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ABSTRACT Changing lane must not only ensure the safety of the vehicle itself, but also ensure the patency
of the traffic flow of the original lane and the target lane. Therefore, successful lane-changing is a key
technology for autonomous vehicle control. In order to avoid collisions and ensure the smooth flow of traffic,
in this paper a vehicle dynamics state model with time variable is established as plant, and the lateral force of
the steering wheel is further optimized throughModel Predictive Control(MPC), and then the steering wheel
angle is obtained to complete the lane-changing operation. The longitudinal and lateral logic controllers
designed through soft constraints can better achieve the results of successful lane-changing and unsuccessful
return to the original lane, and the lane-changing characteristics within the safety corridor are analyzed
in several ways. The simulation analysis of lane-changing strategy at different vehicle velocities provides
helpful guidance for the design of autonomous vehicle controllers.

INDEX TERMS Lane-changing, autonomous vehicle, control logic, safety corridor.

I. INTRODUCTION
Since the use of video cameras and Light Detection andRang-
ings (LIDARs) can better perceive the surrounding traffic
conditions and navigate the road ahead through a planned
map, autonomous vehicles are gradually entering test roads
from the laboratories. Over the past decades, the autonomous
vehicles developed in full flourish by various universities and
companies worldwide have been bringing a revolution to the
automobile industry. Autonomous vehicles have the potential
to badly reduce the contribution of driver error and distraction
as the cause of vehicle accidents.

The major event in automated vehicle technology was the
first Defense Advanced Research Projects Agency (DARPA)
Grand Challenge in 2004 and the subsequent DARPA Urban
Challenge 2007 [1]. Large numbers of events and major
autonomous vehicle system tests have been held. A number
of projects have demonstrated higher levels of automation of
test vehicles in various research projects [2]. More and more
researchers in academia and industry have devoted a lot of
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efforts to research on improving technologies for autonomous
vehicles.

The commercial tests of Google’s self-driving vehicles
and Tesla’s autonomous vehicles have attracted widespread
attention from the media and car owners [3]. In addition to
traditional automakers such as General Motors (GM) and
Bayerische Motoren Werke AG (BMW), many emerging
technology companies, such as Apple Inc. (Apple) and Baidu
Inc. (Baidu), are also actively following up the research on
autonomous technology. Major business’s driverless car gave
huge publicities to the automated technology and further
attracted a pool of talent from several disciplines.

Currently, autonomous driving still faces many techni-
cal problems during the course of full commercialization.
It is especially worth noting that lane-changing behavior is
among themost worthy of research challenge for autonomous
driving.

A. LITERATURE REVIEW
Lane-changing maneuvers have profound impacts on the
traffic efficiency and the traffic accidents. Parameters of the
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vehicle as the longitudinal velocity, longitudinal acceleration,
lateral velocity, lateral acceleration, steering angle, etc. need
to be adjusted in real-timewhen lane-changing [4]. In order to
ensure that the self-driving vehicle reliably realizes the lane-
changing, vehicle-to-vehicle communication or accurately
detecting the traffic flow around the plant can be realized [5].
But not all vehicles have the ability to communicate with the
surrounding traffic. For autonomous vehicles, laser radar and
millimeter-wave radar can be installed to perceive the safety
of the surrounding vehicles. It is difficult for us to reasonably
control an autonomous vehicle model with a certain accuracy
through its own controller.

J. Funke linearized some governing equations of vehicle
states and path states to produce an affine vehicle model,
which enables real-time implementation [6]. N. A. Spielberg
used a feedforward-feedback control algorithm to control a
simple physics-based model of the vehicle to track a path
up to the friction limits of the vehicle [7]. J. K. Subosits
used the linearized equations of motion to generate linear
discrete equations describing the state transitions from one
point in space to the next. The discretization points are evenly
spaced in time along the nominal trajectory which has the
advantage of giving finer spatial resolution in the corners
than on straightaways [8]. Whereas almost all those control
motion equations are linearized and the autonomous models
of vehicle dynamics are a bit simplified.

Additionally, predictive controller can exploit internal
model to predict the behavior of the plant, starting at the
current time, over a future prediction horizon. Once a future
optimal input trajectory has been gotten, only the first element
of that trajectory is applied as the input signal to the plant.
A receding horizon strategy is used to new output value
following the reference trajectory [9], [10]. Jiechao Liu pre-
sented a model predictive control-based obstacle avoidance
algorithm for autonomous ground vehicles at high speed in
unstructured environments. The constraints are only about
two vehicle stabilization variables of an obstacle, and the
path tracking constraints are not considered [11]. J. Funke
linearized the vehicle model at each step around an expected
operating point and determined the front tire forces in the
MPC optimization [6]. Meng, R. used MPC theory to track
the lane change trajectory with the lateral model of con-
stant velocity offset plus sine function [12]. Falcone [13]
and Turri [14] unanimously implemented Model Predictive
Control (MPC ) frameworks that can avoid an obstacle
on icy road. Kai Liu [15] utilized MPC algorithm to con-
trol the dynamic model of automated vehicles and realized
lane-changing maneuver in high-velocity scenarios. How-
ever, there is no flexible way to deal with vehicle stability
boundary conditions in those literatures. In order to better
adapt to changes in vehicle velocity, the constraint weight of
the cost function should be appropriately changed.

