
Received June 4, 2021, accepted June 16, 2021, date of publication June 18, 2021, date of current version June 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090672

Overcoming Catastrophic Forgetting Using
Sparse Coding and Meta Learning
JULIO HURTADO 1, HANS LOBEL 1,2, (Member, IEEE), AND ALVARO SOTO1, (Member, IEEE)
1Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
2Department of Transport Engineering and Logistics, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

Corresponding author: Julio Hurtado (jahurtado@uc.cl)

This work was supported in part by the National Fund for Scientific and Technological Development (FONDECYT) under
Grant 1181739 and Grant 11181152, in part by the Millennium Institute for Foundational Research on Data (IMFD), and in part by the
National Research and Development Agency (ANID)—Doctorado Nacional 2017.

ABSTRACT Continuous learning occurs naturally in human beings. However, Deep Learning methods
suffer from a problem known as Catastrophic Forgetting (CF) that consists of a model drastically decreasing
its performance on previously learned tasks when it is sequentially trained on new tasks. This situation,
known as task interference, occurs when a network modifies relevant weight values as it learns a new task.
In this work, we propose two main strategies to face the problem of task interference in convolutional neural
networks. First, we use a sparse coding technique to adaptively allocate model capacity to different tasks
avoiding interference between them. Specifically, we use a strategy based on group sparse regularization
to specialize groups of parameters to learn each task. Afterward, by adding binary masks, we can freeze
these groups of parameters, using the rest of the network to learn new tasks. Second, we use a meta learning
technique to foster knowledge transfer among tasks, encouraging weight reusability instead of overwriting.
Specifically, we use an optimization strategy based on episodic training to foster learning weights that are
expected to be useful to solve future tasks. Together, these two strategies help us to avoid interference by
preserving compatibility with previous and future weight values. Using this approach, we achieve state-
of-the-art results on popular benchmarks used to test techniques to avoid CF. In particular, we conduct an
ablation study to identify the contribution of each component of the proposed method, demonstrating its
ability to avoid retroactive interference with previous tasks and to promote knowledge transfer to future
tasks.

INDEX TERMS Artificial intelligence, learning (artificial intelligence), machine learning, supervised
learning, continual learning.

I. INTRODUCTION
Among the cognitive abilities of humans, memory is one
of the most relevant. In effect, the ability to recall past
experiences, knowledge, friendships, and emotions, is rooted
in the essence of what makes us humans. However, mem-
ories are fragile, in particular, studies from cognitive
psychology [6], [41] show that there are 3 main mecha-
nisms related to loss of memories: i) retrieval failure, ii)
task interference, and iii) lack of consolidation. In terms of
retrieval failure, forgetting occurs when long-term memory
is no longer accessible because the retrieval cues are no
longer present. In terms of task interference, memories can be
disrupted by similar memories or related information, leading
to proactive interference where old information disrupts new

The associate editor coordinating the review of this manuscript and

approving it for publication was Tallha Akram .

learning, or to retroactive interference where new knowl-
edge disrupts old information. Finally, in terms of lack of
consolidation, memories can be lost during the process of
transforming short-term to long-term memories.

In the case of artificial neural networks (ANN), task inter-
ference is behind the problem known as Catastrophic Forget-
ting (CF) [29], [40], [46], [51], [53]. Specifically, as a model
learns a new task, the weights of the network are modified.
This new learning provokes forgetting old information stored
in the weights of the model, causing retroactive interference.

The problem of task interference in ANN is more severe
than in the case of humans. In effect, when a previously
trained model is retrained on a new task, it usually suf-
fers a significant drop in performance in the original task
[26], [49], [60]. In contrast to artificial models, humans
have a remarkable ability to achieve continual learning with-
out experiencing CF problems. As an example, humans

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88279

https://orcid.org/0000-0002-4308-246X
https://orcid.org/0000-0003-3514-9414
https://orcid.org/0000-0003-4578-3849

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

continuously associate previous experience to new situations,
strengthening previous memories, and avoiding retroactive
interference [25].

Taking inspiration from the robustness of humans to avoid
retroactive interference, we develop a learning strategies to
face continual learning in ANN, i.e., the case when data for
each new task is presented sequentially to the learner, who
does not have access to previous data.

In this work, we propose a new method that exploits two
complementary learning strategies to mitigate CF in ANN,
in particular, deep Convolutional Neural Network (CNN).
These learning strategies are based on: i) dynamic allocation
of model capacity to avoid interference between tasks, and
ii) knowledge transfer from previous to new tasks to foster
weight reusability instead of overwriting.

In terms of dynamic allocation of model capacity, there is
usually a trade-off between providing flexibility to a model
to adapt its parameters to a new task versus keeping relevant
parameters unchanged. Previous works have mainly focused
on limiting this flexibility by penalizing changes of what
they identify as essential weights [2], [3], [26], [60]. In this
work, we propose a method to reduce interference by dynam-
ically allocating part of the network capacity to each task.
We achieve this by using sparse coding techniques [13] to
adaptively manage the number of parameters that are used to
learn each new task, while keeping the total model capacity
fixed. In contrast to previous approaches [38], we apply group
sparse regularization to foster the use of groups of parameters
that specialize to learn a task. Specifically, by adding selec-
tors, in the form of binary masks, we are able to freeze groups
of parameters that are key to solve a task, reserving the rest
of the network to learn new tasks.

In terms of knowledge transfer to new tasks, if a model is
able to learn parameters that are useful for past and future
tasks, there would be no need to drastically change their
values. Following this intuition, we propose a training strat-
egy that fosters learning of patterns that can be useful to
support several tasks. In particular, in the context of few-shot
learning [16], [45], meta-learning techniques have been used
to promote the learning of weights that can be quickly adapted
to handle new tasks [10], [43], [48]. Taking inspiration from
these ideas, we propose a meta-learning strategy that fosters
learning of weights that can be useful to favor a positive trans-
fer of knowledge between tasks, facilitating the acquisition of
continual learning skills.

In summary, this work makes the following three main
contributions in the context of a continual learning scenario:
• A new learning strategy that uses group sparse regu-
larization to selectively train groups of parameters to
learn each task and, at the same time, reserve part of the
network capacity to learn future tasks, helping to avoid
the problem of retroactive interference.

• A new learning strategy that uses a meta-learning
approach to foster knowledge transfer between tasks
by learning weights that can be useful to face future
tasks.

• Extensive empirical evidence indicating that the combi-
nation of the two previous contributions provides a sub-
stantial impact to improve the robustness of our model
to avoid CF in a continual learning scenario.

The remainder of the manuscript is organized as fol-
lows: in Section II we briefly describe previous and related
works in continual learning and meta-learning. Section III
describes our proposal, first the group sparse regularization
and then the meta-learning strategy. Section IV presents our
main experiments and results. Finally, Section V details our
conclusions.

