9 types of malicious code detection and classification results
on test data sets. The total sample size is 2174. The number
of misclassification of samples is respectively 38, 53, 71,
and 269 for CNN_BN, CNN, GRU, and SVM. Fig. 9 shows
the confusion matrix of the CNN_BN algorithm. The major
source of errors comes from the misclassification of samples
belonging to the Tracur family, which 26 out of the 168 Tracur
samples have been incorrectly classified. From the results of
the confusion matrix, it can be concluded that the CNN_BN
model has the best performance on test data sets.

V. CONCLUSION AND DISCUSSIONS
This paper presents a classification method for malicious
code detection based on Operation code N-gram semantic
feature extraction method combined with deep convolutional
neural network and Batch Normalization regularization algo-
rithm (CNN_BN). The method used in this paper achieves a
classification accuracy of 0.98 and achieves macro-F1-score
is 0.95 on Microsoft’s public dataset compared with state-
of-the-art methods [18]–[21], [34]–[38] in Table 4. Further-
more, to verify the performance of the CNN_BN model,
the experimental results of CNN_BN are also compared with
the results of the support vector machine of the traditional
machine learning model, the GRU based on the recurrent
neural network model, and the convolutional neural network
without Batch Normalization respectively. Tables 5, 6, 7, and
8 show most of the values Precision, Recall, F1-score of
CNN_BN has reached 1.00 on compared with other deep
models (CNN and GRU) and traditional machine learning
(SVM).

Themethod used in this paper is effective inmalicious code
detection. Because, on the one hand, convolutional neural net-
works have recently attracted the academic community due
to their advantages on processing raw data and their ability to
learn features by themselves, on the other, regularization can

accelerate the convergence rate of the training process and
prevent over fitting of the deep model.

The trained CNN_BN model has good generalization abil-
ity. For unknown types of malicious codes, according to
our approach, at first, the features of a malicious code file
can be extracted by the N-gram method. Then, the extracted
malicious code features are classified by CNN_BN which
is trained by datasets in the article. Finally, fully connected
layers of deep learning models have the ability to predict.

Taken together, we can also draw the following further
research directions: Firstly, in the N-gram feature extraction
method used in this article, N is set to 3 and the frequency
statistical threshold between operation code is 500. We can
try other numerical combinations, and the frequency thresh-
old is set as a variable based on the size of the malicious code
file, rather than a constant value. Secondly, this article uses
in-set verification instead of out-of-set verification, so there
will be a problem of a relatively single data set, and different
data sets can be used to further verify the methods applied in
this article. Thirdly, the data set used in this experiment has
the problem of data imbalance, but this problem has not been
dealt with. Although the result was not bad, this problem also
needed attention and resolution.

ACKNOWLEDGMENT
The authors appreciate Jialiang Yang and others for useful
discussions.

REFERENCES
[1] G. Wang, T. Lu, and H. Yin, ‘‘Detection technology of malicious code

family based on BiLSTM-CNN,’’ J. Phys., Conf. Ser., vol. 1650, Oct. 2020,
Art. no. 032078.

[2] D. Vasan, M. Alazab, S. Wassan, H. Naeem, B. Safaei, and Q. Zheng,
‘‘IMCFN: Image-based malware classification using fine-tuned convolu-
tional neural network architecture,’’ Comput. Netw., vol. 171, Apr. 2020,
Art. no. 107138.

[3] S. Venkatraman and M. Alazab, ‘‘Use of data visualisation for zero-
day malware detection,’’ Secur. Commun. Netw., vol. 2018, pp. 1–13,
Dec. 2018.

[4] M. Amin, T. A. Tanveer, M. Tehseen, M. Khan, F. A. Khan, and S. Anwar,
‘‘Static malware detection and attribution in Android byte-code through
an end-to-end deep system,’’ Future Gener. Comput. Syst., vol. 102,
pp. 112–126, Jan. 2020.

[5] B. C. Yu, P. S. Song, and X. Xu, ‘‘An Android malware static detection
scheme based on cloud security structure,’’ Int. J. Secur. Netw., vol. 13,
no. 1, pp. 51–57, Jan. 2018.

[6] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
‘‘A comparison of static, dynamic, and hybrid analysis for malware detec-
tion,’’ J. Comput. Virol. Hacking Techn., vol. 13, no. 1, pp. 1–12, Feb. 2017.

[7] B. Zhang, Q. Li, and Y. Ma, ‘‘Research on dynamic heuristic scanning
technique and the application of the malicious code detection model,’’ Inf.
Process. Lett., vol. 117, pp. 19–24, Jan. 2017.

[8] S. S. Alotaibi, ‘‘Regression coefficients as triad scale for malware detec-
tion,’’ Comput. Electr. Eng., vol. 90, Mar. 2021, Art. no. 106886.

[9] S. M. Bidoki, S. Jalili, and A. Tajoddin, ‘‘PbMMD: A novel policy
based multi-process malware detection,’’ Eng. Appl. Artif. Intell., vol. 60,
pp. 57–70, Apr. 2017.

