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ABSTRACT Skyline query has been studied extensively and a significant number of skyline algorithms have
been proposed, mostly attempt to resolve the optimisation problem that is mainly associated with reduction in
the processing time of skyline computations.While databases change their states and/or structures throughout
their lifetime to reflect the current and latest information of the applications, the skyline set derived before
changes are made towards the initial state of a database is no longer valid in the new state/structure of the
database. The domination relationships between objects identified in the initial state might no longer hold
in the new state. Nonetheless, computing the skylines over the entire new state/structure of the database is
inefficient, as not all pairwise comparisons between the objects are necessary to be performed. In tackling
the above issue, this paper proposes a solution, named1Skyline, which aims at avoiding unnecessary skyline
computations when a database changes its state and structure due to a data definition operation(s) (add or
remove a dimension(s)). This is achieved by identifying and retaining the prominent dominance relationships
when pairwise comparisons are performed; which are then utilised in the process of computing a new skyline
set.1Skyline consists of two optimisation components, namely:1+Skyline which derives a new skyline set
when a new dimension(s) is added to a database and 1−Skyline which derives a new skyline set when an
existing dimension(s) is removed from a database. To make our solution more useful, it is applied on a
database with incomplete data. Extensive experiments have been conducted to evaluate the performance and
prove the efficiency of our proposed solution.

INDEX TERMS Multi-criteria decision making, skyline queries, incomplete database, dynamic database,
pairwise comparisons.

I. INTRODUCTION
The skyline operation was introduced as an extension to
the database systems by [7], that relies on the notion of
Pareto dominance to filter out a set of interesting objects
based on a set of evaluation criteria from a potentially
large multi-dimensional set of objects. It is used in a query
called as skyline query to ensure that only those objects that
are not worse than any others in all the evaluation criteria
which reflect the user’s preferences are being selected. This
leaves only those objects that are the best, most preferred
objects to an arbitrary user, also known as the skyline set or
pareto optimal set. Since then, it has become a vital issue
in database research as it is well suited to many applications
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particularly those that are related to multi-preference analysis
and decision making. With the rapid growth of decision
support systems and the increasing size of multi-dimensional
data have witnessed an abundance of skyline algorithms
being proposed for data processing in order to retrieve useful
insights. These variants of skyline algorithms are introduced
to deal with different characteristics of data, such as uncer-
tain data [23], [27], [29], [39], [40], [41], [51], incomplete
data [3], [6], [13], [14], [18], [19], [20], [24], [28], [33],
[49], [50], encrypted data [8], [31], and streaming
data [1], [15]; while others are based on the platform being
considered like distributed database [2], cloud comput-
ing [22], [32], road networks [16], and others.

Apparently, the states and/or structures of a database
(multi-dimensional set of objects) change throughout its life-
time which is necessary to reflect the changing requirements,
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new functionalities, compliance to new regulations, inte-
gration with other systems, and new security or privacy
measures. These changes are achieved either through a
data manipulation operation(s) (insert, delete, update) or a
data definition operation(s) (alter table, etc). Consequently,
the changes made towards the database affect the skyline
set derived earlier since the derivation of these skylines is
based on the initial state of the database which may no longer
valid in the new state of the database. The changes with
regard to the structure of a database in particular when a
new dimension(s) (criteria) is added or an existing dimen-
sion(s) is removed to/from the database, may result in some
of the previously identified domination relationships between
objects become invalid. This is due to the fact that objects that
formerly dominate other objects may now no longer dominate
the objects on the new structure of the database. This mean,
whenever a database changes its structure, a new skyline
set needs to be derived. Utilising the existing skyline algo-
rithms [2], [3], [19], [20], [23], [24] would mean performing
the domination analysis on the entire new structure of the
database which is undoubtedly inefficient as not all pairwise
comparisons between the objects need to be re-analysed.
It becomes cumbersomewhen the number of objects involved
is huge while the number of dimensions to be considered
in the skyline computation is large. Although there are a
few works like [13], [14], [18] that have made attempts to
avoid unnecessary computation of skylines when changes are
made towards a database, their emphasis is on changes that
are due to new object(s) is inserted into the database or an
existing object(s) is deleted from the database with a fixed
and predetermined set of dimensions (criteria).

This paper proposes a solution that attempts to avoid
unnecessary computation of skylines, i.e. unnecessary pair-
wise comparisons between objects, when a new skyline
set needs to be identified due to changes made towards a
database. Our solution, named 1Skyline, consists of two
main phases, namely: Phase I – capturing the dominance
relationships based on the initial database and Phase II –
computing the new skyline set when a database changes
its state and structure due to a data definition operation(s).
Fig. 1 presents the1Skyline framework. In [13], we proposed
a solution that derives a new skyline set when a database
changed its state due to a data manipulation operation(s);
in which a new object(s) is inserted into the database or an
existing object(s) is deleted or updated from the database.
In this paper, we dealt with operations that either add a new
dimension(s) to a database or remove an existing dimen-
sion(s) from a database which will not only change the state
of the database but also its structure. In order to achieve
our main aim, i.e. avoiding unnecessary computations of
skylines, the dominance relationships between objects that
are identified when pairwise comparisons are performed are
retained to be utilised during the process of identifying a
new skyline set. However, keeping track of each dominance
relationship is unwise as not only it will incur unnecessary
storage cost, also not all the dominance relationships will be

FIGURE 1. The 1Skyline framework.

utilised in the subsequent processes of skyline computations.
Hence, besides the main issue of optimisation, identifying
the prominent dominance relationships among all possible
dominance relationships is another issue to be dealt with.
To make our solution more useful, we consider a database
with incomplete data. This is in line with today’s era, where
most real-world applications often deal with data that are
partly missing or incomplete. The existence of incomplete
data in a database is due tomany reasons such as negligence in
data entry, inaccurate data from heterogeneous data sources,
and integrating heterogeneous schemas [30], [36], [43], [45].
There are several works that have made attempts to optimise
the skyline computation over an incomplete database such
as [2], [3], [6], [19], [20], [23], [24], [28], [43], [49], and [50],
however these works do not consider the possibilities that
the database might change its structure, hence strictly relying
on the assumption that the database is always static. Thus,
the skyline set derived by these works is based on a fixed
set of dimensions (criteria). Although their solutions can be
applied directly on the new structure of the database to derive
a new skyline set, this will incur unnecessary computation of
skylines since their solutions do not incorporate mechanism
that is able to analyse the parts of the database that are affected
by the changes.

In general, the main contributions of this work are briefly
described as follows:

• We have formally introduced the problem of computing
skylines when a database changes its state and structure
and justify the significance of addressing the problem.

• We have proposed an efficient solution, named1Skyline
that attempts to avoid unnecessary skyline computations
when changes made towards an incomplete database
are due to a data definition operation(s), i.e. adding a
new dimension(s) to a database or removing an existing
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dimension(s) from a database which will not only
change the state of the database but also its structure.

• We have devised a mechanism to identify and retain the
prominent dominance relationships to be utilised during
the computation of new skyline set that assists in exclud-
ing the unnecessary pairwise comparisons between
objects when changes are made towards a database.
In this regard, three main lists have been designed,
namely: Domination Analysis List (DAL), Dominating
Object List (�OL), and Dominated Object List (6�OL),
that keep track of the results of domination analysis,
objects that dominate other objects, and objects that are
dominated by other objects, respectively.

• We have conducted extensive experiments to prove
1Skyline’s capability in deriving a skyline set after
changes are made towards a database, which are
reflected in the state as well as the structure of the
database.