B. CONTRIBUTION
The contribution of this paper is mainly reflected in two
aspects. First, the time-varying state variable control equa-

tion is derived from the vehicle dynamics model of the
autonomous vehicle. The vehicle dynamics cornering stiff-
ness boundary and lateral position boundary constraints are
softened in the optimal MPC cost function following the state
discretization equation. The vehicle is temporarily allowed
to break through the tire’s cornering stiffness and the center
line boundary of the road in order to avoid obstacles. Then,
the two lane-changing modes respectively with the maximum
longitudinal acceleration priority strategy and the minimum
longitudinal acceleration priority strategy are compared in
typical vehicle velocities, and the causes of lag of the lane
changing are analyzed from the perspective that the tire lon-
gitudinal and lateral forces are constrained by the tire friction
circle.

II. CONTINUOUS PLANT MODELING OF VEHICLE
DYNAMICS
Controlling the state of the vehicle by the lateral force of
the front wheels can flexibly control the vehicle to reach
the planned route as soon as possible. In this way, the error
model and motion dynamics equations of the vehicle must be
established. In order to facilitate the MPC solution, the con-
tinuous model must also be discretized to adapt to iterative
calculation.

A. TRACKING ERROR MODEL
The tracking error model is a usually used vehicle motion
model in the path tracking control of autonomous vehicles,
as shown in Fig. 1. The projection point of the vehicle on
the road centerline is S1, and the radius of curvature of the
point S1 on the road centerline is R. The heading angle of the
vehicle is ϕ, and the course angle at point S1 is ϕroad. The
heading deviation eϕ , which is positive counterclockwise,
represents the angle difference between ϕ and ϕroad. The
distance deviation ed in the path tracking process is defined as
the distance between the center of the rear axle of the vehicle
and its projection point on the centerline of the road, and the
distance deviation is defined as positivewhen the vehicle is on
the left side of the centerline. The derivative of the heading
deviation of

•
eϕ is shown in Equation (1). The derivative of

the lateral distance deviation of
•
ed is equal to the sum of the

two sub-velocities vx and vy of the CG projected along the
normal direction of the centerline with point S1, as shown in
Equation (2).

ėϕ = ϕ̇ −
vxcoseϕ
R+ ed

=
vxed
R2

(1)

ėd = vxsineϕ + vycoseϕ = vxeϕ + vy (2)

B. VEHICLE STATES
In order to allow the vehicle to track a given desired path
quickly and stably, a vehicle-tire model needs to be estab-
lished to highlight and analyze the vehicle’s handling and
stability characteristics. The established dynamic model is
mainly used as an iteration model of model predictive con-
trol, and needs to be simplified based on a more accurate
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FIGURE 1. Vehicle path tracking model.

FIGURE 2. Bicycle vehicle dynamics model.

description of the vehicle dynamics process to reduce the
computational load of the control algorithm.

This model focuses on the movement of the vehicle along
the x-axis and along the y-axis, as well as the rotation around
the z-axis, as shown in Fig. 2. The longitudinal force of the
center of the front axle is Fxf, the lateral force of the center of
the front axle is Fyf, the velocity of the center of the front axle
is Vf, the steering angle of the front wheel is δf, and the slip
angle of the front wheel is αf. The longitudinal force of the
center of the rear axle is Fxr, the lateral force of the center of
the rear axle is Fyr, the velocity of the center of the rear axle is
Vr, and the slip angle of the rear axle is αr. The vehicle has an
angular velocity of r around the center of gravity (CG). The
longitudinal velocity of CG of the vehicle is vx, the lateral
velocity of CG of the vehicle is vy. The distance from CG of
the vehicle to the front axle is equal to b, and that to the rear
axle is equal to c.