[10] Z. Salehi, A. Sami, and M. Ghiasi, ‘‘MAAR: Robust features to detect
malicious activity based on API calls, their arguments and return values,’’
Eng. Appl. Artif. Intell., vol. 59, pp. 93–102, Mar. 2017.

[11] M. Kalash, M. Rochan, N. Mohammed, N. Bruce, Y. Wang, and F. Iqbal,
‘‘A deep learning framework for malware classification,’’ Int. J. Digit.
Crime Forensics, vol. 12, no. 1, pp. 90–108, Jan. 2020.

91522 VOLUME 9, 2021



H. Wang et al.: Deep Learning and Regularization Algorithms for Malicious Code Classification

[12] H. Naeem, B. Guo, and M. R. Naeem, ‘‘A light-weight malware static
visual analysis for IoT infrastructure,’’ in Proc. Int. Conf. Artif. Intell. Big
Data (ICAIBD), May 2018, pp. 240–244.

[13] A. Khalilian, A. Nourazar, M. Vahidi-Asl, and H. Haghighi, ‘‘G3MD:
Mining frequent opcode sub-graphs for metamorphic malware detection
of existing families,’’ Expert Syst. Appl., vol. 112, pp. 15–33, Dec. 2018.

[14] H. Zhang, X. Xiao, F. Mercaldo, S. Ni, F. Martinelli, and A. K. Sangaiah,
‘‘Classification of ransomware families with machine learning based on
N-Gram of opcodes,’’ Future Gener. Comput. Syst., vol. 90, pp. 211–221,
Jan. 2019.

[15] Y.-S. Liu, Y.-K. Lai, Z.-H.Wang, andH.-B. Yan, ‘‘A new learning approach
to malware classification using discriminative feature extraction,’’ IEEE
Access, vol. 7, pp. 13015–13023, 2019.

[16] J. Yan, Y. Qi, and Q. Rao, ‘‘Detecting malware with an ensemble
method based on deep neural network,’’ Secur. Commun. Netw., vol. 2018,
pp. 1–16, Mar. 2018.

[17] D. Gibert, C. Mateu, J. Planes, and R. Vicens, ‘‘Classification of malware
by using structural entropy on convolutional neural networks,’’ in Proc.
32nd AAAI Conf. Artif. Intell., (AAAI), 30th Innov. Appl. Artif. Intell.
(IAAI), 8th AAAI Symp. Educ. Adv. Artif. Intell. (EAAI), New Orleans, LA,
USA, 2018, pp. 7759–7764.

[18] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen, ‘‘Detection
of malicious code variants based on deep learning,’’ IEEE Trans. Ind.
Informat., vol. 14, no. 7, pp. 3187–3196, Jul. 2018.

[19] S. Ni, Q. Qian, and R. Zhang, ‘‘Malware identification using visualiza-
tion images and deep learning,’’ Comput. Secur., vol. 77, pp. 871–885,
Aug. 2018.

[20] R. U. Khan, X. Zhang, and R. Kumar, ‘‘Analysis of ResNet and GoogleNet
models for malware detection,’’ J. Comput. Virol. Hacking Techn., vol. 15,
no. 1, pp. 29–37, Mar. 2019.

[21] R. Vinayakumar, M. Alazab, K. P. Soman, P. Poornachandran, and
S. Venkatraman, ‘‘Robust intelligent malware detection using deep learn-
ing,’’ IEEE Access, vol. 7, pp. 46717–46738, 2019.

[22] X. Liu, Y. Lin, H. Li, and J. Zhang, ‘‘A novel method for malware detection
onML-based visualization technique,’’ Comput. Secur., vol. 89, Feb. 2020,
Art. no. 101682.

[23] S. Mohammadkhani andM. Esmaeilpour, ‘‘A newmethod for behavioural-
based malware detection using reinforcement learning,’’ Int. J. Data Min.
Model. Manag., vol. 10, no. 4, pp. 314–330, 2018.

[24] S. Venkatraman, M. Alazab, and R. Vinayakumar, ‘‘A hybrid deep learning
image-based analysis for effective malware detection,’’ J. Inf. Secur. Appl.,
vol. 47, pp. 377–389, Aug. 2019.

[25] A. Singh, D. Dutta, and A. Saha, ‘‘MIGAN: Malware image synthesis
using GANs,’’ in Proc. 33rd AAAI Conf. Artif. Intell., AAAI, 31st Innov.
Appl. Artif. Intell. Conf., IAAI, 9th AAAI Symp. Educ. Adv. Artif. Intell.,
(EAAI), Honolulu, HI, USA, 2019, pp. 10033–10034.

[26] A. P. Namanya, I. U. Awan, J. P. Disso, and M. Younas, ‘‘Similarity hash
based scoring of portable executable files for efficient malware detection
in IoT,’’ Future Gener. Comput. Syst., vol. 110, pp. 824–832, Sep. 2020.