II. RELATED WORK
A. CATASTROPHIC FORGETTING
In principle, a simple approach to avoid CF is to retrain the
model with all the available data, old and new, each time a
new task arrives. This approach is, however, unfeasible in
many situations, for instance, when old data are no longer
available. Even in cases where one can store every dataset,
usually the computational cost of re-training using all data
can be highly inefficient or prohibitive. Therefore, there is a
need for more efficient and flexible solutions.

In the context of sequential learning, previous work has
followed two main strategies to prevent CF. The first strat-
egy [2], [3], [12], [26], [60] consists of avoiding the modi-
fication of key parameters for previous tasks when learning
a new task. Several techniques can be used to identify these
critical parameters, such as fisher matrix [26] and per-weight
uncertainty [14], among others [2], [3], [10]. Afterwards,
when facing a new task, a regularization term ensures that
critical parameters are modified as little as possible. By using
this strategy, performance on previous tasks does not decrease
abruptly when learning new ones. At the same time, the net-
work has flexibility to capture information from new tasks.
In general, this approach shows satisfactory performance in
problems that involve few tasks, however, when the num-
ber of tasks increases, problems such as accumulated drift-
ing in weight values and interference among them, make
this approach difficult to scale. Alternatives to decrease the
interference between tasks are presented in [35], [39], here
the authors propose to completely freeze previously trained
weights eliminating interference but inhibiting information
transfer between tasks.

The second strategy [15], [21], [32], [37], [38], [51] con-
sists of introducing structural changes to the architecture
of the models. [49] proposes cloning a model and adding
connections between the layers of previous models to the
new one, creating an exchange of information from old to
new tasks. As a drawback, the amount of disk space required
by the model increases linearly with the number of tasks.
A popular approach is to incorporate trainable binary masks
that are used to select parameters, either through pruning or
learning over a backbone model [37], [38]. A downside of
this strategy is that the masks are learned independently of
network parameters, leading to suboptimal solutions. Another
popular strategy is to use memory replay to recall critical

88280 VOLUME 9, 2021

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

information about previous datasets [21], [47], [48], either
through saving elements of previous tasks or training GANs
to generate those elements past elements [17], [31], [52]. The
main idea is to recreate previous tasks distribution. The main
problemwith thesemethods is the need of an efficient method
to recall key information from previous tasks and the need
to have access to inputs from past tasks. Instead of saving
elements of prior dataset [7], [22] proposed saving feature
vectors. This solution reduces privacy and memory concerns,
as these vectors typically require less memory than complete
elements but still need to have access to previous datasets to
create the vectors.

A related topic to Continual Learning and Catastrophic
Forgetting is Distribution drifts. This field aims to train mod-
els able to adapt well to change in the distributions in which
they were trained [1], [5]. This scenario is related to the
idea of transfer learning [58], and data stream problems [8].
Unlike previous scenarios, the goal of Continual Learning is
to acquired new knowledge from new distributions without
loss of performance of previously learned task, avoiding
interference and CF [30].

In contrast to the methods above, we use sparsity tech-
niques to train group of parameters that are relevant for each
task, implementing an efficient dynamic allocation of the
available resources. Furthermore, by fostering the recycling
of parameters from previous tasks, we implement an efficient
use of previous knowledge to support new tasks.

B. META-LEARNING
Metalearning is the ability of ‘‘learning to learn’’ [54],
in other words, the ability to discover proper biases or pro-
cedural knowledge that can be used to learn new tasks.
In effect, the ability to generalize across tasks is at the core
of metalearning. In this context, [23], [24], [44] propose
different metalearning strategies to tackle a continual learning
scenario. The resulting techniques reduce task interference
by avoiding conflicts between current and future gradient
directions to update weights. In [56] and [18] the authors pro-
pose the use of a meta-model to avoid CF. This meta-model
operates as a general hyper-network that is conditioned by
each task to generate the weights of a task-specific net-
work. In [48], authors combine a replay memory with a
metalearning strategy, looking to take advantage of the ben-
efits of both techniques. Training prototypes by class has
also been explored [11], these prototypes are adapted as new
classes arrive, and classification is made using a distance
metric.

In the context of few-shot learning, several works [9],
[16], [36], [42], [57] have proposed meta-learning strategies
that achieve fast adaptation of weights to model a new task.
A popular approach is based on fostering weight values that
can be adjusted to model a new task using just a few gradient
updates. Taking inspiration from this idea, our method to
foster knowledge transfer from previous to new tasks is based
on adapting the methods presented in [16], [42] to a continual
learning scenario.

III. METHOD DESCRIPTION
In this section, we present our proposed method to avoid the
CF problem. As we mentioned, our method consists of two
main steps: A) a learning strategy that avoids interference
among tasks, and B) a training scheme that fosters weight
sharing among tasks. Next, we discuss the technical details
behind each of these steps.

A. AVOIDING INTERFERENCE AMONG TASKS
As a first strategy, we directly tackle interference among
tasks by introducing a mechanism that prevents new tasks
from modifying weights that are relevant to solve previous
tasks. As a key observation, we acknowledge that, in the
context of a CNN, learning a task consists of finding suitable
convolutional filters to correctly map inputs to outputs. As a
consequence, avoiding interference among tasks is directly
related to avoiding that a new task might modify a filter that
is relevant to solve a previous task.

Following the previous observation, we introduce an adap-
tive mechanism to control the number of convolutional fil-
ters that are available to learn new tasks. Specifically, this
mechanism avoids interference among tasks by freezing the
value of weights associated to convolutional filters that are
relevant to solve previous tasks. To be effective, this mech-
anism has to balance two goals: It must provide the model
with enough freedom to learn suitable convolutional filters
to solve its current task, while, at the same time, it must
also restrict this freedom in order to preserve knowledge
from previous tasks. To achieve these goals, we modify the
regular loss function used by CNNs, introducing a group
sparsity regularization term (GoSpaR). This term fosters a
sparse learning of convolutional filters, leading to an adaptive
use of network resources as our model incrementally learns
new tasks. We describe next the mathematical details behind
this approach.

1) GROUP SPARSE REGULARIZATION OVER
CONVOLUTIONAL FILTERS
In our formulation, we consider a CNN classification model
with L layers; where L−1 layers are convolutional and the last
one, or classification head, corresponds to a fully connected
ANN. Furthermore, we consider a set of training examples
{xi, yi}Ni=1, where xi refers to input i and yi to its corresponding
label. For such a model, learning can be performed by solving
the following optimization problem:

argmin
W ,2

1
N

N∑
i=1

Loss(xi, yi;W ,2)+ Rwd (W ,2) (1)

where 2 = {21, . . . 2L−1
} denotes the parameters of the

L − 1 convolutional layers, 2l denotes the parameters of
convolutional layer l and W represents the parameters of the
classification head.