According to the vehicle force balance and moment bal-
ance conditions, the following equations (3) and (4) can be
obtained from the dynamics analysis.

m
(
v̇y + vxr

)
= Fxf sinδf + Fyf cosδf + Fyr (3)

Izṙ = b
(
Fxf sinδf + Fyf cosδf

)
− cFyr (4)

The rear tire will have the velocity component of the CG of
vy along the y-axis and another rotational velocity component
of -cr around the CG. The side-slip angle for the rear tire
can be expressed as Equation (5). The relationship of linear
tire model between the lateral force of the rear wheel of Fyr
and the slip angle of the rear tire of αr can be expressed as
Equation (6).

αr =
vy − cr
vx

(5)

Fyr = −Cαrαr (6)

Combining the above formulas (1), (2), (3), (4), (5) and (6),
the resulting vehicle model can be expressed as a continuous

form of state space, as shown in formulas (7) and (8). The
resulting vehicle model is time-varying, and the radius of
curvature of the road centerline of R in the coefficient matrix
can be expressed as formula (9) in which δf can be obtained
by the steering angle in the last iteration calculation.

˙ξ (t) = Aξ (t)+ Bu(t) (7)

u(t) = Fyf (t) (8)

R =
57.3L
δf

(9)

whereA =


−
Cαr
mvx

cCαr
mvx
− vx 0 0

cCαr
Izvx

−
c2Cαr
Izvx

0 0
0 0 0 vx

R2
1 0 vx 0

, and B =


1
m
b
Iz
0
0

,
ξ (t) =

[
vy r eϕ ed

]T
The longitudinal displacement d and longitudinal velocity

vx of the vehicle satisfy typical double integrator models. Let
the vector ψ represent the composition of two component
vectors, then the continuous model can be expressed as Equa-
tion (10).

ψ̇ =

[
0 1
0 0

]
ψ +

[
0
1

]
ul (10)

where ψ =[d, vx]T and ul = ax

III. PLANT MODEL DISCRETIZATION
When using predictive control to iteratively calculate the
vehicle model to find the optimal solution of the control
variable, the continuous control model equation must be dis-
cretized.

For periodic sampling with period T, the model of (7) at
some sampling time tk = k·T can be discretized to differ-
ential equations of zero-order holder or first-order holder.
It is necessary to consider in detail the tracking error of the
trajectory in a short distance, as well as the obstacle situa-
tion in a longer distance for self-driving vehicles. In order
to reduce the calculation load of the model predictive con-
troller, a variable receding horizon can be used to balance
the calculation accuracy and the calculation load. The control
horizon Np is comprised of short prediction horizon Ns and
long prediction horizon Nl, as shown in formula (11). In the
prediction horizonNs of the former stage, the sampling period
can use a shorter time interval Ts. In the prediction horizon Nl
of the later stage, the sampling period can use a longer time
interval Tl.

Np = Ns + Nl (11)

According to the zero-order holder method, the continu-
ous state differential equation (7) is discretized in the short
prediction horizon Ns to obtain the discrete state differential
equation (12).

ξ (k + 1) = Adsξ (k)+ Bdsu(k) (12)

where Ads = I4 + TsA and Bds = TsB
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In order to discretize the differential equation with a
first-order holder, the auxiliary differential equation (13)
is constructed. According to the first-order holder method,
the continuous state differential equation (7) is discretized
in the long prediction horizon Nl to obtain the discrete state
differential equation (14).

˙ξ (t)
˙u(t)
¨Tlu(t)

 =

A B 0

0 0
1
Tl

0 0 0


 ξ (t)

u(t)
˙Tlu(t)

 (13)

ξ (k + 1) = Adlξ (k)+ Bdlu(k)+ Cdlu(k+1) (14)

where Adl = I4+ATl + 1
2A

2T 2
l +

1
6A

3T 3
l

and Bdl = (BTl + 1
2ABT

2
l +

1
6A

2BT 3
l )

−( 12BTl +
1
6ABT

2
l )

and Cdl = 1
2BTl +

1
6ABT

2
l

In the sampling period T, the relationship between the
longitudinal travel distance and the longitudinal velocity of
the vehicle with respect to the longitudinal acceleration can
also be written as a discrete state equation. As a discretization
method of linear interpolation, the first order holder can guar-
antee a smaller numerical error when the sampling interval T
is longer.

Using a first-order holder with the sampling period T,
Sampling the double integrator continuous model (10) gives
the discrete-time longitudinal system, as shown in formula
(15).

ψ(k + 1) =

 1 T

0 1

ψ(k)+
 1

2T
2

T

 ul(k) (15)

where ψ (k)= [d(k),vx(k)]T
and ul(k) = ax(k)

IV. LANE-CHANGING CONTROL LOGIC
In this paper, we assume that the autonomous vehicle is
trying to change lanes on a two-lane road. Here the target
autonomous vehicle is denoted as VB. The nearest vehicle in
front of the traffic flow in the original lane is denoted as V1,
and the nearest vehicle behind the traffic flow of the original
lane is denoted as V3. And the nearest vehicle in front of the
traffic flow in the target lane is denoted as V2, and the nearest
vehicle behind the traffic flow in the target lane is denoted as
V4. The relative positional relationship of these five vehicles
is shown in Fig. 3. The lane changing process can be made
up of three stages - Traveling in its own lane, Trans-traveling
in two lanes, and Traveling in the target lane.