[27] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and
F. Iqbal, ‘‘Malware classification with deep convolutional neural net-
works,’’ inProc. 9th IFIP Int. Conf. New Technol., Mobility Secur. (NTMS),
Feb. 2018, pp. 1–5.

[28] G. Xiao, J. Li, Y. Chen, and K. Li, ‘‘MalFCS: An effective malware
classification framework with automated feature extraction based on deep
convolutional neural networks,’’ J. Parallel Distrib. Comput., vol. 141,
pp. 49–58, Jul. 2020.

[29] T. Lee, B. Choi, Y. Shin, and J. Kwak, ‘‘Automatic malware mutant
detection and group classification based on the N-Gram and clustering
coefficient,’’ J. Supercomput., vol. 74, no. 8, pp. 3489–3503, Aug. 2018.

[30] T. Islam, S. S. M. M. Rahman, M. A. Hasan, A. S. M. M. Rahaman,
and M. I. Jabiullah, ‘‘Evaluation of N-Gram based multi-layer approach
to detect malware in Android,’’ Procedia Comput. Sci., vol. 171,
pp. 1074–1082, Jan. 2020.

[31] C.-J. Wu, S.-Y. Huang, K. Yoshioka, and T. Matsumoto, ‘‘IoT mal-
ware analysis and new pattern discovery through sequence analysis using
meta-feature information,’’ IEICE Trans. Commun., vol. E103.B, no. 1,
pp. 32–42, 2020.

[32] M. Ali, S. Shiaeles, G. Bendiab, and B. Ghita, ‘‘MALGRA: Machine
learning and N-Gram malware feature extraction and detection system,’’
Electronics, vol. 9, no. 11, p. 1777, Oct. 2020.

[33] Y. Zhang, W. Ren, T. Zhu, and Y. Ren, ‘‘SaaS: A situational awareness and
analysis system for massive Android malware detection,’’ Future Gener.
Comput. Syst., vol. 95, pp. 548–559, Jun. 2019.

[34] J. Drew,M. Hahsler, and T.Moore, ‘‘Polymorphic malware detection using
sequence classification methods and ensembles,’’ EURASIP J. Inf. Secur.,
vol. 2017, no. 1, pp. 1–12, Dec. 2017.

[35] M. Ahmadi, D. Ulyanov, S. Semenov, M. Trofimov, and G. Giacinto,
‘‘Novel feature extraction, selection and fusion for effective malware
family classification,’’ in Proc. 6th ACM Conf. Data Appl. Secur. Privacy,
Mar. 2016, pp. 183–194.

[36] Q. Le, O. Boydell, B. Mac Namee, and M. Scanlon, ‘‘Deep learning at
the shallow end: Malware classification for non-domain experts,’’ Digit.
Invest., vol. 26, pp. S118–S126, Jul. 2018.

[37] D. Gibert, C. Mateu, J. Planes, and R. Vicens, ‘‘Using convolutional neural
networks for classification of malware represented as images,’’ J. Comput.
Virol. Hacking Techn., vol. 15, no. 1, pp. 15–28, Mar. 2019.

[38] M. Yousefi-Azar, V. Varadharajan, L. Hamey, and U. Tupakula,
‘‘Autoencoder-based feature learning for cyber security applications,’’ in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), May 2017, pp. 3854–3861.

HAOJUN WANG was born in Zhejiang, China,
in 1997. He received the B.S. degree in infor-
mation management and information system from
Yuncheng University. He is currently pursuing the
master’s degree with the School of Information
Science and Technology, Hainan Normal Univer-
sity. His research interests include malware analy-
sis, deep learning, artificial intelligence, and cyber
space security.

HAIXIA LONG was born in Jiangsu, China,
in 1980. She received the Ph.D. degree in light
industry information technology and engineering
from Jiangnan University, in 2010. She is currently
a Professor with the School of Information Science
and Technology, Hainan Normal University. Her
research interests include deep learning, artificial
intelligence, and cyber space security.

AILAN WANG (Member, IEEE) received the
Ph.D. degree in bioinformatics from Northwest
A&F University. She is currently the Senior
Research Manager of Geneis Beijing Company
Ltd., China. Her research interests include bioin-
formatics, biostatics, machine learning, and deep
learning.

TIANYUE LIU was born in Chongqing, China,
in 1996. She received the B.S. degree in infor-
mation security from the Chongqing University of
Posts and Telecommunications. She is currently
pursuing the master’s degree with the School of
Information Science and Technology, Hainan Nor-
mal University. Her research interests include flow
analysis, artificial intelligence, and cyber space
security.

HAIYAN FU was born in Shandong, China,
in 1978. She received the Ph.D. degree in system
theory from Shandong University, in 2009. She
is currently a Professor with the School of Infor-
mation Science and Technology, Hainan Normal
University. Her research interests include artificial
intelligence and data mining.

VOLUME 9, 2021 91523