The rest of the paper is structured as follows. In Section II,
the previous works that are related to computing skylines
over complete as well as incomplete databases are presented.
In Section III, the necessary definitions and notations, which
are used throughout the paper, are set out. Section IV elab-
orates our proposed approach in handling the computation
of skyline set given an incomplete database that changes its
state and structure. A running database example is also given
to clarify the phases of the proposed approach. The experi-
mental results are demonstrated in Section V. Conclusion and
further research direction are depicted in the final section,
Section VI.

II. RELATED WORKS
Since the introduction of skyline operator by [7], a sig-
nificant number of skyline algorithms have been proposed,
mostly attempt to resolve the optimisation problem that is
mainly associated with the reduction in the processing time
as well as the number of pairwise comparisons that needs to
be performed during the skyline computations. These algo-
rithms can be categorised into two distinct groups based on
the approach used in processing the skyline query, namely:
index-based algorithms and non-index based algorithms.
Unlike the non-index based algorithms, the index-based
algorithms requires pre-computed indexes on data to avoid
accessing the entire data. Although the index-based algo-
rithms have better performance, they suffer from curse of
dimensionality. Hence, many variants of skyline algorithms
have evolved; among the notable algorithms include Divide-
and-Conquer (D&C), Block Nested Loop (BNL) [7], Bitmap
and Index [44], Nearest Neighbor (NN) [26], Branch and
Bound Skyline (BBS) [37], [38], Sort Filter Skyline (SFS) [11],
Linear Elimination Sort for Skyline (LESS) [17], and Sort
and Limit Skyline algorithm (SaLSa) [5]. Principally, the BNL
algorithm works by repeatedly reading a set of objects and
eliminating those objects that are dominated by other objects
in the data set. Meanwhile, the D&C algorithm proposed
by [7], divides the data set into partitions to allow domination

analysis to be performed on individual partition in which
local skylines are derived. These local skylines are then
compared to each other to derive the global skylines of the
data set. Bitmap [44] is an example of an index-based algo-
rithm which encodes all the required information based on
a bitmap structure prior to the skyline computation. Based
on the bitmap structure, whether or not an object belongs
to the skylines is determined without the necessity to scan
the entire data set. On the other hand, Index [44] algorithm,
also an index-based algorithm, partitions the data set into d
ordered list where d is the set of dimensions considered in the
skyline computation while B-tree is used to index the objects.
In each list, objects are organised in batches and sorted in
certain order based on the dimension. Local skylines are
computed for each batch while global skylines are computed
among these local skylines. Nonetheless, the NN algorithm
proposed by [26], utilises the R∗-tree index structure to elimi-
nate objects with emphasis on avoiding redundant dominance
checks.With similar aim asNN, the BBS [37], [38], algorithm
which applies the nearest neighbor search techniques requires
traversing the R∗-tree only once; hence improves the NN
algorithm which traverses the R∗-tree several times. The BNL
algorithm is later improved by [11]; the SFS algorithm utilises
a monotone preference function f to presort the objects of a
data set in an ascending order. An object that is visited earlier
is said to be dominating the objects that appeared later in the
list. Later, an optimised version of SFS is proposed by [17]
named LESS with an attempt to position the killer-dominant
objects at the beginning of the sorted data set. This is achieved
by applying the entropy scoring function. In an attempt to fur-
ther improve the performance of SFS and LESS, [5] proposed
an ideal algorithm named SaLSa that limits the number of
objects to be read and compared by utilising a threshold value
while exploiting the values of a monotone scoring (limiting)
function. Although these algorithms solve the optimisation
problem, they are designed with a rigid assumption that the
data set is complete and certain.

Recently, attention has been given to resolving issues
related to the uncertainty of data in a database. Data uncer-
tainty is defined as the degree to which data are inaccurate,
imprecise, untrusted, unknown or incomplete. The works
by [23], [27], [29], [39], [40], [41], and [51] for instance
strived to solve issues of skyline analysis on uncertain data.
Pei et al. [39] has introduced the notion of probabilistic sky-
line in the context of uncertain data in discrete domains where
each object is associated with probability distributions over a
set of possible values called instances. This pioneering work
has then inspired several other works in the same context
like [29], [40], and [51]. Meanwhile, the works by [23], [27],
and [41], dealt with uncertainty in continuous domains where
uncertain data are represented as continuous range of values,
in which the precise values are not known during the skyline
computation. Besides, several attempts have been made to
tackle the issues related to the incompleteness of data in a
database. Theworks by [28], [49], and [50], for instance focus
on techniques to rank the skyline results in which some of
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the results are incomplete. While, [4] and [19] attempt to
derive a better set of skyline results by integrating both top-k
and skylines. Others like [33] study the problem of skyline
queries over incomplete data with crowdsourcing, while the
work by [34] focuses on the problem of k-dominant skyline
queries on incomplete data. To the best of our knowledge
only the works by [3], [6], and [24] have made attempts to
tackle the issues of skyline computation over an incomplete
database which are further elaborated below.

The early research work that deals with the issues related
to skyline computation over incomplete data is conducted
by [24], in which two algorithms are proposed, namely:
Bucket and ISkyline. The Bucket algorithm relies on the
bitmap representation of each object to group the objects
into buckets. Local skylines are then identified by utilising
the conventional skyline algorithm. Finally, the local skylines
of each bucket are compared to each other to derive the
final skylines. Meanwhile, the ISkyline algorithm works in a
similar fashion as Bucket algorithm, with two additional opti-
misation techniques to reduce the number of local skylines.
In SIDS [6], the input data set is pre-sorted in a non-increasing
order for each dimension, to determine the processing order
of the objects. The proposed approach chooses one of the
dimensions in a round-robin fashion and the object with
the best value in that dimension is chosen for processing.
The algorithm initially considers all objects in the data set
as candidate skylines and then iteratively removes domi-
nated objects from the candidate set. If an object has not
been pruned yet and has been processed k times, where k
is the count of complete dimensions for the object, then it
is determined to be a skyline and can be returned imme-
diately. The reason is any object with k complete dimen-
sions can be dominated in at most k dimensions. Similar
to ISkyline algorithm, Incoskyline [3], works by clustering
the objects into related buckets, in which local skylines are
then identified. Incoskyline which is based on a heuristic
approach, derives a set of virtual skylines named k-dom
from the local skylines to eliminate the local skylines of a
cluster.

Despite the fact that these works have extensively solved
the issues related to incompleteness of data, however they
are designed with a rigid assumption that the dimensions
of the database or criteria to be considered during the sky-
line computation are predetermined and fixed in which any
changes towards the dimension (criteria) to be considered
would require re-examining the entire database based on
the new set of dimensions (criteria). There are algorithms
which are proposed specifically for such situation but most
of them are based on top-k . For instance, the work by [25]
focuses on top-k and top-k dominating and reviews algo-
rithms for evaluating continuous preference queries under the
sliding window streaming model. Also, a k-dominant skyline
algorithm has been presented in [12]. In their work when
the data set is changed, the existing k-dominant skylines
are compared to the new k-dominant objects to derive the
results [12].

III. DEFINITIONS AND NOTATIONS
In this section, we present the necessary definitions and
introduce the notations that are used throughout this paper.
First, we explain the concept of skyline through an exam-
ple. Then, we give the general definitions that have
been defined either formally or informally in the litera-
ture [2], [6], [7], [13], [19], [24] based on the notations used
in this paper (i.e. Definition 1 till Definition 6). This is then
followed with specific definitions that are related to our work.
Examples are provided where necessary to further clarify
the definitions. Finally, a formal definition of the problem
addressed in this paper is put forward.

