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ABSTRACT Steering vector mismatch rapidly degrades the performance of the minimum variance dis-
tortionless response beamformer. To solve this problem, a robust beamforming method based on weighted
vector norm regularization is proposed. First, the factors affecting the robustness of the beamformer are
analyzed. Second, by introducing the weighted vector norm, an optimization problem is constructed to
increase the robustness of the beamformer. Furthermore, the regularization coefficient is provided to achieve
a balance between the output power and the robustness of the beamformer. Meanwhile, a method of finding
the appropriate regularization coefficient is provided. Then, simulations of an irregular arc array are carried
out, showing that the proposed method is robust to the snapshot number. Finally, the results and data analysis
indicate the effectiveness of the proposed method.

INDEX TERMS Beamforming, robustness, regularization, spatial resolution, weighted vector norm.

I. INTRODUCTION
As an array signal processing method, beamforming has been
widely used in many fields, such as communication [1],
radar [2], sonar [3], imaging [4], mapping [5], and remote
sensing [6]. In the conventional beamforming (CBF) method,
the signals from different directions are delayed differently,
and then all the delayed signals are summed up such that the
signals from different directions obtain different magnifica-
tions. The beam pattern of CBF is unaffected by the snapshot
number because the weighted vector calculated by the CBF
method is determined by the assumed steering vector and the
number of array elements. However, the interference suppres-
sion ability of CBF is limited. Therefore, the output signal-
to-interference-plus-noise ratio (SINR) of CBF can hardly
meet the design requirements when the received data contains
interference. To improve the output SINR of the beamformer,
Capon [7] proposed the minimum variance distortionless
response (MVDR) beamforming method. The MVDR beam-
former can ensure that the output of the desired signal is not
distorted and minimize the output power of interference plus
noise. The MVDR beamformer can achieve optimal perfor-
mance when the snapshot number is sufficient and the actual
steering vector is known. Unfortunately, insufficient snapshot
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number and steering vector mismatch are often encountered
in practical application scenarios. When the snapshot number
is insufficient, the sidelobe of MVDR will increase because
the estimated covariance matrix is inaccurate [8]. Meanwhile,
when a mismatch in the steering vector exists, the signal
self-cancellation phenomenon will occur because the signal
is mistakenly suppressed as interference [9]. These two phe-
nomena will lead to a sharp decrease in the output SINR
and a serious degradation in the performance of the MVDR
beamformer.

To improve the robustness of the beamformer, many robust
beamforming methods have emerged through studies on
array signal processing. These methods are mainly divided
into diagonal loading methods [10], [11], eigenspace-based
methods [12], [13], and sparse-constraint-based methods.
An inappropriate diagonal loading factor will cause a sharp
decline in the performance of the beamformer. Many meth-
ods have been proposed to determine the optimal diagonal
loading factor. These methods obtain the optimal diagonal
loading factor by combining matrix theory with experimental
method [14], estimating the signal-to-noise ratio (SNR) of
the sample covariance matrix [15], or combining denoising
pretreatment with truncated least mean square error the-
ory [16]. Diagonal loading methods can improve the robust-
ness of the beamformer to a certain extent. Unfortunately,
the optimal diagonal loading factor is difficult to determine
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due to the uncertainty error of the steering vector in actual sce-
narios. Eigenspace-based methods can improve the robust-
ness of the beamformer by taking advantage of the eigenspace
characteristics of the received data. According to the min-
imum sensitivity principle, the optimal projection of the
weighted vector can be obtained by using the sensitiv-
ity function in the enhanced eigenspace beamformer [17].
By combining the approximate expression of signal subspace
projection and the two-stage beamformer structure, the beam-
former can eliminate the subspace projection operation and
the element number estimation [18]. However, these methods
can hardly realize spatial filtering when the SNR is not high
enough or the number of the desired signal plus interferences
is extremely high [12]. With the wide application of sparse
representation in statistical signal processing and parameter
estimation [19]–[22], some sparse-constraint-based beam-
forming methods have emerged [23], [24]. Given the sparse
distribution of interferences in the sidelobe region, the array
response in the sidelobe region is sparsely constrained in
these methods. These sparse-constraint-based beamforming
methods can reduce the sidelobe level of the beam pattern
and improve the robustness of the beamformer. Notwith-
standing, these methods require a priori knowledge of the
direction of arrival (DOA) of interferences, which is often
difficult to achieve in practical applications. In addition,
a reconstruction-based beamformer can reduce the perfor-
mance degradation caused by sensor gain and phase uncer-
tainty [25]. A beamformer based on support vector machine
can improve the robustness of the beamforming algorithm
without reducing the spatial resolution, but the main lobe
width of this method must be set reasonably according
to experience [26]. A method improves the performance
by calibrating the position, gain, and phase of the array
elements [27]. The various beamforming methods men-
tioned above improve the robustness and performance of
the beamformer in different ways. However, the imple-
mentation process of these methods is complex or they
need prior knowledge which is difficult to obtain in actual
scenarios.