The problem in Equation (1) is divided into two compo-
nents. The first component (Loss) accounts for the difference
between the target output yi and the prediction of the model

VOLUME 9, 2021 88281

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

with parameters {W ,2}. We use cross-entropy as the Loss
function. The second component is a weight decay regular-
ization term that helps to avoid overfitting, define as:

Rwd (W ,2) = Cwd
1
2
(‖W‖2F + ‖2‖

2
F), (2)

where ‖·‖2F denotes squared `2-norm and Cwd is the corre-
sponding regularization constant.

To avoid interference among tasks, we augment
Equation (1) by including GoSpaR over the convolutional
layers, as follows:

argmin
W ,2

1
N

N∑
i=1

Loss(xi, yi;W ,2)+ Cwd
1
2
‖W‖2F

+C2
L−1∑
l=1

0l(2l), (3)

where C2 is a regularization constant. We define 0l as:

0l(2l) = (1− β l)
1
2
‖2l
‖
2
F + β

l
K l∑
k=1

‖2l
k,∗‖. (4)

The first term in Equation (4) corresponds to an `2-norm
regularizer, which is weights by coefficient (1−β l). The sec-
ond term uses an `1,2-norm to penalize the number of filters
used by each layer. Specifically, K l corresponds to the num-
ber of filters in layer l; 2l

k,∗ denotes the weights of layer l
associated to filter k; and, finally β l regulates the importance
of setting filters in layer l to zero.

The goal of GoSpaR is to minimize the number of groups
used by the model, setting to zero groups of unused param-
eters. A similar group sparsity inducing regularizer has been
previously used in applications related to image classifica-
tion [4], [33], [34], [50], [59], [61]. In our case, we select
groups in such a way that, when learning a task, the reg-
ularization function fosters the use of a limited number of
convolutional filters, leaving network resources available to
learn future tasks.

Fig. 1 shows the effect of GoSpaR in the operation of a
generic layer l of a CNN model. In this case, the regulariza-
tion sets filter k li to zerowhich corresponds to filter i in layer l.
As a consequence, the corresponding feature map M l

i can be
deactivated using functionM , shown in Equation (5). We use
`2-norm to decide if a filter is active or not. After training
task t , filters of layer l whose `2-norm is less than threshold ε
are considered as inactive filters, therefore, they are available
to be trained by future tasks.

M (2l) = ‖2l
·,·‖2 ≤ ε (5)

For each task t and layer l with K l filters, we keep track of
the list of active filters by using a binary mask mtl ∈ [0, 1]K

l

that associates a binary coefficient to each filter. A similar
procedure has been used before in [37] and [51]. For the
initial task t = 1, the mask is initialized with all its coef-
ficients equal to 1, representing that all filters are available
for training. After training a task t , filters of layer l with

`2-norm greater than ε are marked as used filters, and the
corresponding flag is set to zero in the associated mask mtl .
Afterwards, the resulting mask mtl is used to initialize mask
mt+1l to train the next task.
During training, binary masks mtl are used to prevent inter-

ference from new tasks by freezing weights that are relevant
to previous tasks. During test, binary masks are used to
identify the list of active filters for each task. Using this
information, we let a task to use only the filters that were
available during its training, avoiding potential interference
from filters that were learned by subsequent tasks.

One drawback of the previous training scheme is that it is
not trivial for new tasks to use knowledge acquired during
previous tasks. This is mainly due to normalization problems
associated to the independent training of filters that are being
freezed from previous tasks. To account for this limitation,
we take inspiration from [20] to include a task-specific func-
tion that learns to combine the outputs of all the convolutional
layers available to the task. Next, we present the details
behind this idea.

2) CALIBRATION OF FILTERS FROM DIFFERENT TASKS
In a standard single-task learning setting, when amodel learns
a task, it calibrates the relevance of each weight and filter
in the context of the rest of the weights and filters that are
being concurrently trained. However, in our case, we have
multiple tasks that are being learned sequentially. In our
setting, each new task can train weights of unused filters, but
it can also use previously learned filters that it cannot modify.
Thus, the model has to learn how to combine both sources of
information.

To facilitate the combination of filters from different tasks,
we introduce a normalization step to calibrate the outputs of
all the convolutional layers available to a task. Taking inspira-
tion from the mechanism behind the Squeeze and Excitation
Network (SE) [20], for each task we learn a normalization
function that scales the activation maps of each convolutional
layer.

Specifically, the Calibration of Filters (CaFil) function
(Ol) is defined in Equation (6), were each activation mapM l

i
is weighted by the outputs of the normalization function 8lt ,
via an element-wise multiplication (·). This multiplication
helps to strengthen or weaken the activation maps onM l .

Ol(θl,M l) = M l
·8lt (M l) (6)

Function8lt encodes the specialization and normalization
weights for layer l and task t , by squeezing and aggregat-
ing the representation M l to find the corresponding values,
according to:

8lt (M l
;W 1,2

tl) = σ (W 2
tl ρ(W

1
tlM

l)), (7)

where ρ and σ represent the ReLU and Sigmoid activation
functions, respectively. WeightsW 1

tl andW
2
tl are learned dur-

ing training.
By adding functions8lt , we seek to balance the outputs of

all the convolutional layers. Furthermore, by having a specific

88282 VOLUME 9, 2021

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

FIGURE 1. (a) Activation maps at convolutional layer l − 1 of size hl−1 ×wl−1 × Cl−1, (b) At layer l , these activation maps are processed by convolutional
filters k l

i , i ∈ [1, . . . , K], of size kh × kw × Cl−1. (c) In this case, GoSpaR sets filter k l
i to zero, therefore, the corresponding activation map Ml

i in layer l
can be deactivated.

function per task, we also seek task specialization in the use of
filters. By achieving both goals, the model learns to combine
knowledge from previous and current tasks.

3) FILTER TRAINING
The training process of a task t is shown in Algorithm 1. For
each batch {xBi , y

B
i }, we obtain the corresponding predictions

ŷBi using the current weights2 andWt , i.e., weights of convo-
lutional layers and classification head for task t , respectively.
Then, given the classification (Loss) and the regularization
(0) terms, we obtain the gradient for both sets of weights
(g2, gWt). Afterwards, we multiply gradients of 2 by the
corresponding binary masks mt to set the selected gradients
to zero. Finally, we update the weights of free filters and
classifier with a learning rate α.

B. FOSTERING WEIGHT SHARING AMONG TASKS
So far, our proposed model has the ability to mitigate the
problem of interference among tasks. However, it still lacks
a mechanism to encourage sharing of weights among tasks.
As we mentioned, a highly desirable feature is to foster
knowledge sharing between tasks, i.e., learning filters that can
be useful to solve several tasks. In an incremental learning
scenario, this reduces to learn filters that, besides the current
task, can also support useful representations to solve future
tasks.