A. MOTIVATION EXAMPLE
Consider a user who is planning to buy an apartment with
the following main features: apartment that is cheapest and
nearest to the city centre. Fig. 2(a) presents a toy example
for this scenario. In this example, there are 6 objects rep-
resenting 6 distinct apartments labelled as a, b, c, d , e, and
f with each object having two attributes, namely: price and
distance that are used as the evaluation criteria. More often
than not, apartments that are in prime areas close to the city
centre are more expensive as compared to those which are
far away from the city centre. In other words, price and
distance are two conflicting criteria which implies that the
chances to find an apartment that meets both preferences are
low. Utilising the skyline operation proposed by [7] on the
given example, we have the following: object e dominates
object b, while object c dominates objects d and f .Meanwhile
object a neither dominates nor being dominated by any other
objects. The results of the domination analysis are as shown
in Fig. 2(a). Eventually, based on our toy example, the user
is left with the following filtered apartments: a (apartment
with the minimum distance to the city centre), c (apartment
with the minimum price), and e (apartment with price cheaper
than a and distance nearer than c). Undoubtedly, to derive the
list of filtered apartments, objects are compared to each other
based on the evaluation criteria being considered in a pairwise
manner. The skyline computation becomes expensive as the
number of evaluation criteria as well as the number of objects
to be considered are huge. Hence, one of the properties
assumed by most skyline algorithms is the transitivity in the
dominance relation inwhich variousways of data pruning and
indexing can be exploited to reduce the number of pairwise
comparisons [24]. For instance, if it is known that object c
dominates object f while object f dominates object d , hence
without further comparison we can conclude that object c
dominates object d .

Proceeding with our toy example, assume that a new
dimension, rating which represents the service rating of the
apartments, is to be considered as shown in Fig. 2(b). Here,
we assume that the higher the value of rating the better is
the service. Utilising the skyline operation proposed by [7]
on the new state presented in Fig. 2(b), we have the fol-
lowing: object e still dominates object b, while object c
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FIGURE 2. Example of skylines.

dominates object d and no longer dominates object f . Mean-
while object a neither dominates nor being dominated by any
other objects. The results of the domination analysis are as
shown in Fig. 2(b). The skylines of this example are objects
a, c, e, and f . Here, the following can be observed: (i) object
that dominates other objects based on the previous evaluation
criteria (price and distance) is still part of the skyline set, e.g.
c and e; (ii) object that is dominated might have chances to
be a skyline if its value based on the new criterion (rating) is
better than the object that dominates it, e.g. f ; and (iii) object
that neither dominates nor being dominated by any other
objects is still the skyline, e.g. a. The same can be visualised
if a dimension(s) is to be removed from a database (working
from Fig. 2(b) to Fig. 2(a)). An important remark is that
the computation of the new skyline set should not repeat the
domination analysis that has been conducted earlier.

Meanwhile, objects may have missing values in one or
more of their dimensions. However, the transitive domi-
nance relation as discussed earlier might no longer hold.
This is demonstrated in Fig. 2(c). Here, object c dominates
object f , object f dominates object d , while object d domi-
nates object c. As a result, these objects are filtered out and
none of them are considered as skylines.

B. FUNDAMENTAL PROPERTIES OF SKYLINES
This section presents the general definitions that are related
to skyline query processing. For Definition1 till Defini-
tion 6, we assume that the following is given: a database
D = {o1, o2, . . . ,ow where oi is the ith object with each
object associated with m dimensions (m criteria) denoted by
d = {d1, d2, . . . ,dm} that are to be considered in the skyline
computation.

When a pair of objects is compared to each other based on
the values of their dimensions, it can be concluded that either
one is being dominated by the other or both do not dominate
each other. While an object that is not being dominated by
any other objects in the database is said to be the skyline of

the database. These are formally defined in Definition 1 and
Definition 2, respectively.
Definition 1 Dominance Relationship: An object oi ∈ D

is said to dominate an object oj ∈ D where i 6= j denoted
by oi � oj if and only if the following condition holds:
∀dk ∈ d, oi.dk ≥ oj.dk ∧∃dl ∈ d, oi.dl > oj.dl . For instance,
object e(100, 1.5) is said to dominate object b(150, 2) denoted
by e � b as object e is better than object b in both dimensions,
meanwhile object b(150, 2) and object c(25, 3.5) are said to
not dominate each other as object b is better than object c
only in the second dimension and worse in the first dimension
and similarly object c is better than object b only in the
first dimension and worse in the second dimension. This is
denoted by b 6� c and c 6� b.
Definition 2 Skylines: An object oi ∈ D is a skyline of D if

there are no other objects oj ∈ D where i 6= j that dominates
oi. In this paper, the symbol S is used to denote the skyline
set of D. For instance, object c(25, 3.5) is one of the skylines
in S as it is not dominated by other objects in the set.

Since this paper assumed that a database may contain
objects with missing values, it is important to define the scope
of missing values as used in this paper. Also, it is unrealistic
to determine the dominance relationship between objects
not having values on common attributes. These are further
clarified by Definition 3 and Definition 4, respectively.
Definition 3 Incomplete Database: A database D is said to

be incomplete denoted by DI if and only if ∃oi ∈ D, oi · dk =
′
−
′ where dk ∈ d and ′ − ′ denotes a missing value (null

value); otherwise the database is said to be complete. For
instance, the data set given in Fig. 2(c) is said to be incomplete
as the objects c, d , and f have missing values in one of the
dimensions. Even though oi(−,−,−) satisfies the Defini-
tion 3, in our work we do not deal with the incompleteness
of data that can be viewed as objects that are missing as a
whole.
Definition 4 Comparable: The objects oi ∈ D and oj ∈ D

where i 6= j are said to be comparable if and only if they
are either complete or they have missing values in the same
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dimension(s). Here, each object is associated with a bitmap
representation in which the bit 1 is used to represent non
missing value, i.e oi ·dk 6= ′− ′;while the bit 0 otherwise, i.e.
oi · dk = ′ − ′. With this notation those objects with the same
bitmap representation are said to be comparable. For instance
the objects a, b, and e in Fig. 2(c) are said to be comparable
as they are complete and their bitmap representation is 111.
Meanwhile objects c and d are said to be incomparable as
their bitmap representations are 101 and 011, respectively.

A simple mechanism to identify whether a pair of objects
is comparable or not is by analysing their bitmap representa-
tions as presented in Definition 5; meanwhile the dominance
relationships between these objects can be determined as
explained in Definition 6.
Definition 5 Revised Bitwise: The objects oi ∈ D and

oj ∈ D where i 6= j with different bitmap representations are
said to be comparable on their revised bitwise if it is not equal
to 0, which is obtained by performing the AND operation
on the bitmap representations of oi and oj. For instance,
the objects a and c in Fig. 2(c) with bitmap representations
111 and 101, respectively are said to be comparable on their
revised bitwise as the result of performing the AND operation
on 111 and 101 is 101 which is not equal to 0.
Definition 6 Dominance Relationship on the Revised Bit-

wise: An object oi ∈ D is said to dominate an object oj ∈ D
where i 6= j on the revised bitwise denoted by oi � oj if
and only if the following condition holds: ∀dk ∈ d ′, oi.dk ≥
oj.dk ∧ ∃dl ∈ d ′, oi.dl > oj.dl where d ′ ⊂ d and d ′ is a
set of dimensions whose revised bitwise representation is 1.
For instance, object c in Fig. 2(c) with bitwise representation
101 is said to dominate object f with bitwise representation
110, i.e. c � f , as c is better than f in the first dimension.

C. EXTENDED PROPERTIES OF SKYLINES
This section presents the definitions that are specific to
our work. For Definition 7 until Definition 12, we assume
the following: A database,1 D, with m dimensions, dm =
{d1,d2, . . . ,dm} to be considered in the skyline computation
denoted as Dm with w objects, Dm = {o1, o2, . . . ,ow}. Also,
we assume that the operations to add a dimension(s) or
remove a dimension(s) to/from the database are well-formed.