To find a robust beamforming method that is simple and
easy to implement, the weighted vector norm regulariza-
tion (WVNR) beamforming method is proposed. To directly
control the robustness of the beamformer, the factors affecting
the robustness are analyzed in this paper. The weighted vector
norm directly affects the robustness of the beamformer. In the
proposed WVNRmethod, the weighted vector norm is added
to the objective function of the MVDR model as a regu-
larization term. The regularization coefficient controls how
much weight is assigned to the minimization of the weighted
vector norm relative to the minimization of the output power.
By fitting the cubic spline curve and calculating the maxi-
mum curvature, the optimal regularization coefficient can be
derived. Computer simulations of an irregular arc array are
carried out, and the results show that the WVNR method can
effectively improve the robustness of the beamformer to the
snapshot number and steering vector mismatch.

II. BACKGROUND
Assuming that the elements of an arbitrary array are all omni-
directional sensors, the number of elements isM , the number
of narrowband plane waves received by the array is J+1, and
the number of interferences is J . After the digital sampling
of the analog waves, the time domain model of the signals
received by the array at time k can be expressed as

x (k) = a (θs) ss (k)+
J∑
j=1

a
(
θj
)
sj (k)+ n (k) , (1)

where k is the index of the temporal samples, and j =
1, 2, · · · , J is the index of interferences. ss (k), a (θs), and θs
are the waveform, the steering vector, and the DOA of the
desired signal, respectively. sj (k), a

(
θj
)
, and θj represent the

waveform, the steering vector, and the DOA of interference,
respectively. n (k) is the spatial Gaussian white noise vector.

The output of the narrowband beamformer is

y (k) = wHx (k) , (2)

wherew is the weighted vector, andw = [w1,w2, · · · ,wM ]T .
Here, (·)T denotes transpose, and (·)H denotes conjugate
transpose.

The output SINR of the beamformer is

SINR =
σ 2
ys

σ 2
yj + σ

2
yn
=

wHRsw
wHRjw+ wHRnw

, (3)

where σ 2
ys, σ

2
yj, and σ

2
yn are the output powers of the desired

signal, interference, and noise, respectively; Rs, Rj, and Rn
are the covariance matrices of the desired signal, interference,
and noise, respectively.

For the CBF algorithm, the weighted vector is

wCBF = a (θ0) /M , (4)

where a (θ0) is the assumed steering vector, and θ0 is the angle
of the assumed steering vector.

To improve the output SINR of the beamformer, Capon
proposed the MVDR algorithm:

min
w

wHRj+nw

subject to wHa (θ0) = 1, (5)

where Rj+n is the covariance matrix of interference plus
noise. In the MVDR beamformer, the output of the desired
signal has no distortion and the power of interference plus
noise is minimized.