When the vehicle VB is traveling in its own lane with the
first phase of lane change, longitudinal control is required to
adjust the velocity and displacement of the vehicle VB in
order to adapt the traffic flow composed of VB, V1 and
V3, and to determine the prediction horizon to start the lane
changing. When the vehicle VB is trans-traveling across two
lanes with the second phase of lane changing, it requires
longitudinal control to adjust the velocity and displacement

FIGURE 3. Relative positional relationship of five vehicles.

of the vehicle VB, and lateral control of the velocity and
displacement of the vehicle VB in order to adapt the traffic
flow composed of VB, V1, V3, V2, and V4.When the vehicle
VB is traveling in the target lane with the third phase of
lane change, it needs to be controlled again longitudinally to
adjust the velocity and displacement to adapt the traffic flow
composed of VB, V2 and V4, and finally completes the lane
changing process. The three stages of lane changing consist of
longitudinal control logic and lateral control logic as below.

A. LONGITUDINAL CONTROL LOGIC
First, the lane changing time period Tp is divided into Np
prediction horizons, then each prediction horizon, such as the
kth prediction horizon, is examined in detail. When k≤Np,
the maximum longitudinal distance Dbmax can be obtained
according to the maximum longitudinal acceleration axmax.
According to the minimum longitudinal acceleration axmin,
the minimum longitudinal distance Dbmin can also be gotten.
The nearest traffic flow distance of the front traffic flow in its
own lane as the maximum actual distance Dft can be gotten,
and the nearest traffic flow distance of the rear traffic flow
in its own lane as the minimum actual distance Drt can also
be gotten. According to the formula (17), we can get the
length of the safe driving longitudinal corridor of P that the
autonomous vehicle can travel. If P≤0, delay one sampling
period and continue to search for future optimal time of lane
changing. If P>0 and Kgap < Gapmin, renew the values of
Kstart and Kend, and set Kgap = Kend− Kstart, and then scroll
forward one prediction horizon. If P>0 and Kgap ≥ Gapmin,
then find out the sampling time of the lane changing. This
control logic can be shown in Fig. 4.

The maximum actual distance Dft of the forward traffic
flow is equal to the nearest calculated distance of the forward
traffic flow of Dftmin minus the vehicle body margin Dmargin,
as shown in formula (16a). The minimum actual distance
Drtof the rear traffic flow is equal to the nearest calculated
distance of the rear traffic flow of Drtmax plus the vehicle
body margin Dmargin, as shown in formula (16b). Taking the
minimum value of the maximum actual distance Dft and the
maximum longitudinal distance Dbmax of the forward traffic
flow can obtain the forward safety distance Def, as shown in
formula (16c). Taking the maximum value of the minimum
actual distance Drt and the minimum longitudinal distance
Dbmin of the rear traffic flow can obtain the rear safety dis-
tance Der, as shown in formula (16d). Therefore, the length of
the safe driving longitudinal corridor of P in the lane changing
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FIGURE 4. Schematic of adjusting the state in one lane.

FIGURE 5. Schematic of maximum acceleration strategy.

can be expressed by formula (17).

Dft = Dftmin − Dmargin (16a)

Drt = Drtmax + Dmargin (16b)

Def = min{Dft,Dbmax} (16c)

Der = max{Drt,Dbmin} (16d)

P = min{0,Def − Der} (17)

B. LATERL CONTROL LOGIC
If a suitable lane changing time is found in the prediction
horizon Np, the longitudinal acceleration of the lane changing
can be calculated. When changing lanes, we can select an
acceleration value within the allowable range of longitudinal
acceleration ax to change lanes. In this paper, two accelera-
tion lane changing strategies are selected, lane-changing with
the maximum acceleration strategy, as shown in Fig. 5, and
lane-changing with the minimum acceleration absolute value
strategy, as shown in Fig. 6.

FIGURE 6. Schematic of minimum acceleration absolute value strategy.