In this work, the structure of a database is defined mainly
based on the number of dimensions it contains. The structure
of a database is not fixed throughout its lifetime as a new
dimension(s) might need to be added to the database or an
existing dimension(s) might have to be removed from the
database. Definitions 7, 8, and 9 defined the structure of a
database as used in this work.
Definition 7 Structure of a Database: The database Dm

is said to be in a new structure with n dimensions, dn =
{d1, d2, . . . ,dn} denoted as Dn where n > m or n < m due to
either (i) a new dimension(s) is added toDm or (ii) an existing
dimension(s) is removed from Dm. For instance, the initial

1Without loss of generality, the term database covers both complete and
incomplete database.

set of objects in Fig. 2(a) denoted as D2 with d2 = {price,
distance} is in a new structure presented in Fig. 2(b) denoted
as D3 with d3 = {price, distance, rating}.
Definition 8 Adding a New Dimension(s): Given a set of

new dimensions to be added, d<add> = {da, da+1, . . . ,da+b}
toDm, the new structure of the database is denoted asDn with
n = |d | + |d<add>|. We use the notation Dn−m to denote the
part of the database with d<add> dimensions. Also, note that
d<add> contains |d<add>| new criteria to be considered in the
skyline computation. For instance, the d<add> ={rating} is
added to D2 (Fig. 2(a)) to yield D3 as presented in Fig. 2(b).
Definition 9 Removing an Existing Dimension(s): Given

a set of dimensions to be removed, d<remove> =

{dr, dr+1, . . . ,dr+s} from Dm, the new structure of the
database is denoted asDn with n = |d |− |d<remove>|. We use
the notation Dm−n to denote the part of the database with
d<remove> dimensions. Also, note that d<remove> is the set
of existing criteria that is no longer relevant in the skyline
computation. For instance, the d<remove> = {square feet}
is removed from D3 (Fig. 2(c)) to yield D2 as presented
in Fig. 2(a).
The following definitions extend the definition of domi-

nance relationship given in Definition 1 based on the new
structure of a database as defined in Definition 7.
Definition 10 Dominance Relationship of Dn Based on

d<add>: An object oi ∈ Dn is said to dominate an object
oj ∈ Dn where i 6= j denoted by oi � oj if and only if
the following condition holds: ∀dk ∈ dn, oi.dk ≥ oj.dk ∧
∃dl ∈ dn, oi.dl > oj.dl or given dm = {d1, d2, . . . ,dm} and
d<add> = {da, da+1, . . . ,da+b},

1) ∀dk ∈ dm, oi.dk ≥ oj.dk ∧ ∃dl ∈ dm, oi.dl > oj.dl and
∀dk ∈ d<add>, oi.dk ≥ oj.dk or

2) ∀dk ∈ dm, oi.dk ≥ oj.dk and ∀dk ∈ d<add>, oi.dk ≥
oj.dk ∧ ∃dl ∈ d<add>, oi.dl > oj.dl .

For instance, assume that D2 is the set of objects shown
in Fig. 2(a) andD3 is the set of objects shown in Fig. 2(b) after
adding {rating} to D2. Object c(25, 3.5) is said to dominate
object f (75, 4) over D2 denoted by c � f as object c is
better than object f in both dimensions. However, object
c(25, 3.5, 2) and object f (75, 4, 5) are said to not dominate
each other over D3 as although object c is better than object f
with regard to price and distance but it is worse than f based
on the new criterion, rating.
Definition 11 Dominance Relationship of Dn based on

d<remove>: An object oi ∈ Dn is said to dominate an object
oj ∈ Dn where i 6= j denoted by oi � oj if and only if the
following condition holds: ∀dk ∈ dn, oi.dk ≥ oj.dk ∧ ∃dl ∈
dn, oi.dl > oj.dl .
The following definition is an extension to the skyline def-

inition given in Definition 2. Here, the skylines are computed
based on the new structure of a database.
Definition 12 Skylines of Dn:An object oi ∈ Dn is a skyline

of Dn if there is no other objects oj ∈ Dn where i 6= j that
dominates oi. We use the notation Sn to denote the skyline set
of Dn. For instance, the skyline set of D2 given in Fig. 2(a),
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TABLE 1. Number of pairwise comparisons based on the type of data definition operation.

S2 = {a, c, e } while the skyline set of D3 given in Fig. 2(b),
S3 = {a, c, e, f }.

For simplicity purposes, we use the notations oim , oin , oin−m ,
and oim−n to denote the object oi with dimensions based on the
structure Dm, Dn, Dn−m, and Dm−n, respectively.

D. PROBLEM FORMULATION
In the following we show the significant of avoiding unnec-
essary skyline computations by analysing the number of pair-
wise comparisons for each of the operation considered in this
paper. Here, we assume a worst-case scenario while both the
best-case and average-case scenarios are presented in Table 1.
The number of pairwise comparisons performed to derive the
skyline set, Sm, over Dm is given by the following equation:

α = m
[
w(w− 1)

2

]
(3.1)

where m is the number of dimensions and w is the number of
objects. For instance, α = 30 based onD2 shown in Fig. 2(a).
When d<add> = {da, da+1, . . . ,da+b} is added to Dm,

based on Equation 3.1 the number of pairwise comparisons
performed to derive the skyline set, Sn, over the new structure
Dn is n

[
w(w−1)

2

]
where n is the number of dimensions with

n = |dm| + |d<add>|, i.e. n > m, and w is the number of
objects. However, Sm is derived by comparing the w objects
based on dm, while Sn is derived by comparing the w objects
based on dm and d<add>. Hence, the number of unnecessary
pairwise comparisons is (n−m)

[
w(w−1)

2

]
. For instance, α =

45 based on D3 shown in Fig. 2(b) in which 15 pairwise
comparisons are unnecessary.

Hence, given a sequence of k add operations, {d<add>1 ,

d<add>2 , . . . , d<add>k }, where d<add>i} is a set of new
dimensions to be added to Dm in the ith sequence, i.e.
d<add>i = {dai , da+1i , . . . ,da+bi}, the number of pairwise
comparisons performed to derive the skyline set, Sn, over the
new structure Dn is

∑k
i=1 ni

[
w(w−1)

2

]
where ni is the number

of dimensions to be added in the ith sequence with n > m.
When d<remove> = {dr, dr+1, . . . ,dr+s} is removed

from Dm, the number of pairwise comparisons performed
to derive the skyline set, Sn, over the new structure Dn

is n
[
w(w−1)

2

]
where n is the number of dimensions with

n = |dm| − |d<remove>|, i.e. m > n, and w is the number of
objects. However, Sm is derived by comparing the w objects

based on dm, while Sn is derived by comparing the w objects
based on dm − d<remove>. Hence, the number of unneces-
sary pairwise comparisons is n

[
w(w−1)

2

]
. For instance, α =

45 based on D3 shown in Fig. 2(b). Assume that rating is
removed from D3 hence the number of unnecessary pairwise
comparisons is 30.

Hence, given a sequence of k remove operations,
{d<remove>1 , d<remove>2 , . . . , d<remove>k }, where d<remove>i
is a set of existing dimensions to be removed from Dm in
the ith sequence, i.e. d<remove>i = {dri , dr+1i , . . . ,dr+si},
the number of pairwise comparisons performed to derive the
skyline set, Sn, over the new structureDn is

∑k
i=1 ni

[
w(w−1)

2

]
where ni is the number of dimensions to be removed in the ith
sequence with m > n.

For mixed operations that involve both operations, add and
remove, the number of pairwise comparisons performed to
derive the skyline set, Sn, over the new structure Dn is simply
obtained by the following equation:

∑k
i=1 ni

[
w(w−1)

2

]
where

ni is the number of dimensions to be added or removed in the
ith sequence.