The previous observation highlights a close rela-
tion between incremental and meta-learning scenarios
[16], [45], [55]. In effect, the ability to generalize across tasks

Algorithm 1: TaskTraining
Input: Data (Dt), Model (f), Weights (Wt ,2),
Binary Mask (mt), Loss Function (Loss)
Output: Trained Weights (Wt ,2)
for xBi , y

B
i in Dt do

ŷBi = f (xBi ,Wt ,2)
Get gradients
g2, gWt ← O(Loss(ŷBi , y

B
i)+ 0(2))

Freeze used weights
g2← mt · g2
Update weights
2← 2− α · g2
Wt ← Wt − α · gWt

is at the core of meta-learning. In this context, [55] proposes
a meta-learning strategy known as Episodic Training (ET)
that consists of sampling from a task pairs of support and
query sets to simulate training data from a large number of
mini-tasks. This mini-tasks are then used to bias the learner to
improve its ability to generalize to future tasks. Following this
strategy, [16] proposes an optimization method to find net-
work weights that can be quickly adapted to model new tasks.
Taking inspiration from [16], we adapt its meta-learning
strategy to the case of continual learning, specifically to foster
weight sharing among tasks.

In our implementation, when training each new task,
we alternate between using regular and ET during a

VOLUME 9, 2021 88283

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

predefined number of iterations. In the case of regular train-
ing, we apply the learning strategy described in Section III-A.
In the case of ET, we create a set of Umini-tasks, where each
mini-task consists of randomly sampling from the current
task a set of H classes and h training instances per class.
This allows us to create classes independent of the main task,
finding weights not specific to it. Specifically, we consider a
training batch {xTru , y

Tr
u } ∼ P(Dt) for mini-task u, where xTru

refers to the inputs and yTru to the corresponding labels.
Following [16], our method for ET consists of two nested

loops, an inner and an outer loop. The inner loop is in charge
of training a model for the current mini-task while the outer
loop is in charge of updating weights following a gradient
direction that leads to fast adaptation to new mini-tasks.
Specifically, for each mini-task u, we take as the initial value
a copy of the model parameters in epoch e, namely 2e, and
obtain a new set of parameters2u

s , after iterating s times over
mini-task u, expressed in Equation (8):

2u
i+1 = 2

u
i − αO2u

i
Lossu(f2u

i
(xTru), yTru), (8)

where f2u
i
(xTru) represents the output of the model f with

parameters 2u
i when training mini-task u in the i step of the

inner loop, we define2u
0 = 2e. Lossu corresponds to the loss

function of task u and α is the learning rate of the inner loop.
In our case, the Loss of every task is cross-entropy.

After learning U models, we update parameters 2e of
the original model, sampling a new set of mini-task xVau .
We accumulate the loss of all the mini-tasks as the sum of all
the losses given the meta-training validation set. As shown
in Equation (9), we accumulate this sum by considering the
model trained by s inner loop steps respective to mini-task u
and weighted by the outer loop learning rate β:

2e← 2e − βO2e

U∑
u

Lossu(f2u
s
(xVau), yVau) (9)

By adding themeta-learning strategy, the complete training
process of a task is described by Algorithm 2, where we
first have a few epochs (5 epochs) of adapting the task using
Algorithm 1. Afterwards, we start training the model with the
meta-training strategy for a few iterations, to then train the
model with traditional training for one epoch. We repeat this
process until we obtain a suitable level of accuracy.

It is important to mention that during meta-training,
the goal is to adapt convolutional filters so they are useful for
other tasks. For this reason, neither the task-specific functions
nor the task classifier of the current task are modified dur-
ing this process. Furthermore, during meta-learning,GoSpaR
is not being used, since the objective of the meta-learning
strategy differs from the goals of the method proposed in
Section III-A. In this sense, the interleaved application of
regular and ET steps complement each other, leading to a
novel and useful method to train models under a continual
learning scenario.

In this work, we introduce three key mechanisms or com-
ponents to help avoiding the CF problem: i) Group-Sparse

Algorithm 2:MetaTraining
Input: Data (Dt), Model (f), Weights (Wt ,2),
Binary Mask (mt), Loss Function (Loss),
Learning Rates (α, β),
Hyper-parameters (U , s, epochs, τ)
Output: Trained Weights (Wt ,2)
for e in epochs do

if e > τ then
for u in [1, 2, . . .U] do

xTru , y
Tr
u ∼ P(Dt)

xVau , y
Va
u ∼ P(Dt)

for i in [1, 2, . . . s] do
2u
i+1← 2u

i − αO2u
i
Lossu(f2u

i
(xTru), yTru)

2e← 2e − βO2e

∑U
u Lossu(f2u

s
(xVau), yVau)

2e+1← TaskTraining(2e)

Regularization (GoSpaR), ii) Calibration of Filters (CaFil),
and iii) Episodic Training (ET). While the first helps to
reduce interference between tasks, the other two encour-
age weight-sharing among tasks. Given these components,
we named our whole model GoCaT.

IV. EXPERIMENTAL EVALUATION
We start discussing the datasets and baselines that we use
in our experiments. Afterwards, we explain implementation
details behind our model. Finally, we present our main results
and an ablation study of the key parts of the proposedmethod.

A. DATASET
We test our method using 3 popular benchmarks used to
test continual learning approaches. All of them correspond
to visual recognition applications. First, we consider the so-
called 5-Dataset [15], which consists of sequentially training
a model using data from 5 datasets: CIFAR10, not-MNIST
(nMNIST), SVHN, MNIST, and Fashion-MNIST (fMNIST),
not necessarily in that order. To maintain consistency with
the number of channels of the input, for grayscale images,
we repeat the channel three times to simulate having
three channels. As the second scenario, we use 20-Split
CIFAR100 dataset [27], which consists of dividing the
CIFAR100 dataset into 20 different tasks, each with only
5 different classes. Finally, we use the so-called Permuted
MNIST (P-MNIST) dataset, which consists of training using
a modified version of the MNIST dataset [28], where each
task is a new random permutation of the pixels in each image.
Table 1 shows a summary of each dataset.

B. BASELINES
As a first baseline, we compare our results with a strategy
based on sequential learning without considering any modi-
fication to a regular training scheme. We refer to this strategy
as SGD, since it only applies Stochastic Gradient Descent
during training without considering previous tasks or any

88284 VOLUME 9, 2021

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

TABLE 1. Size and details of the datasets used in our experiments.

particular regularization to avoid CF. This baseline provides
us with a lower bound in terms of accuracy. As a second
baseline, we consider a multi-task training scenario, where
all tasks are learned simultaneously. We refer to this strategy
as Joint-Training (JT). This baseline provides us with an
optimistic or upper-bound scenario where the learner has
access to all the data during its training process.