1) LANE-CHANGING WITH THE MAXIMUM ACCELERATION
STRATEGY
After figuring out the occasion of lane change, from the
starting point Kstart of prediction horizon to the ending point
Kend of that, the longitudinal displacement Xb(i) and the
longitudinal velocity VB(i) of the autonomous vehicle are
calculated one by one. If the value of Xb(i) is within the
range of the longitudinal corridor Xcor,and the longitudinal
velocity VB(i) is within the range of the velocity limit, the
larger value of acceleration is selected as the acceleration for
preferential lane change. If the Xb(i) value exceeds the range
of the longitudinal corridor Xcor,or the longitudinal velocity
Vb(i) exceeds the velocity limit range, the prediction horizon
Np is the optimal lane change prediction horizon Nopt, and the
longitudinal acceleration ax is the optimal initial longitudinal
Acceleration axopt. The acceleration axopt plus the dissipation
longitudinal acceleration axdis equals the optimal longitudi-
nal acceleration ax. The formula for dissipating longitudinal
acceleration axdis is shown in equation (18), which consists
of the dissipating acceleration of drag and that of rolling
resistance.

axdis =
ρV 2CDA

2m
+ frg (18)

2) LANE-CHANGING WITH THE MINIMUM ACCELERATION
ABSOLUTE VALUE STRATEGY
If the value of Xb(i) is within the range of the longitudinal
corridor Xcor and the longitudinal velocity Vb(i) is within the
range of the velocity limit, the smaller value of the absolute
value of the acceleration is selected as the priority for the
acceleration of the lane change. The other control steps are
the same as in the maximum acceleration strategy.

Another important lateral control logic is the front wheel
angle control, shown as in Fig. 7. First, the current position
of the autonomous vehicle is identified, and the current state
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FIGURE 7. Schematic of front wheel steering angle control.

variable vector ξ (t) =
[
vy r eϕ ed

]T is calculated from the
current position, the start position of the lane changing and
the target lane centerline. Next, the coefficient matrix of the
discrete differential equation of Ads, Bds, Adl, Bdl, Cdl are
gotten, the coefficient matrix of the constraint equation of
Alp, Blp, Acs, Bcs are also calculated, the weight matrix are
figured out. Then the limit range of the control variable u,
i.e., Fyfopt, from the tire friction ellipse are obtained, and the
front wheel slip angle αf can be found out by the look-up
table. Finally, the front wheel steering angle δf is calculated
by formula (26), and the vehicle VB travels at this front wheel
steering angle δf for the next sampling period.

The different acceleration control strategies fromFig. 5 and
Fig. 6 can obtain the optimal calculated longitudinal accel-
eration axopt, and then add the dissipation acceleration axdis
defined by formula (18) to obtain the actual optimal longitu-
dinal acceleration of ax [16]. Furthermore, the actual optimal
longitudinal force of the front wheel of Fxf can be obtained by
formula (19). Fig. 8 shows the characteristics of the front tire
force friction ellipse. This characteristic can be quantitatively
described by formula (20), and thus the allowable range of the
front wheel longitudinal force of Fxf can be obtained.

Fxf =
c
l
max (19)

(Fxf )2

(ksurµFzf )2
+

(Fyf )2(
ksurµFzf

η

)2A ≤ 1(η ≥ 1) (20)

Autonomous vehicle VB needs to be restricted by the
position of the centerline of the left or right lanes when lane
changing. This constraint condition, shown as in inequal-
ity (21), can be further used as a soft constraint for MPC.
In order to avoid collisions and change lanes swiftly, it is
possible to slightly break this constraint condition.

FIGURE 8. Friction ellipse model of front tires.

Lateral position constraints:

Alpξ (k) ≤ Blp(k)

Alp =
[
0 0 0 1
0 0 0 −1

]
,Blp =

[
eymax(k)
−eymin(k)

]
(21)

To prevent sideslip, the side slip angle of the rear wheel
of the autonomous vehicle needs to be maintained within a
certain limited value range during lane changing. This con-
straint condition is shown as in inequality (22). In addition,
to avoid a sharp spin, the yaw rate of the self-driving vehicle
needs to be restricted, and the restriction conditions are shown
as in inequality (23). Combining constraint inequality condi-
tions (22) and (23) forms a new constraint inequality (24).

−αrlim ≤
vy − cr
vx

≤ −αrlim (22)

−r lim ≤ r ≤ rlim (23)

−Bcs(k) ≤ Acsξ (k) ≤ Bcs(k)

Acs=

 1
Vx(k)

−
c

Vx(k)
0 0

0 1 0 0

 ,
Bcs =

[
αrlim(k)
rlim(k)

]
(24)

Instead of weighting control variable u=Fyf to reduce
the maximum steering angle, MPC optimization weights the
state variable ξ (k) and the change of control variable u =
Fkyf −F

k−1
yf to reduce lateral motion acceleration, and weights

the soft constraints of the conditions as well to temporarily
break through the vehicle stability conditions. The final MPC
optimization takes the following form.