The problem addressed by this paper is formulated as
follows:
Problem Formulation: Given an initial incomplete

database, Dm, with m dimensions dm = {d1, d2, . . . ,dm} and
the skyline set, Sm, i.e. Sm ⊆ Dm. It is known that Sm is a set
of objects that is not dominated by other objects in Dm− Sm,
say ¬Sm. When there are changes in the structure/state of
Dm due to either (i) a new dimension(s), d<add>, is added
to Dm or (ii) an existing dimension(s), d<remove>, is removed
fromDm, how can we efficiently compute the new skyline set,
Sn, of the new structure of the database denoted asDn without
the necessity to analyse the entire database, Dn, to avoid
unneccesary computational cost?

Table 2 summarises the symbols and notations used
throughout this paper.

IV. THE PROPOSED FRAMEWORK
This section presents our proposed solution, named1Skyline,
which is designed with the main aim at avoiding unneces-
sary skyline computations when changes are made towards a
database owing to a data definition operation(s). As a result
of these changes, the skyline set derived earlier is no longer
valid. Nonetheless, it is unwise to identify a new skyline
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TABLE 2. List of symbols/notations.

set by analysing the entire database after the changes are
made, since not all pairwise comparisons between objects
need to be re-analysed. Intuitively, this can be achieved by
keeping track the dominance relationships between objects
that are identified during the computation of skylines before
the database is changed. When changes are made, these dom-
inance relationships are re-examined and only those objects
that are affected are further analysed. Consequently, this leads
to a significant reduction in the number of pairwise compar-
isons and processing time in the subsequent computation of
skylines.
1Skyline consists of two phases, that are: Phase I – the

main aim of this phase is to keep track of the dominance
relationships between objects while the skyline set is derived
based on the initial incomplete database; and Phase II – a
new skyline set is derived due to the changes that are made
towards the database. To avoid unnecessary skyline computa-
tions during Phase II, the dominance relationships captured
in Phase I are utilised and updated accordingly to incorpo-
rate any new dominance relationships realised in Phase II.
These two phases are elaborated in the following subsections.
In order to better explain the steps that are involved in each
phase, the sample of database shown in Fig. 3 will be used
throughout this section. The sample database DI contains
15 objects, DI = {o1,o2, . . . ,o15} with 3 dimensions, d =
{d1,d2,d3}, that are used as the evaluation criteria in deriving
the skyline set. For simplicity, we limit the number of missing

FIGURE 3. Example of an incomplete database, DI .

values of each object to one. Nevertheless, 1Skyline can
handle various number of missing values which is exhibited
in the experiments that we have conducted.

A. PHASE I
Given an initial incomplete, database, DI , the PhaseI derives
a skyline set, S, and maintains the results of domination
analysis to be utilised by Phase II. It is performed only once
since the main aim of this phase is to keep track and maintain
the dominance relationships between objects which are then
used to identify the pairwise comparisons that ought to be
performed between the affected objects when changes are
made towards the database,DI . We have devised five steps to
be conducted in this phase, namely: (i) group the objects ofDI
into buckets based on the bitmap representation, (ii) perform
domination analysis among the objects of each bucket, (iii)
derive the skyline of each bucket, (iv) perform domination
analysis between the bucket skylines, and (v) derive the final
skylines ofDI . Each step is elaborated further in the following
paragraphs.
Step 1 Group the Objects of DI Into Buckets Based on

the Bitmap Representation: This step is performed only if
the initial database contains objects with missing values.
Here, we are assuming an initial incomplete database, DI .
As explained earlier, objects with missing values may cause
cyclic dominance and complication in preserving the tran-
sitivity property of skylines which results in none of the
objects involved in the cycle domination can be considered as
skylines. This can be represented as follows: oi � oj, oj � ok ,
and ok � oi. Hence to resolve this issue, each object, oi ∈ DI ,
is associated with a bitmap representation (see Definition 4
Comparable). The objects with the same bitmap representa-
tion are grouped into the same bucket. By doing this, each
bucket contains a collection of objects with missing values
in the same dimension(s). The number of buckets derived
depends on the number of distinct bitmap representations that
can be formed given the database DI . For instance, based
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on the sample database given in Fig. 3, the distinct bitmap
representations formed are 011, 101, and 110. This technique,
also known as bucketing/clustering/grouping is a well-known
technique that has been utilised by other previous works
like [3] and [24]. It simply works by comparing the bitmap
representation of an object, say oi, with the bitmap repre-
sentation of existing buckets, say Bj. If they have the same
bitmap representation, then the object oi is said to belong to
the bucket Bj. Otherwise, a new bucket, say Bk , is created
based on the bitmap representation of object oi. Fig. 4 shows
the results of performing the bucketing technique over the
sample database given in Fig. 3. Here, the set of buckets
formed, B = {B1,B2,B3}, with each bucket with a distinct
bitmap representation.

FIGURE 4. The results of Bucketing Technique.

Step 2 Perform Domination Analysis Among the Objects
of Each Bucket: Once the bucketing technique has been
conducted over the objects of a given database, DI , and
buckets have been formed, B = {B1,B2, . . . ,Bl}, domination
analysis is then performed. Here, each object within the same
bucket is compared against each other in a pairwise manner.
Since objects in the same bucket have the same bitmap repre-
sentation, then they are said to be comparable (See Definition
4 Comparable). However, for bucket with bitmap representa-
tion containing at least one bit 0, the dominance relationship
defined in Definition 1 is modified as follows as the set of
dimensions used in the comparisons is no longer d .
Definition 13 Dominance Relationship of a Bucket: An

object oi ∈ Bk is said to dominate an object oj ∈ Bk where
i 6= j denoted by oi � oj if and only if the following condition
holds: ∀dk ∈ d ′, oi.dk ≥ oj.dk ∧ ∃dl ∈ d ′, oi.dl > oj.dl
where d ′ ⊂ d and d ′ is a set of dimensions of Bk with bitwise
representation having the value 1. In this regard, d ′ is the
set of dimensions (criteria) that is considered in determining
the dominance relationships between objects of the bucket Bk
while d ′′ = d − d ′ is not considered as the values over the d"
for all objects in Bk are missing.
For instance, the dominance relationships between objects

of bucket B1 with bitmap representation 011 are identified

based on d ′ = {d2, d3} while d" = {d1} is not considered;
meanwhile the d ′ for B2 is {d1, d3} and d" = {d2}. Hence,
every bucket refers to a different set of dimensions, d ′, during
the domination analysis. Meanwhile, objects that are domi-
nated by other objects are removed from the bucket.

The results of the domination analysis are captured and
saved into a list called Domination Analysis List(DAL).
The DAL which keeps track of every dominance relation-
ship that occurs between objects (See Definition 13 Dom-
inance Relationship) has the following structure <Object
Dominating, Object Dominated> where Object Dominat-
ing represents those objects that dominate other objects in
the bucket while Object Dominated represents those objects
that are being dominated. For instance, if o1 � o2, then
DAL = {< o1, o2 >}. While if o10 � o1 and o10 �
o12, then the list is expanded as follows: DAL = {< o1,
o2 >, < o10, {o1, o12}>} which states that o1 is better
than o2 and similarly o10 is better than o1 and o12 in all
the dimensions (evaluation criteria) being considered. This
list becomes realistic once changes are to be made to the
set of dimensions being considered in deriving the skyline
set. For instance, if a new dimension (criterion) is to be
added (considered), then performing the domination analysis
on the entire bucket/database is no longer necessary. It is
sufficient to compare the pairs of dominating and dominated
objects saved in the DAL based on the new given dimension.
Fig. 5(a) shows the entries of DAL based on bucket B1 while
Fig. 5(b) presents the finalDAL after the domination analysis
is performed on the three buckets presented in Fig. 4.