Besides the two previous baselines, we also compare our
results against recent works that also tackle the CF problem.
Specifically, we consider works that focus on using regular-
ization techniques to avoid CF, such as, Elastic Weight Con-
solidation (EWC) [26] and Synaptic Intelligence (SI) [60].
We also compare our approach to Hard Attention to the Task
(HAT) [51] and Adversarial Continual Learning (ACL) [15].
The first one uses gate functions per task to reduce forgetting,
and the second approach uses extra functions per task with an
adversarial training strategy. For the first twomethods, we use
the implementations described in [19]. For HAT and ACL,
we use the original implementation of the authors. For a fairer
comparison between works, the same base model is used,
adding only the correspondingmethods over it. This ensures a
similar amount of parameters used by each method, changing
only techniques to avoid CF. In all cases, we perform a search
for the best hyper-parameters for every dataset.

Following previous works, we use two metrics to compare
all methods. First, Mean Accuracy (Mean Acc) measures the
average accuracy obtained in each task at the end of the
final training process, as is shown in Equation 10, where
AccT ,t is the accuracy of task t after training task T . Sec-
ond, Backward Transfer (BWT) measures the performance
impact that learning a new task produces over previous tasks.
Specifically, a negative BWT score indicates that the model is
forgetting more than what is learning from a new task. On the
contrary, a positive BWT score indicates that the model is
improving its overall learning when it is trained using a new
task. Equation 11 indicates how to compute BWT, where
Acct,t indicates the accuracy obtained by task t at the end of
training task t .

Acc =
1
T

T∑
t=1

AccT ,t (10)

BWT =
1

T − 1

T−1∑
t=1

AccT ,t − Acct,t (11)

C. IMPLEMENTATION DETAILS
For all experiments and methods, we use the following archi-
tecture. This consists of 4-blocks of convolutional layers that

are common to all tasks. Each block consists of a convo-
lutional layer with 32 filters and a kernel size of 3, batch
normalization, ReLU activations, and a max-pooling layer.
These block are followed by a task specific classification
layer. As explained in Section III-A1, the main reason for
using this architecture is that our method selects relevant
convolutional filters for each task. For this reason, we need a
model that only has these types of layers. Instead of creating
a new architecture, we use similar architecture to the one
used in [16], [45]. Additionally to the architecture, we add
method-specific functions, like the CaFil function described
in Section III-A2, or the gate functions describe in HAT or
the adversarial block from ACL.

For the optimization process, we train each task for
50 epochs, using an SGD optimizer with a learning rate of
0.003 and a batch size of 64. Duringmeta-training, we sample
25 elements and create 5 classes with them for eachmini-task.
Code available at https://github.com/JuliousHurtado/Meta-
Iteration.

As in previous works [26], [51], we assume that we do not
have access to the total number of classes of the complete
scenario, these are revealed as the new task arrives. For
this reason, a new classifier is initialized for each task with
the corresponding class number. At inference time, we have
access to the ID of the task that we are testing.

D. RESULTS
1) 5-DATASET
We start by presenting our results in the 5-Dataset sequence.
As a relevant feature, tasks in this sequence are highly dissim-
ilar because images in each dataset are coming from different
scenarios, with different scales, lighting, colors, and other
variations. In our test, we train each method 3 times using
different task orders.

Table 2 resumes our main results in terms ofMean Acc and
BWTmetrics. By training without restriction, the SGDmodel
obtains close to 27% accuracy. Also, the value of BWT score
indicates that learning a new task catastrophically interferes
with what has been learned in previous tasks. When using
our approach, we obtain 63, 7% of average accuracy and
low variance between runs, outperforming all the alternative
methods by a large margin. This illustrates the positive effect
of the mechanisms that we propose to prevent CF. Further-
more, by considering BWT score in Table 2, we observe that
our method is the only one with a positive score, indicating
effective incremental learning during the sequence of tasks.

As expected, JT obtains the best performance for this
scenario, since it has available all the data during training.

VOLUME 9, 2021 88285

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

TABLE 2. Results using the 5-Dataset. Showing the mean Accuracy, BWT
and memory required for each method.

Regarding memory usage, our approach needs to store the
specialization functions and the binary mask per task, there-
fore, there is an small overhead in memory requirement.
In this sense, as we can observe from the third column of
Table 2, the proposed method uses a similar amount of mem-
ory than HAT, which uses gate functions per task.

2) 20-SPLIT CIFAR100
In the case of CIFAR100, the original dataset is divided into
20 different tasks. In contrast to the 5-Dataset sequence, here
the sequence of tasks has very similar images, all in color
and same dimensions. Therefore, we expect a high degree of
knowledge sharing among tasks.

Table 3 resumes our main results. As tasks are more related
to each other, it can be seen that the difference in average
accuracy between SGD and the best method is reduced.
Again our method outperforms the baselines and alternative
approaches. In particular, ourmethod outperforms the runner-
up, HAT, by 4% in terms of average accuracy. HAT and
our method achieve positive learning concerning the BWT
score, showing that both methods are able to exploit the close
relation among the training tasks.

TABLE 3. Results using the 20-Split CIFAR100 dataset.

Given the close relation among the tasks, it is noteworthy
that our method is the only one that reaches a performance
highly similar to the upper-bound given by JT. This illustrates
the relevance of the proposed strategy to share knowledge
among the training tasks.

3) P-MNIST
The last scenario to test our method is the Permuted MNIST
dataset. This dataset consists of 10 tasks that are created

by applying 10 random permutations to the pixels of the
images in MNIST dataset. Due to the random permutations,
patterns to identify each class change significantly among
tasks. Therefore, it is expected a low level of pattern sharing
among tasks.

Similar to the previous scenarios, our approach outper-
forms the alternative methods, obtaining an average accuracy
of 65%, as is shown in Table 4. However, given the large
difference among the training tasks, in this case there is a large
gap with respect to the upper-bound given by JT. Actually,
for this dataset, we can observe that any of the sequential
learning methods is able to obtain positive score in terms of
BWT. This illustrates the difficulty of sharing visual patterns
between tasks for this dataset.

TABLE 4. Results obtained in the sequence of 10 different permutations
of the MNIST dataset.

E. ABLATION STUDY
In this section, we perform an ablation study over the main
components of our proposed method. Furthermore, we also
analyze the impact of the meta-learning strategy in terms of
the trade-off between model flexibility to adjust parameters
and interference between tasks. Finally, we carry out a study
of the complexity of the model. All these experiments are
carried out using the 5-Dataset as benchmark.

1) COMPONENTS ANALYSIS
This section compares the effect of introducing each of the
three components that we are proposing. As a baseline,
we use a model that does not incorporate any technique to
avoid forgetting (SGD).

Table 5 resumes the results of our analysis. Each column
represents the accuracy obtained for each task at the end of
the last training process. As expected, SGD only obtains a
good performance when tested in the last task, indicating
that it suffers from a drastically forgetting of previous tasks.
By applying GoSpaR, we manage to preserve the accuracy of
previous tasks, demonstrating its positive effect.