MinimizeJ = λ
Ns∑
k=1

‖ξ (k)‖2Q(k) +
Np∑

k=Ns+1

‖ξ (k)‖2
Q (k)

+λ ‖(u (0)− um)‖2R(k)+λ
Ns∑
k=1

‖(u (k)−u (k− 1))‖2R(k)

+

Np∑
k=Ns+1

‖(u (k)−u (k− 1))‖2R(k)+λ
Ns∑
k=1

‖Scs (k)‖2T (k)

+

Np∑
k=Ns+1

‖Scs(k)‖2T (k) +
Ns∑
k=1

∥∥Slp(k)∥∥2W (k) (25)

s.t.
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ξ (k+1) = Adsξ (k)+ Bdsu(k),∀k = 0, 1, . . . ,Ns− 1
(25a)

ξ (k+1) = Adlξ (k)+ Bdlu(k)+ Cdlu(k+1),∀k = Ns,

Ns+ 1, . . . ,Np (25b)

|u(k)| ≤ Fymax,∀k = 0, 1, . . . ,Np− 1 (25c)

−Bcs (k)− Scs (k) ≤ Acsξ (k) ≤Bcs(k)+ Scs (k) ,

∀k = 1, 2, . . . ,Np (25d)

Scs (k) ≤ Scsmax ,∀k = 1, 2, . . . ,Np (25e)

Alpξ (k) ≤Blp(k)+ Slp(k),∀k = 1, 2, . . . ,Ns (25f)

Slp (k) ≤ Slpmax ,∀k = 1, 2, . . . ,Ns (25g)

The slack variables Scs (k) is added to inequality (24) to
become inequality (25d) with oneMPC soft constraint condi-
tion, and the slack variables Slp(k) is added to inequality (21)
to become inequality (25f) with another MPC soft constraint
condition. The soft restraints allow the tire force to enter a
slightly non-linear state.
The optimal front wheel lateral force Fyf is obtained

through MPC optimization, and then the side slip angle αf of
the front tire can be obtained by the tabular look-up method,
and finally the front wheel streering angle δf can be obtained
by formula (26).

δf = (β +
br
vx
− αf )

π

180
(26)

V. SIMULATION RESULTS AND DISCUSSIONS
1) The three successful lane-changing path planning profiles
shown in Fig. 9 are obtained with the initial vehicle velocities
and positions of the three traffic flows defined in Table 1,
and also the three unsuccessful lane-changing path planning
profiles shown in Fig. 10with the initial vehicle velocities and
positions of the other three traffic flows defined in Table 2.

Under high-velocity, medium- velocity and low- velocity
conditions, the minimum acceleration axmin priority strategy
can successfully achieve lane changing and collision avoid-
ance. When changing lanes, it is possible to calculate in real
time the safety distance among vehicle VB and the vehicle
V1 in front of the lane, the vehicle V3 behind the lane,
the vehicle V2 in front of the target lane, and the vehicle
V4 behind the target lane in this process. In the prediction
horizon, under the conditions that the VB maintains a safety
corridor from the front and rear vehicles and remains the
acceleration range constraints, the vehicle VB keeps chang-
ing lanes according to the smallest possible forward accel-
eration. When changing lanes according to the minimum
acceleration axmin strategy, both high-velocity lane change
and low-velocity lane change can be completed within 5∼13
seconds, but the high-velocity lane changing presents a large
overshoot control characteristic in the prediction horizon
and the oscillation is obvious. Low-velocity lane change
exhibits under-damped control characteristics. The displace-
ment characteristics of successful lane-changing are shown
in Fig. 9. In the case of unsuccessful lane-changing, the vehi-
cle VB also has increased oscillation at high velocity when

FIGURE 9. Successful lane-changing with scenario a), scenario b),
scenario c).

FIGURE 10. Successful collision-avoiding with scenario a), scenario b),
scenario c).

TABLE 1. Successful lane-changing for 3 scenarios.

returning to the original lane. The unsuccessful lane-changing
is due to the traffic flow vehicles in the target lane entering the
safety corridor of vehicle VB, and vehicle VB returns to the
original lane in order to avoid collision, as shown in Fig.10.

2) Comparing the maximum acceleration priority strategy
and the minimum acceleration priority strategy, the displace-
ment characteristics (shown as in Fig.11), the time domain
characteristics (shown as in Fig.12), the acceleration char-
acteristics (shown as in Fig.13), the velocity characteristics
(shown as in Fig.14) of lane changing have little difference
with the two acceleration priority strategies when changing
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TABLE 2. Successful collision-avoiding for 3 scenarios.

FIGURE 11. Displacement characteristics of lane-changing with 120km/h
traffic flow.