FIGURE 5. (a) The entries of DAL based on B1 (b) The Domination
Analysis List (DAL).

Step 3 Derive the Skyline of Each Bucket: In this step,
the skyline set of each bucket, Bi, is identified. The
Definition 2 Skylines is modified to suit with the scope of
bucket as follows:
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Definition 14 Skylines of a Bucket: An object oi ∈ Bk is a
skyline of Bk if there are no other objects oj ∈ Bk where i 6= j
that dominates oi.

The domination analysis conducted in the previous step has
removed those objects that are dominated by other objects of
a bucket. Consequently, the objects left in each bucket are
the objects that are not worse than any other objects in the
bucket. They are the skyline set of the bucket also known as
the bucket skyline. These objects are the best objects within
the bucket based on the set of dimensions (criteria) without
missing values, d ′. For instance, o10 is the bucket skyline of
bucket B1 as it is not worse than any other objects in B1,
namely: o1, o2, o4, o12 based on d ′ = {d2, d3}. We use
the notation SBi to represent the set of bucket skylines of
bucket Bi. Fig. 6 shows the bucket skylines of B1, B2, and
B3 based on the bucket of objects given in Fig. 4. Here, SB1 =
{o10}, SB2 = {o3, o9}, and SB3 = {o6, o13}.

FIGURE 6. Example of Bucket Skylines.

Step 4: Perform Domination Analysis Between the Bucket
Skylines: This step is similar to the second step of Phase I.
The difference is the domination analysis is performed over
the bucket skylines. Every bucket skyline of a bucket is
compared to the bucket skylines of other buckets in a pairwise
manner. Since each bucket has a unique bitmap representa-
tion, it is important to ensure that these objects are compara-
ble on their revised bitwise (See Definition 5Revised Bitwise)
before the pairwise comparison is performed. A simple test
is performed by performing an AND operation between the
bitmap representations of the involved buckets. If it yields 0,
then this implies that the objects between these buckets are
incomparable; otherwise they are comparable. The results
of the domination analysis are captured and appended to
the DAL explained in Step 2. Besides, for every dominance
relationship, say o10 � o6, identified while performing the
domination analysis, the object that dominates other object,
o10, is listed in a list called Dominating Object List (�OL)
while the object that is dominated, o6, is listed in a list called
Dominated Object List(6�OL). Hence, �OL = {o10} and
6�OL= {o6}. If o9 � o10, then�OL= {o9, o10} and 6�OL=
{o6, o10}. Notice that o10 appears in both list. Also, objects
that are neither dominates nor being dominated are saved in
the�OL. These lists are significant as the skyline set is deter-
mined by comparing the entries of both lists. Fig. 7 presents
the results of performing pairwise comparisons between SB1 ,
SB2 , and SB3 shown in Fig. 6. It also shows the derivation of

FIGURE 7. (a) The entries of �OL and 6�OL(b) The updated DAL.

the lists �OL and 6�OL while the shaded row represents the
final entries of both lists.
Step 5Derive the Final Skylines of DI : This is the final step

of Phase I which derives the skyline set, S, of the database,
DI . S is derived by comparing the objects of �OL and 6�OL.
There are three cases of memberships with regard to the lists
�OL and 6�OL: (i) oi ∈�OL and oi ∈6�OL which indicates
that the object oi dominates an object, say oj, and at the
same time it is being dominated by another object say ok ;
hence it belongs to both lists. Obviously, oi is not a skyline.
Examples are o1, o6 and o10. (ii) oi ∈�OL and oi /∈6�OL
which indicates that the object oi dominates an object, say oj,
and is not being dominated by any other objects; hence oi is
one of the skylines. Examples are o3 and o9. (iii) oi /∈�OL
and oi ∈6�OL which indicates that the object oi is dominated
by other object say oj but does not dominate any other objects.
Obviously oi is not a skyline. Thus, the skyline set of DI .
is defined as S = {oi|oi ∈�OL∧oi /∈6�OL}. Hence, the sky-
line set of the sample database given in Fig. 3, S = {o3, o9}.

B. PHASE II
In avoiding unnecessary skyline computations when changes
are made towards a database owing to a data definition oper-
ation(s), we have devised two components that are incorpo-
rated into the 1Skyline framework, namely: (i) 1+Skyline
which derives a new skyline set when a new dimension(s) is
added to a database and (ii) 1−Skyline which derives a new
skyline set when an existing dimension(s) is removed from a
database. Depending on the type of operation, the appropri-
ate component will be invoked. Hence, there is no specific
sequence between these components. The following sections
deliberate on each of these components in further details.
1+Skyline– When a database, Dm, changes its structure

and state, due to a new dimension(s) is added, d<add>,
to Dm, the skyline set, Sm, derived based on Dm is no longer
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FIGURE 8. Cases between oi and oj with d<add>.

valid. Intuitively, the new structure and state of the database,
denoted as Dn, needs to be analysed in preparing a new
skyline set, Sn. Nonetheless, 1+Skyline aims at deriving Sn

without the necessity to examine the entire Dn, hence strives
to avoid unnecessary skyline computations. Instead, pairwise
comparisons are only performed among the affected objects.
These objects are those that are dominated by bucket skylines
with the domination analysis performed only on the values of
the new added dimensions. Our approach is motivated by the
following arguments:

Given a databaseDm = {o1, o2, . . . ,ow}where each object
is associated withm dimensions (m criteria) denoted by dm =
{d1, d2, . . . ,dm}, the skyline set of Dm is Sm which is a set
of objects that is not worse than any other objects in Dm

which infers that Sm ⊆ Dm. When a new dimension(s),
d<add> = {da, da+1, . . . ,da+b}, is added to Dm, the structure
and state ofDm changed which can be represented as follows:
Dn = {o1, o2, . . . ,ow} with n dimensions (n criteria) denoted
by dn = {d1, d2, . . . ,dn}, whereby n = |dm| + |d<add>|. The
skyline set Sm is no longer valid as the objects that are verified
as worse based on dm might have better, more preferred
values with regard to d<add>. Since Dm ⊆ Dn, conducting
domination analysis on the entire Dn would mean repeating
the domination analysis on the set of objects o1, o2, . . . , ow
based on dm, i.e. Dm, besides the Dn−m (the new part of Dm).
Obviously, this incurs unnecessary skyline computations.
Apparently, only the Dn−m should be analysed.

Given the d<add>, objects that need to be analysed are
those that are dominated (worse) by other objects as these

objects might have chances to be skylines if their values
with regard to d<add> are not worse than the objects that
dominate them earlier. Hence, the dominance relationship,
oi � oj, captured in the earlier phase needs to be analysed.
In our work, the DAL as well as the bucket skylines will be
utilised. The bucket skylines are objects that are not worse
than any other objects in the bucket while the objects that they
dominate either within the same bucket or from other buckets
are saved in theDAL. Hence, given a dominance relationship,
oi � oj, where oi is a bucket skyline while oj is an object that
is dominated by oi, we have the following ∀dk ∈ dm, oi.dk ≥
oj.dk ∧ ∃dl ∈ dm, oi.dl > oj.dl .2 By analysing oj against oi
based on d<add> = {da, da+1, . . . ,da+b}, the following are
observed: (i) oj is still worse than oi (ii) oj is better than oi,
and (iii) ojmight have better values in some of the dimensions
of d<add> and worse in other dimensions of d<add>. These
three cases are elucidated below.
Case I – Totally Dominate: If ∀dk ∈ d<add>, oi.dk ≥

oj.dk ∧ ∃dl ∈ d<add>, oi.dl > oj.dl, then oi is still a bucket
skyline and has a potential to be a skyline of Dn. While oi is
a bucket skyline that dominates oj based on dm as shown by
the shaded rectangle dm in Fig. 8(a), oi is still not worse than
oj based on d<add> as shown by the shaded rectangle d<add>
of the figure. This means that oi is not worse in both sets of
dimensions, dm and d<add>, and hence totally dominates oj
as presented by the shaded rectangle dn of the figure.