In actual scenarios, the covariance matrix of interference
plus noise is difficult to obtain, and Rj+n is usually replaced
by Rx :

Rx =
1
K

K∑
k=1

x (k) x (k)H , (6)

where K is the snapshot number. The signal self-cancellation
phenomenon occurs when a mismatch in the steering vector
exists. Signal self-cancellation means that the desired signal
is suppressed as interference, and a null appears in the DOA
of the desired signal on the beam pattern.
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III. PROPOSED BEAMFORMER
To improve the robustness of the beamformer, the factors
affecting its performance are analyzed. Assuming that a ran-
dom point in the space is selected as the coordinate origin,
the position of the m-th element in the three-dimensional
Cartesian coordinate system can be expressed as

pm =
[
pmx , pmy, pmz

]T
. (7)

When the DOA of the plane wave propagating to the array is
θ = (φ, ϑ), the unit vector of the propagation direction can
be expressed as

v (θ) = − [sin (φ) cos (ϑ) , sin (φ) sin (θ) , cos (φ)]T , (8)

where φ is the elevation angle, and ϑ is the azimuth angle.
The unit response vector of the array, which is also called

the array manifold vector, can be expressed as

a (θ)=
[
exp(−jNT p1), exp(−jN

T p2),· · ·, exp(−jN
T pM )

]T
,

(9)

where N = (2π/λ) v (θ) is the wavenumber.
The response vector of the beamformer to the signal from

the direction θ is

b (θ) = wHa (θ)

= wH exp(−j (2π/λ) v(θ )T p), (10)

where w is the weighted vector. Equation (10) indicates that
the main factors affecting the response of the beamformer are
the weighted vector and the position.

The ideal position of the m-th element of the array is p̄m =[
p̄mx , p̄my, p̄mz

]T and the actual position is pm = p̄m +1pm,
where 1pm =

[
1pmx ,1pmy,1pmz

]T is the error vector of
the position, pmx = p̄mx + 1pmx , pmy = p̄my + 1pmy,
and pmz = p̄mz + 1pmz. The ideal weighted vector is w̄ =
[w̄1, w̄2, · · · , w̄M ]T , where the weighted value of the m-th
element is w̄Hm = ḡm exp(jϕ̄m). That is, the ideal amplitude
weighted value is ḡm, and the phase weighted value is ϕ̄m.
In practical application scenarios, channel error is inevitable.
Therefore, if the channel response is included in the weighted
value, then the actual weighted values are different from
the ideal weighted values. The actual amplitude and phase
weighted values of the m-th element are gm = ḡm (1+1gm)
and ϕm = ϕ̄m +1ϕm, respectively, where 1gm and 1ϕm are
the channel amplitude and phase errors, respectively.
1gm, 1ϕm, 1pmx , 1pmy, and 1pmz are assumed to be

zero-mean random variables with a Gaussian distribution and
are statistically independent of each other; the variances of
1gm and 1ϕm are σ 2

g and σ 2
ϕ ; and the variance of each

component of 1pm is σ 2
p . The ideal beamformer output is

b̄ (θ) = w̄H ā (θ) =
M∑
m=1

ḡm exp(jϕ̄m − jNT p̄m). (11)

And the actual beamformer output is

b (θ) = wHa (θ) =
M∑
m=1

gm exp(jϕm − jNT pm). (12)

The mathematical expectation of the square of the actual
beamformer output is

E
{
|b(θ )|2

}
= E


M∑
i=1

M∑
j=1

gi exp
(
jϕi − jNT pi

)
gj exp

(
jϕj − jNT pj

)
=

M∑
i=1

M∑
j=1

E
{
ḡi (1+1gi) ḡj

(
1+1gj

)
· exp

(
j
(
ϕ̄i +1ϕi − ϕ̄j −1ϕj

))
· exp

(
−jNT (p̄i +1pi − p̄j −1pj))} . (13)

αij and βij are defined as

αij = E
{
(1+1gi)

(
1+1gj

)
exp

(
j
(
1ϕi −1ϕj

))}
, (14)

βij = E
{
exp

(
−jNT (1pi −1pj))} . (15)

Using the assumption of independent Gaussian distribution
of random variables, then

αij =

{
exp(−σ 2

ϕ ), i 6= j
1+ σ 2

g , i = j
, (16)