Similar to Table 5, Fig. 2 shows the evolution of the
accuracy for individual tasks. The vertical lines in each sub-
figure indicate the transition to a new task. The abrupt loss
of accuracy in SGD after the transition to a new task reflects
the catastrophic forgetting. Instead, by adding the GoSpaR,
we can preserve performance for trained tasks, showing the
effectiveness of the proposed component. Despite the flex-
ibility to learn unused filters, there is a gap between SGD

88286 VOLUME 9, 2021

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

TABLE 5. Accuracy obtained by different components that we propose. This table show the performance in each task after training the complete
sequence of the 5-Dataset benchmark. The final column indicates the average accuracy.

FIGURE 2. Each figure represents the accuracy over the epoch for each task. The vertical line denotes the transition to training a new task.
In each Task, the first 50 epochs shows the training using data from the current Task, then its shows how the accuracy evolves when training the
model in the following tasks.

and GoSpaR at the end of the training process for each task,
which favors SGD. However, this advantage is quickly lost
due to CF.

Our two extra components, CaFil and ET, help reduce the
positive gap for SGD over GoSpaR at the end of the training
process for each task. Table 5 shows that, used in isola-
tion, CaFil and ET achieve only slightly better results than
SGD. However, the goal of these components is to improve
communication between frozen and learnable weights, fos-
tering knowledge transfer among tasks. Therefore, when
CaFil is applied together with GoSpaR, average accuracy
rises about 2%, confirming the advantage of applying this
normalization and specialization on the filters. Furthermore,
accuracy improves even more when adding ET, reaching an
improvement of 4%.

To verify how the combination of components reduces the
gap, we check Fig. 2. We can observe that GoCaT improves
the accuracy by reducing the gap in all tasks, while at the same

time avoiding task interference. Despite not closing the gap
completely, we can see that the proposed method encourages
knowledge transfer between tasks. By better using what is
learned in the past, the model improve accuracy and keep the
performance for each task.

2) META-LEARNING STRATEGY
Themain goal of adding ameta-learning strategy is to provide
model flexibility to learn patterns that can be useful to several
tasks. To achieve this, the core of the meta-learning strategy
is to select weight values that can be quickly adapted to
new tasks. In our experiments, we notice a trade-off between
the flexibility provided to the meta-learning iterations and
the control of task interference by freezing the values of
relevant parameters. Specifically, the model does not learn
to adapt previously learned groups of parameters by allowing
low flexibility. Conversely, by allowing too much flexibility,
the model suffers from CF.

VOLUME 9, 2021 88287

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

FIGURE 3. The time it takes each method in different scenarios. (a) Shows the time in seconds that each method takes to run one epoch in
train (blue) and test (red). (b) The number of seconds it takes to train (and test) with different batch sizes. (c) Time in log(seconds) it takes to train
(and test) one epoch with different image sizes.

TABLE 6. Performance of GoCaT when we change the number of updates
in the outer loop of the meta-learning scheme.

Table 6 shows mean accuracy and BWT scores for GoCaT
when we change the number of iterations of the outer loop of
the meta-learning strategy. It can be seen that by giving too
little flexibility, the model does not learn to adapt previously
learned groups of parameters, but by giving too much flexi-
bility, the model suffers from CF.

3) COMPLEXITY
The complexity of the model is related to how long it takes
an input to go through the model. This means the amount of
time it can take an element, in test time, to go through the
model. However, in some methods, the additional complexity
is not in the model but in the training process, because of the
changes in the training strategy. To check the complexity of
our proposal, we carried out several experiments to verify the
response times of our method, both in training and test. The
results are the average of training each method for 50 epochs
with 3 different seeds.

Figure 3a shows the average time in seconds that differ-
ent methods take in train and test. Regularization methods
(EWC, SI, and GoSparR) take similar times to the baseline
(SGD), showing that complexity added by regularizations
technique does not affect the training process. In contrast,
when adding the calibration functions (CaFil), the training
process takes slightly longer per epoch. When changing the
training strategy, via ACL or ET, the training time goes up
dramatically. Nevertheless, despite the increases in training
times, the costs of performing inference in GoCaT does not
increase.

Taking SGD as a baseline, we perform two more exper-
iments to check the complexity of GoCaT: 1) Change the
batch size and 2) Change image size. In the case of changing
the batch size, both methods decrease the time it takes to
train, as shown in Fig. 3b. SGD decreased 3 seconds between
changing the batch size from 32 to 128. On the other hand,

GoCaT decreased by almost 8 seconds when changing the
batch size from 32 to 256. In both cases, the test time remains
similar despite the increase in batch size, showing that the
complexity of our proposal is in the training strategy and not
in other components.

As shown in Fig. 3c, as we increase the input size, the time
it takes to train goes up for both methods. In the case of
SGD, it goes up almost 9 times when we resize the images
from 32 × 32 × 3 to 256 × 256 × 3 pixels. On the other
hand, our proposal increases the training time by almost
21 times. Similar to the batch size experiment, both SGD
and GoCaT increase in similar proportions the time during
test, confirming that the complexity of our proposal is in the
meta-learning strategy.

4) NUMBER OF EPOCHS
The number of epochs shows the number of times the model
goes through thewhole dataset. In amodel that does not suffer
from overfitting, with a greater number of epochs, the accu-
racy of themodel should increase. However, training for more
epochs brings a higher computational cost. A valid question
is how much we can raise the number of epochs so that
the benefit in accuracy exceeds the associated computational
cost.

Training the model for 25 epochs achieves an accuracy
of 58.43% with a BWT 0.002. By training the model for
50 epochs total, the accuracy increase to 63.70%, and keeping
a positive BWT. From this point, we notice that the accuracy
still increases when training for more epochs (64.47% with
75 epochs and 65.16% with 100 epochs), but the gain in per-
formance is low in comparison with the extra computational
resources.

V. CONCLUSION
This paper introduces GoCaT, a new approach to a continual
learning scenario that exploits two complementary strategies.
The first strategy avoids catastrophic overwriting of weight
values by using a group sparse regularization that reserves
part of the model to learn each task. The second strategy
fosters weight sharing among tasks by using a meta-learning
approach to encourage learning of weights that are expected
to be useful to solve future tasks.

88288 VOLUME 9, 2021

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

Our results show that GoCaT is indeed effective to avoid
interference across tasks during the sequential learning pro-
cess. Specifically, our experiments demonstrate that the group
sparse coding (GoSpaR) and binary masks are effective to
dynamically allocate the network resources in order to avoid
CF. Furthermore, by adding a suitable normalization function
to the activation maps (CaFil), our model is able to correctly
combine knowledge from previous and current tasks outper-
forming all alternatives approaches by a large margin.

In terms of the use of the meta-learning strategy,
we observe a positive impact in knowledge transfer from
previous to new tasks. This is clear for the case of 5-Dataset
and 20-Split CIFAR100 datasets, where our proposed method
achieves positive BWT scores. In contrast, in the case of the
P-MNIST dataset, where the sequential tasks do not share
common patterns, the BWT score is negative indicating an
expected operation of the proposed strategy.