FIGURE 12. Time domain characteristics of lane-changing with 120km/h
traffic flow.

lanes at an initial velocity of 100km/h in a traffic flow
of 120km/h. The reason is that the high power dissipation
such as wind drag of the vehicle at high velocity limits the
variation range of longitudinal acceleration, and thus the
variation value of longitudinal acceleration is small. It can
be seen from Fig.13 that the variation range of ax is merely
−0.31m/s2 to 1.55m/s2. This longitudinal acceleration is used
to adjust the velocity of vehicle VB from 100km/h to the traf-
fic flow velocity of 120km/h, and to adjust the longitudinal
distance in the vicinity of its own lane and the target lane for
collision avoidance. Under the constraint of safety corridor
between vehicles, the initial condition that the average dis-
tance between vehicles at high velocity is merely 50m also
further restricts the range of acceleration.

FIGURE 13. Acceleration characteristics of lane-changing with 120km/h
traffic flow.

FIGURE 14. Velocity characteristics of lane-changing with 120km/h traffic
flow.

TABLE 3. Forms of lateral acceleration (m/s2).

We mark the discrete form of centroid of lateral accel-
eration ay as CEN ay(k) in formula (27), and also mark the
discrete form of root mean square of lateral acceleration ay
as RMSay(k), in formula (28). Two forms of lateral acceler-
ation ay, as shown in Table 3, can be obtained in different
acceleration strategies with three typical vehicle velocities.

CEN ay(k) =

∫
aydA
A
=

n∑
k=1
{ay(k)

∣∣ay(k)∣∣ }
n∑

k=1

∣∣ay(k)∣∣ (27)

RMSay(k) =

√√√√√ n∑
k=1
{(ay(k))2}

n
(28)

Analyzing the MPC optimized output data points, we can
find out that the vehicle velocity V increases, CEN ay(k)
decreases, but RMSay(k) is almost unchanged, as shown
in Table 3. This is due to the existence of many negative
acceleration points with ay at high vehicle velocities, and
the acceleration distribution point diagram also confirms this
inference, as shown in Fig.13. While vx increases, ay =v2x/R
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FIGURE 15. Displacement characteristics of lane-changing with 60km/h
traffic flow.

also increases. There are 13 data points with lateral acceler-
ation ay greater than 1.0m/s2 in the two acceleration priority
strategy diagrams of lane changing. Since the resultant accel-
eration has a limited range, the ax range must be reduced at
high velocity to comply with the elliptical law of tire friction.
It is worth noting that ax includes the dissipative acceleration
terms defined by Formula (18) in the two acceleration strate-
gies. The following discussion is the same way as here.

Comparing themaximum acceleration priority strategy and
the minimum acceleration priority strategy, the displacement
characteristics (shown as in Fig.15), the time domain charac-
teristics (shown as in Fig.16), the acceleration characteristics
(shown as in Fig.17), the velocity characteristics (shown as
in Fig.18) of lane changing have some differences with the
two acceleration priority strategies when changing lanes at
an initial velocity of 40km/h within a traffic flow of 60km/h.

Changing lanes with the maximum acceleration prior-
ity strategy, there is lane-changing time lag, lane-changing
extension of the longitudinal distance, delay of lane-changing
velocity, the range increase of longitudinal acceleration of
lane-changing, and the increase of operating points of accel-
eration and braking, but the extent of those variations is
not too great. The reason is that the dissipation power such
as wind drag of vehicle VB is reduced when driving at a
medium velocity, which relaxes the change range of longi-
tudinal acceleration, and the variation of longitudinal accel-
eration increases. It can be seen from the Fig. 17 that the
range of ax varies from -0.7m/s2 to 3.9m/s2. This longitudinal
acceleration is used to adjust the velocity of vehicle VB from
40km/h to the traffic flow velocity of 60km/h, and to adjust
the longitudinal distance in the vicinity of its own lane and
the target lane for collision avoidance. To the maximum
acceleration priority lane changing strategy, the increase in
the operating conditions of acceleration and braking will lead
to a slight increase in lane changing time, shown as in Fig.16.

Comparing themaximum acceleration priority strategy and
the minimum acceleration priority strategy, the displacement
characteristics (shown as in Fig.19), the time domain charac-
teristics (shown as in Fig.20), the acceleration characteristics
(shown as in Fig.21), the velocity characteristics (shown as
in Fig.22) of lane changing have large differences with the
two acceleration priority strategies when changing lanes at
an initial velocity of 20km/h within a traffic flow of 30km/h.

FIGURE 16. Time domain characteristics of lane-changing with 60km/h
traffic flow.

FIGURE 17. Acceleration characteristics of lane-changing with 60km/h
traffic flow.