βij =

exp
(
−σ 2

p |N |
2
)
= exp

(
−

(
2π
λ
σp

)2)
, i 6= j

1, i = j.
(17)

Let σλ = (2π/λ) σp, then (13) can be expressed as

E
{
|b(θ )|2

}
=

M∑
i=1

M∑
j = 1
j 6= i

ḡiḡj exp
(
jϕ̄i − jϕ̄j

)
exp

(
−jNT (p̄i − p̄j))

· exp
(
−

(
σ 2
ϕ + σ

2
λ

))
+

M∑
i=1

ḡ2i exp
(
−

(
σ 2
ϕ + σ

2
λ

))
+

M∑
i=1

ḡ2i
(
1+ σ 2

g

)
−

M∑
i=1

ḡ2i exp
(
−

(
σ 2
ϕ + σ

2
λ

))
=
∣∣b̄ (θ)∣∣2 exp (− (σ 2

ϕ + σ
2
λ

))
+

M∑
m=1

ḡ2m
(
1+ σ 2

g − exp
(
−

(
σ 2
ϕ + σ

2
λ

)))
. (18)

Equation (18) shows that the influence of the small errors
in element position, channel amplitude, and channel phase
on the beamformer output reduces with the decrease of the
weighted vector norm.

To improve the robustness of the beamformer, the idea of
minimizing each element in the weighted vector is consid-
ered. Fortunately, when the l2-norm of the vector is mini-
mized, the value of each element in the vector becomes very
small. According to this characteristic, the weighted vector
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norm is added to the objective function of the MVDR model,
and the following optimization problem is proposed:

min
w

wHRxw+ γ ‖w‖

subject to wHa (θ0) = 1, (19)

where ‖·‖ denotes the l2-norm, and γ ∈ (0,+∞) is the
regularization coefficient.

The equality constraint function in optimization prob-
lem (19) transforms w from M-dimensional space to one-
dimensional space, so the equality constraint is affine. The
objective function is defined as

F (w) , wHRw+ γ ‖w‖ . (20)

Variable β ∈ [0, 1] is introduced. Then, inequality
F (βw1 + (1− β)w2) ≤ βF (w1) + (1− β)F (w2) holds,
where w1 and w2 are any two vectors in the feasible region.
This relationship proves that the objective function F (w) is
convex. Given that the equality constraint is affine, the pro-
posed optimization model (19) is proved to be a convex
optimization problem.

The objective function of (19) reveals that the balance
between the output power and the robustness can be achieved
by selecting an appropriate regularization coefficient γ .
Inspired by the L-curve method [28], some data with a log-
arithmic interval distribution in a certain range are taken as
values of γ . The relationship between the output power and
the weighted vector norm can be obtained by solving the
optimization problem (19) with different values of γ . The
curve of the weighted vector norm changing with the output
power of the array is L-shaped. The γ value corresponding
to the corner of the L-curve is the optimal value of γ for
balancing the output power and the robustness.

IV. COMPUTER SIMULATIONS
Computer simulations were conducted to demonstrate the
method of finding the optimal regularization coefficient and
verify the robustness improvement of the WVNR algorithm
compared with the MVDR algorithm.

An irregular arc array with 62 elements was used. All
elements are omnidirectional, and the position of the elements
in the array is shown in Figure 1.

In the following simulations, the desired signal and inter-
ferences are plane waves propagating to the array, the noise
in space is Gaussian additive white noise, and the speed of
propagation is 1500 m/s. In all simulations, the elevation
angles of the assumed and actual steering vectors are both
90◦. Thus, only the azimuth angle of the steering vector is
considered. For the convenience of expression, the azimuth
angle is replaced by the angle. In the beam pattern simula-
tions, the angle of the assumed steering vector is 0◦; theDOAs
of interferences are −25◦, 25◦, and 65◦; the SNR is 10 dB;
and the interference to noise ratio (INR) is 30 dB. Computer
simulations are carried out under different conditions: (a) the
mismatch range of the steering vector is [−2◦, 2◦]; (b) the
mismatch range of the steering vector is [−5◦, 5◦].

FIGURE 1. Element position of the irregular arc array.