2Without loss of generality, the Definition 6 Dominance Relationship on
the Revised Bitwise is referred to where necessary.
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FIGURE 9. Example of Dn−m with d<add>.

Case II – Partially Dominate: If ∀dk ∈ d<add>, oj.dk ≥
oi.dk ∧ ∃dl ∈ d<add>, oj.dl > oi.dl, then oj which was
initially not a bucket syline now has a potential to be a skyline
ofDn. While oi is a bucket skyline that dominates oj based on
dm as shown by the shaded rectangle dm in Fig. 8(b), oi is now
worse than oj based on d<add> as shown by the d<add> of the
figure. This means that oi is not worse than oj in dm but worse
than oj in d<add>, and hence partially dominates oj. Similarly,
oj is worse than oi in dm but not worse than oi in d<add>, and
hence partially dominates oi. Consequently, both oi and oj are
said not to dominate each other and are the candidate skylines
of Dn.
Case III – Not Dominate: If oi and oj do not dominate each

other based on d<add>, then both oi and oj have a potential
to be a skyline of Dn. While oi is a bucket skyline that
dominates oj based on dm as shown by the shaded rectangle
dm in Fig. 8(c), both oi and oj have some values that are
better than each other based on d<add>. This means that oi
and oj do not dominate each other on d<add>. Consequently,
both oi and oj are said not to dominate each other and are the
candidate skylines of Dn.
In deriving a new skyline set, Sn, the steps described below

are followed: (i) Identify the objects that are dominated by
a bucket skyline, (ii) perform domination analysis between
the objects identified in (i) and the bucket skyline based on
d<add>, (iii) derive the candidate skylines, (iv) perform domi-
nation analysis between the candidate skylines, and (v) derive
the final skylines of Dn. Each step is elaborated further in
the following paragraphs with d<add> and bucket skylines as
given in Fig. 9 and Fig. 6, respectively.
Step 1: Identify the Objects That are Dominated by a

Bucket Skyline Given the d<add>, for every dominance rela-
tionship, oi � oj, that has been established earlier needs to be
re-examined as these relationships might no longer be valid.
Hence, for each bucket skyline, oi, the set of objects domi-
nated by oi is retrieved from the DAL. Given the following
bucket skylines, SB1 = {o10}, SB2 = {o3, o9}, and SB3 = {o6,
o13}, the objects dominated by each of these bucket skylines
are retrieved from the DAL. For instance, o10 �{o1, o6, o12},
o3 �{o6, o8, o13}, o9 �{o10, o13, o15}, o6 �{o5, o7, o11, o12,
o14}, while o13 does not dominate any objects.
Step 2: Perform Domination Analysis Between the Objects

Identified in Step 1 and the Bucket Skyline Based on d<add>:
Once the objects that are dominated by each bucket skyline

FIGURE 10. The updated DAL.

have been identified, domination analysis is then performed
between these objects based on the d<add> to update the dom-
inance relationships that have been captured earlier. These
updated dominance relationships are saved in the DAL. For
instance, comparing the values of o3 against the values of o6,
o8, and o13 based on d<add> = {d4, d5}, the following are
observed: (i) o3 is better than o6 in d4 but worse than o6 in d5,
hence both o3 and o6 do not dominate each other with regard
to d<add>. This example reflects Case III – Not dominate.
The DAL is updated by removing o6 from the dominated list
of o3. (ii) o3 is better than o8 in both dimensions d4 and d5.
This example reflects Case I – Totally dominate. (iii) o13 is
not worse than o3 in both dimensions d4 and d5, in which o13
dominates o3 with regard to d<add>. This example reflects
Case II – Partially dominate. Here, the DAL is updated by
removing o13 from the dominated list of o3. For any objects
that are no longer dominated like o1, o5, o6, o13, and o14,
the dominance relationships of these objects whereby they
are the dominating objects (if any) are further analysed. For
instance, initially o10 � o1 however based on d<add> = {d4,
d5}, both objects do not dominate each other. Consequently,
the dominance relationships o1 �{o2, o4} captured earlier by
DAL are re-examined. The same cases as elaborated above
are applied. While no further analysis needs to be conducted
for the objects o5, o6, o13, and o14 since they are not listed
as the dominating objects in the DAL. The updated DAL is
as shown in Fig. 10. Algorithm 1 presents the domination
analysis algorithm for d<add>.

Algorithm 1 Domination Analysis Algorithm for d<add>
Input: d<add>; a dominance relationship, oi � oj, where oi is
a bucket skyline and oj is the object it dominates; DAL
Output: Updated DAL
1 Begin
2 If oi � oj on d<add> Then

/∗ Case I – oi totally dominates oj ∗/
3 Exit
4 Else If oj � oi on d<add> Then

/∗ Case II – oi partially dominates oj
and vice versa∗/

5 DAL = DAL – < oi, oj >
6 Else If oi 6� oj and oj 6� oi on d<add> Then

/∗ Case III – oi and oj do not dominate
each other ∗/

7 DAL = DAL – < oi, oj >
8 End
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Step 3: Derive the Candidate Skylines: Based on Step 2,
a set of candidate skylines is derived. This is simply obtained
by comparing the updated DAL against the list of objects a
bucket skyline dominates, for instance initially o10 �{o1, o6,
o12} and based on the updatedDAL, o10 � o12 which implies
that both the objects o1 and o6 are no longer being dominated
by o10 and hence are the candidate skylines. Following the
same step, the set of candidate skylines is as follows: Sc =
{o1, o3, o5, o6, o9, o10, o13, o14}. Fig. 11 shows the details of
the candidate skylines derived based on the given d<add>.

FIGURE 11. The candidate skylines after d4 and d5 are added.

Step 4: Perform Domination Analysis Between the Candi-
date Skylines: This step is similar to the Step 4 of Phase I.
Here, the domination analysis is performed over the candidate
skylines, Sc. Every candidate skyline is compared to each
other in a pairwise manner. Since these candidate skylines
might have missing values in different dimensions, hence
the AND operation is performed between the bitmap repre-
sentations of the candidate skylines before comparisons are
conducted. The results of the domination analysis are cap-
tured and appended to theDAL. Besides, for every dominance
relationship, say o3 � o1, identified while performing the
domination analysis, the object that dominates other object,
o3, is listed in the�OLwhile the object that is dominated, o1,
is listed in the 6�OL. Also, objects that are neither dominate
nor being dominated are saved in the �OL. Based on the
candidate skylines, Sc, given in Fig. 11, the �OL= {o1,
o3, o6, o9, o10, o13, o14} while 6�OL = {o1, o5, o10}.

Step 5: Derive the final skylines of Dn – This is the final
step of Phase II which derives the skyline set, Sn, of the
database, Dn given the d<add>. Similar to the Step 5 of
Phase I, Sn is derived by comparing the objects of �OL
and 6� OL. Thus, the skyline set of Dn is defined as Sn =
{oi|oi ∈�OL∧oi /∈6�OL}. Hence, the skyline set of the sam-
ple database given in Fig. 3 with d<add> as shown in Fig. 9,
Sn = {o3, o6, o9, o13, o14}. Comparing Sn to S produced in
Phase I, i.e. S = {o3, o9}, the objects o3 and o9 are still the
skylines of the new structure/state of the database, Dn, since
they are still not worse than any other objects with regard to
the dimensions d1, d2, and d3. This is in line with the cases
that we have discussed above. Also, as stated in [21] and [42],
the number of skyline results increases exponentially with
respect to the size of skyline criteria.
Theorem: For every object, oi ∈ Dn, not dominated by

other objects, oj ∈ Dn,the 1+Skyline will identify oi as a
skyline.