FIGURE 18. Velocity characteristics of lane-changing with 60km/h traffic
flow.

Changing lanes with the maximum acceleration prior-
ity strategy, there is lane-changing time lag, lane-changing
extension of the longitudinal distance, delay of lane-changing
velocity, the range increase of longitudinal acceleration of
lane-changing, and the increase of operating points of accel-
eration and braking. These variations are much more appar-
ent. The reason is that the dissipation power such as wind
drag of the vehicle is very small when driving at low velocity,
and the variation range of longitudinal acceleration increases
significantly. It can be seen from Fig. 21 that ax varies from
-3m/s2 to 6m/s2. This longitudinal acceleration is used to
adjust the initial velocity of the vehicle VB from 20km/h
to 30km/h of the traffic flow, and to adjust the longitudinal
distance in the vicinity of its own lane and the target lane
for collision avoidance. When adjusting the distance between
vehicles, the maximum velocity reaches as much as 52km/h,
which is almost two times the velocity of the traffic flow.
The three stages of lane change are composed of two simple
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TABLE 4. List of notations.

longitudinal control stages and one longitudinal-lateral joint
control stage. It can be seen that when the difference between
the vehicle velocity and the velocity of the traffic flow is
not large in the low-velocity traffic flow, using the maximum
acceleration strategy to change lanes will otherwise make the
lane changing slower.

While changing lanes at low velocity, following the max-
imum acceleration strategy control will cause large fluctua-
tions in vehicle velocity. Although the time required for the
longitudinal-transverse joint control is reduced, the time for
the two simple longitudinal control phases will increase in
case of great velocity fluctuation. The result is that under this
low- velocity operating condition, according to the maximum
acceleration priority strategy, the acceleration and braking
operating conditions increase, the lane change time increases
by about 9 seconds, and the lane change distance increases by
over 20 meters.

We can find out that CEN ay(k) increases in the low vehi-
cle velocity of 30km/h, but RMSay(k) is almost unchanged,
as shown in Table 3. This is due to the fact that ay has many
positive acceleration points at low vehicle velocities with the

FIGURE 19. Displacement characteristics of lane-changing with 30km/h
traffic flow.

FIGURE 20. Time domain characteristics of lane-changing with 30km/h
traffic flow.

FIGURE 21. Acceleration characteristics of lane-changing with 30km/h
traffic flow.

FIGURE 22. Velocity characteristics of lane-changing with 30km/h traffic
flow.

maximum acceleration strategy. The acceleration distribution
point diagram also confirms this result, shown in Fig. 21.
While vx decreases, ay = v2x/R is also down. There are only
8 data points with lateral acceleration greater than 1.0m/s2 in
either acceleration priority lane changing strategy diagram.
Since the resultant acceleration has a limited range, the ax
range can be increased at low velocity and the tire force will
not tend to be saturated.
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All of the notations in this paper are given out with Table 4,
which includes the symbols, its explanations and its units.

VI. CONCLUSION
1) The state equations of the vehicle dynamics model of the
path tracking dynamic variables and tracking errors are estab-
lished, and the weighting optimization of the state variable
vector and the control variable increment is used to realize
theMPC optimization control of the autonomous vehicle path
planning. Further, the front steering wheels are indirectly
controlled by adjusting the lateral force of the front wheels.
In order to improve the accuracy of the model, the coefficient
matrices of the discrete state equation perform an iterative
optimization calculation as constant ones in the prediction
horizon of this sampling time, and the next sampling time
is treated as variable ones. Through MPC optimization with
soft constraints, vehicles can break through the constraints of
control accuracy and achieve obstacle avoidance.

2) The longitudinal and lateral control logics of the
autonomous vehicle in the safety corridor of the traffic
flow within the prediction horizon are analyzed, and the
influences of the minimum longitudinal acceleration priority
strategy on the lane changing characteristics at different vehi-
cle velocities are compared, including overshoot oscillation,
underdamping, hysteresis, and also the scene of unsuccessful
lane-changing.

3) Considering three typical vehicle velocities, the influ-
ences of the maximum longitudinal acceleration priority
strategy and the minimum longitudinal acceleration priority
strategy on the displacement, velocity and acceleration of
the lane changing are simulated, and the causes of lag of
the lane changing are analyzed from the perspective that the
tire longitudinal and lateral forces are constrained by the tire
friction circle. When the velocity of the self-driving vehicle
is much near to the velocity of the traffic flow, it is possible to
complete the lane changing as soon as possible by adopting
the minimum longitudinal acceleration priority strategy.

Future work will center on verifying the effectiveness of
the proposed control algorithm and the real-time performance
of MPC control on real roads.
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