A. REGULARIZATION COEDDICIENT
To find the appropriate regularization coefficient γ , 50 data
with a logarithmic interval distribution in the range of
[10−1,104] are taken as the values of γ . The L-curve of
the weighted vector norm to the output power is shown
in Figure 2, the output power versus the regularization coef-
ficient is presented in Figure 3.

In Figures 2 and 3, (a) and (b) correspond to the case where
the maximum absolute value of the steering vector mismatch
is 2◦ and 5◦, respectively. Figures 2 and 3 indicate that the
method to find the appropriate regularization coefficient can
be divided into the following two steps.

1. According to Figure 2, the fitting curve of the log-
log scaled L-curve can be obtained by the fitting cubic
spline method. Then, the curvature of the fitting curve can
be calculated. The maximum curvature of the fitting curve
corresponds to the corner of the L-curve for which the corre-
sponding output power can be found.

2. Figure 3 and the output power corresponding to the
maximum curvature reveal the value of the regularization
coefficient corresponding to the corner of the L-curve. This
value can ensure that the beamformer is robust within the
mismatch range of the steering vector.

The comparison of Figures 2(a) and 2(b) reveals that the
position of the turning point of the L-curve varies with the
mismatch range of the steering vector. Furthermore, consider-
ing the corresponding relationship between the regularization
coefficient and the output power in Figure 3, the appropriate
value of the regularization coefficient γ varies with the mis-
match range of steering vector.

In the following simulations, the value of regularization
coefficient γ is 559 when the mismatch range of the steer-
ing vector is [−2◦, 2◦] and 576 when the mismatch range
is [−5◦, 5◦].

B. BEAM PATTERN
The beam patterns of CBF,MVDR, andWVNRare compared
in Figure 4. In Figures 4(a) and 4(b), the angle of the actual
steering vector is 2◦ and 5◦, respectively.
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FIGURE 2. Output power versus weighted vector norm. The mismatch
range of the assumed steering vector is (a) [−2◦, 2◦]; (b) [−5◦, 5◦].

In Figures 4(a) and 4(b), WVNR and CBF obtain the
maximum value in the 0◦ direction, and the nulls in the−25◦,
25◦, and 65◦ directions are formed by WVNR and MVDR.
In Figures 4(a) and 4(b), a null is formed by MVDR in the 2◦

direction and 5◦ direction, respectively.
In Figure 4, when the regularization coefficient is set to

an appropriate value, both WVNR and CBF can ensure the
strongest signal amplification ability in the direction of the
assumed steering vector. The interference suppression ability
ofWVNR is weaker than that ofMVDR but stronger than that
of CBF.When the steering vector ismismatched,MVDRmis-
takenly takes the desired signal as interference and suppresses
it. Figure 4 shows that the order of interference suppression
ability from strong to weak is MVDR, WVNR, and CBF.

C. SINR VERSUS SNAPSHOT NUMBER
The number of repetitions is 500. The average value of the
output SINR is recorded, and the variation of the output
SINR with the number of snapshots is shown in Figure 5.

FIGURE 3. Output power versus regularization coefficient. The mismatch
range of the assumed steering vector is (a) [−2◦, 2◦]; (b) [−5◦, 5◦].

In Figures 5(a) and 5(b), the angle of the actual steering vector
is 2◦ and 5◦ respectively.
In Figure 5(a), the output SINR of CBF is always

-12.25 dB; in Figure 5(b), the output SINR of CBF is always
-15.72 dB. The output SINR of WVNR in Figure 5(a)
increased rapidly from 16.71 dB to 16.82 dB and remained
unchanged with the increase of the number of snapshots,
while the output SINR of WVNR in Figure 5(b) increased
quickly from 11.97 dB to 12.07 dB and then remained
the same. In Figures 5(a) and 5(b), the output SINR of
MVDR decreased as the number of snapshots increased.
In Figure 5(a), the output SINR of MVDR decreased from
-10.38 dB to -18.44 dB; in Figure 5(b), the output SINR of
MVDR decreased from -10.87 dB to -24.42 dB.