As future work, our findings suggest the relevance of ded-
icating part of the network resources to learn task-specific
knowledge as well as dedicating part of the network to learn
global knowledge that can be useful to solve various tasks.
In this work, we achieve this using a single network, however,
we can think of a strategy that combines several networks
that can be jointly trained. As an example, one can have a
global network acquiring inter-task knowledge and a set of
local networks acquiring intra-task knowledge.

REFERENCES
[1] K. Ahuja, K. Shanmugam, K. Varshney, and A. Dhurandhar, ‘‘Invari-

ant risk minimization games,’’ in Proc. Int. Conf. Mach. Learn., 2020,
pp. 145–155.

[2] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars,
‘‘Memory aware synapses: Learning what (not) to forget,’’ in Proc. Eur.
Conf. Comput. Vis. (ECCV), Sep. 2018, pp. 139–154.

[3] R. Aljundi,M. Rohrbach, and T. Tuytelaars, ‘‘Selfless sequential learning,’’
in Proc. Int. Conf. Learn. Represent., 2019, pp. 1–17.

[4] J. M. Alvarez and M. Salzmann, ‘‘Learning the number of neurons in deep
networks,’’ in Proc. Adv. Neural Inf. Process. Syst., 2016, pp. 1–9.

[5] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz, ‘‘Invari-
ant risk minimization,’’ 2019, arXiv:1907.02893. [Online]. Available:
http://arxiv.org/abs/1907.02893

[6] A. D. Baddeley, Human Memory: Theory and Practice. London, U.K.:
Psychology Press, 1997.

[7] L. Caccia, E. Belilovsky, M. Caccia, and J. Pineau, ‘‘Online learned
continual compression with adaptive quantization modules,’’ in Proc. Int.
Conf. Mach. Learn., 2020, pp. 1240–1250.

[8] W. Cao, Z. Ming, Z. Xu, J. Zhang, and Q. Wang, ‘‘Online sequential
extreme learning machine with dynamic forgetting factor,’’ IEEE Access,
vol. 7, pp. 179746–179757, 2019.

[9] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, ‘‘Riemannianwalk
for incremental learning: Understanding forgetting and intransigence,’’ in
Proc. Eur. Conf. Comput. Vis., Sep. 2018, pp. 532–547.

[10] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, ‘‘Efficient
lifelong learning with a-GEM,’’ in Proc. Int. Conf. Learn. Represent.,
Sep. 2019, pp. 1–5.

[11] M. De Lange and T. Tuytelaars, ‘‘Continual prototype evolution: Learn-
ing online from non-stationary data streams,’’ 2020, arXiv:2009.00919.
[Online]. Available: http://arxiv.org/abs/2009.00919

[12] P. Dhar, R. V. Singh, K.-C. Peng, Z. Wu, and R. Chellappa, ‘‘Learning
without memorizing,’’ in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 5138–5146.

[13] D. L. Donoho and M. Elad, ‘‘Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization,’’ Proc. Nat. Acad. Sci.
USA, vol. 100, no. 5, pp. 2197–2202, Mar. 2003.

[14] S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach, ‘‘Uncertainty-
guided continual learning in Bayesian neural networks,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. Workshops, Jun. 2019, pp. 1–4.

[15] S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach, ‘‘Adver-
sarial continual learning,’’ in Proc. Eur. Conf. Comput. Vis., Mar. 2020,
pp. 1–20.

[16] C. Finn, P. Abbeel, and S. Levine, ‘‘Model-agnostic meta-learning for fast
adaptation of deep networks,’’ in Proc. Int. Conf. Mach. Learn., Jul. 2017
pp. 1126–1135.

[17] T. L. Hayes, K. Kafle, R. Shrestha, M. Acharya, and C. Kanan, ‘‘Remind
your neural network to prevent catastrophic forgetting,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2020.

[18] X. He, J. Sygnowski, A. Galashov, A. A. Rusu, Y. W. Teh, and
R. Pascanu, ‘‘Task agnostic continual learning via meta learning,’’ 2019,
arXiv:1906.05201. [Online]. Available: https://arxiv.org/abs/1906.05201

[19] Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira, ‘‘Re-evaluating continual
learning scenarios: A categorization and case for strong baselines,’’ in
Proc. NeurIPS Continual Learn. Workshop, 2018, pp. 1–12.

[20] J. Hu, L. Shen, and G. Sun, ‘‘Squeeze-and-excitation networks,’’ in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.

[21] W. Hu, L. Zhou, L. Bing, T. Chongyang, T. Zhengwei, M. Jinwen,
Z. Dongyan, and Y. Rui, ‘‘Overcoming catastrophic forgetting for contin-
ual learning via model adaptation,’’ in Proc. Int. Conf. Learn. Represent.,
2018.

[22] A. Iscen, J. Zhang, S. Lazebnik, and C. Schmid, ‘‘Memory-efficient incre-
mental learning through feature adaptation,’’ in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2020.

[23] K. Javed and M. White, ‘‘Meta-learning representations for continual
learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2019, pp. 1–11.

[24] K. J. Joseph and V. N. Balasubramanian, ‘‘Meta-consolidation for
continual learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2020,
pp. 14374–14386.

[25] J. D. Karpicke. (Jun. 2016). A Powerful Way to Improve Learn-
ing and Memory. Psychological Science Agenda. [Online]. Available:
http://www.apa.org/science/about/psa/2016/06/learning-memory

[26] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, and
D. Hassabis, ‘‘Overcoming catastrophic forgetting in neural networks,’’
Proc. Nat. Acad. Sci. USA, vol. 114, no. 13, pp. 3521–3526, 2017.

[27] A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,’’
M.S. thesis, Univ. Toronto, Toronto, ON, Canada, 2009.

[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[29] S.-W. Lee, J.-H. Kim, J. Jun, J.-W. Ha, and B.-T. Zhang, ‘‘Overcoming
catastrophic forgetting by incremental moment matching,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2017, pp. 4652–4662.

[30] T. Lesort, M. Caccia, and I. Rish, ‘‘Understanding continual learning
settings with data distribution drift analysis,’’ 2021, arXiv:2104.01678.
[Online]. Available: http://arxiv.org/abs/2104.01678

[31] T. Lesort, H. Caselles-Dupre, M. Garcia-Ortiz, A. Stoian, and D. Filliat,
‘‘Generative models from the perspective of continual learning,’’ in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[32] Z. Li and D. Hoiem, ‘‘Learning without forgetting,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[33] H. Lobel, R. Vidal, and A. Soto, ‘‘Learning shared, discriminative, and
compact representations for visual recognition,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 37, no. 11, pp. 2218–2231, Nov. 2015.

[34] H. Lobel, R. Vidal, and A. Soto, ‘‘CompactNets: Compact hierarchi-
cal compositional networks for visual recognition,’’ Comput. Vis. Image
Understand., vol. 191, Feb. 2020, Art. no. 102841.