Figure 5 shows that the output SINR of CBF remained
unchanged with the increase in the number of snapshots,
while the output SINR of WVNR only increased by 0.1 dB.
In Figures 5(a) and 5(b), the changes in the output SINR of
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FIGURE 4. Beam pattern. The angle of the actual steering vector is (a) 2◦;
(b) 5◦.

MVDR are 8.06 dB and 13.55 dB, respectively. Figure 5 illus-
trates that the order of robustness to the snapshot number from
strong to weak is CBF, WVNR, and MVDR.

D. SINR VERSUS MISMATCH
The number of snapshots is 150, the number of repeti-
tions is 500. The average value of the output SINR is
recorded, and the curves of SINR versus the mismatch of
the steering vector are shown in Figure 6. In Figure 6(a),
the mismatch of the steering vector changes from −2◦ to 2◦;
in Figure 6(b), the mismatch of the steering vector changes
from −5◦ to 5◦.
Figure 6(a) shows that the output SINRs of CBF, MVDR,

and WVNR decreased from -11.64 dB to -12.25 dB, 3.74 dB
to -17.04 dB, and 17.68 dB to 16.73 dB, respectively, with the
increase in the absolute value of the steering vector mismatch
from 0◦ to 2◦. Figure 6(b) indicates that the output SINRs
of CBF, MVDR, and WVNR decreased from -11.64 dB

FIGURE 5. SINR versus number of snapshots. The number of repetitions
is 500, the angle of the actual steering vector is (a) 2◦; (b) 5◦.

to -15.77 dB, 3.74 dB to -20.19 dB, and 17.48 dB to 11.99 dB,
respectively, with the increase in the absolute value of the
steering vector mismatch from 0◦ to 5◦.
Figure 6(a) shows that the output SINRs of CBF, MVDR,

and WVNR decreased by 0.61 dB, 20.78 dB, and 0.95 dB,
respectively, as the absolute value of the steering vector
mismatch increased by 2◦. Figure 6(b) indicates that the
output SINRs of CBF, MVDR, and WVNR decreased by
4.13 dB, 23.93 dB, and 5.49 dB, respectively, as the abso-
lute value of the steering vector mismatch increased by 5◦.
Figure 6 implies that the order of robustness to the mis-
match of the steering vector from strong to weak is CBF,
WVNR, and MVDR. Furthermore, the output SINR of
WVNR in Figure 6(a) is always slightly higher than that
in Figure 6(b) when the steering vector mismatch is the
same. This phenomenon indicates that the output SINR of the
WVNR beamformer increases gradually with the narrowing
of the mismatch range of the steering vector.
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FIGURE 6. SINR versus mismatch. The number of snapshots is 150,
the number of repetitions is 500, the mismatch range of the assumed
steering vector is (a) [−2◦, 2◦]; (b) [−5◦, 5◦].

V. CONCLUSION
In this study, the WVNR beamforming method is proposed.
In the WVNR beamforming method, the regularization term
is used to directly control the robustness of the beamformer,
and the regularization coefficient is used to adjust the balance
between the output power and the robustness. The main lobe
shape, the ability to suppress interference, and the robustness
to the snapshot number are simultaneously considered as
reflected in the following aspects: (1) the shape of the main
lobe remains unchanged; (2) null is formed in the DOA
of interference; (3) the impact of the change in snapshot
number on performance. When the steering vectors do not
match or the snapshot number is insufficient, the serious
degradation of the performance of the MVDR beamformer
is effectively solved by the WVNR method. The WVNR
algorithm can ensure that the spatial resolution remains
unchanged, and reduce the influence of the snapshot number
on performance. However, the ability to suppress interference
inevitably decreases as reflected by the shallow depth of the

null in the DOA of interference. Consequently, the beam-
former gains the above advantages while slightly sacrificing
its interference suppression ability. Therefore, the WVNR
method is suitable in cases of steering vector mismatch or
insufficient snapshot number. In future work, the influence
of the l1/∞-norm of the weighted vector on robustness can be
discussed.
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