[35] V. Lomonaco, D. Maltoni, and L. Pellegrini, ‘‘Rehearsal-free continual
learning over small non-I.I.D. batches,’’ in Proc. IEEE/CVFConf. Comput.
Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp. 989–998.

[36] D. Lopez-Paz and M. Ranzato, ‘‘Gradient episodic memory for continual
learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 6470–6479.

[37] A. Mallya, D. Dillon, and L. Svetlana, ‘‘Piggyback: Adapting a single
network to multiple tasks by learning to mask weights,’’ in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018.

[38] A. Mallya and S. Lazebnik, ‘‘PackNet: Adding multiple tasks to a single
network by iterative pruning,’’ in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., Jun. 2018, pp. 7765–7773.

[39] M. Masana, T. Tuytelaars, and J. van de Weijer, ‘‘Ternary feature masks:
Zero-forgetting for task-incremental learning,’’ 2020, arXiv:2001.08714.
[Online]. Available: http://arxiv.org/abs/2001.08714

VOLUME 9, 2021 88289

J. Hurtado et al.: Overcoming CF Using Sparse Coding and Meta Learning

[40] N. Y. Masse, G. D. Grant, and D. J. Freedman, ‘‘Alleviating catas-
trophic forgetting using context-dependent gating and synaptic stabiliza-
tion,’’ Proc. Nat. Acad. Sci. USA, vol. 115, no. 44, pp. E10467–E10475,
Oct. 2018.

[41] S. A. McLeod. (2008). Forgetting. Accessed: Sep. 30, 2019. [Online].
Available: https:www.simplypsychology.orgforgetting.html

[42] A. Nichol, J. Achiam, and J. Schulman, ‘‘On first-order meta-learning
algorithms,’’ 2018, arXiv:1803.02999. [Online]. Available: http://arxiv.
org/abs/1803.02999

[43] A. Raghu,M. Raghu, S. Bengio, andO. Vinyals, ‘‘Rapid learning or feature
reuse? Towards understanding the effectiveness of MAML,’’ in Proc. Int.
Conf. Learn. Represent., 2020, pp. 1–21.

[44] J. Rajasegaran, S. Khan, M. Hayat, F. S. Khan, and M. Shah,
‘‘ITAML: An incremental task-agnostic meta-learning approach,’’ in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 13588–13597.

[45] S. Ravi and H. Larochelle, ‘‘Optimization as a model for few-shot learn-
ing,’’ in Proc. Int. Conf. Learn. Represent., 2017.

[46] S.-A. Rebuffi, H. Bilen, andA.Vedaldi, ‘‘Learningmultiple visual domains
with residual adapters,’’ in Proc. Adv. Neural Inf. Process. Syst., 2017,
pp. 1–11.

[47] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, ‘‘ICaRL:
Incremental classifier and representation learning,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 2001–2010.

[48] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro,
‘‘Learning to learn without forgetting by maximizing transfer and mini-
mizing interference,’’ in Proc. Int. Conf. Learn. Represent., 2019.

[49] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, and R. Hadsell, ‘‘Progressive neural
networks,’’ 2016, arXiv:1606.04671. [Online]. Available: http://arxiv.
org/abs/1606.04671

[50] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini, ‘‘Group sparse
regularization for deep neural networks,’’ Neurocomputing, vol. 241,
pp. 81–89, Jun. 2017.

[51] J. Serra, D. Suris, M. Miron, and A. Karatzoglou, ‘‘Overcoming catas-
trophic forgetting with hard attention to the task,’’ in Proc. Int. Conf. Mach.
Learn., 2018, pp. 4548–4557.

[52] H. Shin, J. K. Lee, J. Kim, and J. Kim, ‘‘Continual learning with deep
generative replay,’’ in Proc. NeurIPS, 2017, pp. 2994–3003.

[53] K. Shmelkov, C. Schmid, and K. Alahari, ‘‘Incremental learning of object
detectors without catastrophic forgetting,’’ in Proc. IEEE Int. Conf. Com-
put. Vis. (ICCV), Oct. 2017, pp. 3400–3409.

[54] S. Thrun and L. Pratt, Learning To Learn. Springer, 1998.
[55] O. Vinyals, C. Blundell, T. Lillicrap, K. kavukcuoglu, and D. Wierstra,

‘‘Matching networks for one shot learning,’’ in Proc. Adv. Neural Inf.
Process. Syst., 2016, pp. 3637–3645.

[56] J. V. Oswald, C. Henning, J. Sacramento, and F. B. Grewe, ‘‘Continual
learning with hypernetworks,’’ in Proc. Int. Conf. Learn. Represent., 2020,
pp. 1–6.

[57] R. Vuorio, D.-Y. Cho, D. Kim, and J. Kim, ‘‘Meta continual learn-
ing,’’ 2018, arXiv:1806.06928. [Online]. Available: http://arxiv.org/abs/
1806.06928

[58] K. Weiss, T. M. Khoshgoftaar, and D. Wang, ‘‘A survey of transfer learn-
ing,’’ J. Big data, vol. 3, no. 1, pp. 1–40, 2016.

[59] W.Wen, C.Wu, Y.Wang, Y. Chen, andH. Li, ‘‘Learning structured sparsity
in deep neural networks,’’ in Proc. Conf. Neural Inf. Process. Syst., 2016,
pp. 1–9.

[60] F. Zenke, B. Poole, and S. Ganguli, ‘‘Continual learning through synaptic
intelligence,’’ in Proc. Int. Conf. Mach. Learn., 2017, pp. 3987–3995.

[61] H. Zhou, J. M. Alvarez, and F. Porikli, ‘‘Less is more: Towards compact
CNNs,’’ in Proc. Eur. Conf. Comput. Vis., 2016, pp. 662–677.

JULIO HURTADO received the B.S. degree in
computer engineering from Universidad Técnica
Federico Santa María, Santiago, Chile. He is cur-
rently pursuing the Ph.D. degree in computer sci-
ence with the Universidad Catolica de Chile, PUC.
His research interests include transfer learning,
continual learning, meta learning, and generaliza-
tion in deep learning.

HANS LOBEL (Member, IEEE) received the
B.Sc., M.Sc., and Ph.D. degrees in computer sci-
ence engineering from the Pontificia Universidad
Católica de Chile, Santiago, Chile. Since 2016,
he has been anAssistant Professor with theDepart-
ment of Transport Engineering and Logistics and
the Department of Computer Science, Pontificia
Universidad Católica de Chile. His research inter-
ests include visual recognition, machine learning,
optimization, intelligent transportation systems,
and big data.

ALVARO SOTO (Member, IEEE) received the
Ph.D. degree in computer science from Carnegie
Mellon University, in 2002. Afterwards, he joined
the Computer Science Department, Universidad
Catolica de Chile, PUC, where he is currently an
Associate Professor. His research interest includes
studying different aspects behind the creation of
cognitive machines.

88290 VOLUME 9, 2021