Proof: Assume an object oi ∈ Dm is a skyline of Dm and
after adding d<add> into Dm, oi ∈ Dn is not dominated by
other objects, oj ∈ Dn, but oi ∈ Dn is not identified as a
skyline. An object oi ∈ Dn is not a skyline if and only if it is
not a bucket skyline or it is a bucket skyline but it is dominated
by other bucket skylines. Hence, there are two cases to be
considered, as follows:
Case 1: Assume that oi ∈ Dm is a bucket skyline, which

implies that there is no other objects of the bucket, oj ∈ Dm,
that dominate oi ∈ Dm. After adding the dimension d<add>,
assume that oi ∈ Dn−m is dominated by oj ∈ Dn−m. Based
on the Definition10 Dominance Relationship of Dnbased
on d<add>, oj � oi in which oi is not a skyline if and only
if

1) ∀dk ∈ dm, oj.dk ≥ oi.dk ∧ ∃dl ∈ dm, oj.dl > oi.dl and
∀dk ∈ d<add>, oj.dk ≥ oi.dk or

2) ∀dk ∈ dm, oj.dk ≥ oi.dk and ∀dk ∈ d<add>, oj.dk ≥
oi.dk ∧ ∃dl ∈ d<add>, oj.dl > oi.dl hold.

Even though the second condition is true (based
on d<add>), the first condition is false. Based on
Case 1 – Case III of the1+Skyline, oi is a bucket skyline and
has a potential to be a skyline, which contradicts the earlier
statement. �
Case 2: If oi ∈ Dn is a skyline, then oi ∈ Bucket Skyline(
SBi
)
and oi ∈> OL. If oj dominates oi, then based on

the Definition 10 Dominance Relationship of Dn based on
d<add> ∀dk ∈ dn, oj · dk ≥ oi · dk ∧ ∃dl ∈ dn, oj · dl >
oi · dl, oj ∈> OL and oj /∈6= OL while oi ∈� OL. Since
oi ∈� OL, oi is not a skyline, which contradicts the earlier
statement. �

From Case1 and Case 2, the assumption that oi is a sky-
line but not identified by the 1+Skyline is invalid. Hence,
the 1+Skyline derives all the skylines, Sn, of Dn.
1−Skyline– When an existing dimension(s), d<remove>,

is removed from a database, Dm, the skyline set, Sm, derived
based on the initial structure and state of Dm is no longer
valid. Obviously, a new skyline set, Sn, needs to be derived
by examining the new structure and state of the database,
denoted as Dn. Nonetheless, in an attempt to avoid unneces-
sary skyline computations, 1−Skyline examines only those
pairwise comparisons between the affected objects without
the necessity to examine the entireDn. These objects are those
that are dominated by bucket skylines with the domination
analysis performed only on the values of the dimensions to
be removed. Our approach is motivated by the following
arguments:

Given a database Dm = {o1, o2, . . . ,ow} where each
object is associated with m dimensions (m criteria) denoted
by dm = {d1, d2, . . . ,dm}, the skyline set of Dm is Sm

which is a set of objects that is not worse than any other
objects in Dm which infers that Sm ⊆ Dm. When an existing
dimension(s), d<remove> = {dr, dr+1, . . . ,dr+s}, is removed
from Dm, the structure and state of Dm changed which can be
represented as follows: Dn = {o1, o2, . . . ,ow} with n dimen-
sions (n criteria) denoted by dn = {d1, d2, . . . ,dn}, whereby
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FIGURE 12. Cases between oi and oj with d<remove>.

n = |dm| − |d<remove>|. The skyline set Sm is no longer valid
as the objects that are verified as not worse, say oi, than other
objects, say oj, based on dmmight no longer have better, more
preferred values with regard to dn. This means that oi has
better value than oj on the dimension d<remove> which is no
longer considered in the skyline computation. Since Dn ⊆
Dm, conducting domination analysis on the entire Dn would
mean repeating the domination analysis on the set of objects
o1, o2, . . . , ow based on dn in which dn ⊂ dm. Obviously, this
incurs unnecessary skyline computations. Apparently, only
the Dm−n should be analysed.

Given the d<remove>, objects that need to be analysed are
those that are dominated (worse) by other objects as these
objects might have chances to be skylines if their values with
regard to dn are not worse than the objects that dominate them
earlier. Hence, the dominance relationship, oi � oj, captured
in the earlier phase needs to be analysed. In our work, theDAL
as well as the bucket skylines will be utilised. The bucket
skylines are objects that are not worse than any other objects
in the bucket while the objects that they dominate either
within the same bucket or from other buckets are saved in
the DAL. Hence, given a dominance relationship, oi � oj,
where oi is a bucket skyline while oj is an object that is
dominated by oi, we have the following ∀dk ∈ dm, oi.dk ≥
oj.dk ∧ ∃dl ∈ dm, oi.dl > oj.dl .3 This means that based

3Without loss of generality, the Definition6Dominance Relationship on
the Revised Bitwise is referred to where necessary.

on dm, none of the values of oi is worse than the values
of oj, i.e. either better or equal, while there is at least one
value of oi which is better than the value of oj, say vb.
Hence, given the d<remove>, it is vital to identify whether
vb falls in the d<remove> or dn. By comparing oi against oj
based on d<remove> = {dr, dr+1, . . . ,dr+s}, the following
are observed: (i) the vb of oi falls in dn (ii) the vb of oi
falls in both d<remove> and dn, and (iii) the vb of oi falls
in d<remove>. These three cases are elucidated below. For
simplicity purposes, we assume that both oi and oj are compa-
rable. If otherwise, the Definition6 Dominance Relationship
on the Revised Bitwise is referred.
Case I Dominate on dn: If ∀dk ∈ d<remove>, oi.dk =

oj.dk , then oi is still a bucket skyline and has a potential
to be a skyline of Dn. While oi is a bucket skyline that
dominates oj based on dm as shown by the shaded rectangle
dm in Fig. 12(a) and the values of oi are equal to the values
of oj over d<remove>, this implies that the vb of oi falls in
dn hence removing d<remove> will not affect the dominance
relationship between oi and oj. Thismeans that oi is not worse
than oj based on dn and hence totally dominates oj as shown
by the shaded rectangle dn in the figure.
Case II Dominate on dn and d<remove>: If ∃dl ∈

d<remove>, oi.dl > oj.dl and ∀dk ∈ dn, oi.dk ≥ oj.dk ∧ ∃dl ∈
dn, oi.dl > oj.dl hold, then oi is still a bucket skyline and has
a potential to be a skyline of Dn. While oi is a bucket skyline
that dominates oj based on dm as shown by the shaded rectan-
gle dm in Fig. 12(b) and the values of oi are not worse than the
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values of oj on both the dn and d<remove>, this implies that
the vb of oi falls in both dn and d<remove> hence removing
d<remove> will not affect the dominance relationship between
oi and oj. This means that oi is not worse than oj based on
dn and hence totally dominates oj as shown by the shaded
rectangle dn in the figure.
Case III Dominate on d<remove>: If ∃dl ∈ d<remove>,

oi.dl > oj.dl and ∀dk ∈ dn, oi.dk = oj.dk hold, then oi is
still a bucket skyline and has a potential to be a skyline ofDn.
While oi is a bucket skyline that dominates oj based on dm as
shown by the shaded rectangle dm in Fig. 12(c) and the values
of oi are not worse than the values of oj over d<remove>, this
implies that the vb of oi falls in the d<remove> hence removing
d<remove> will affect the dominance relationship between oi
and oj. Since the values of oi and oj are equal over dn this
means that both oi and oj do not dominate each other as shown
by the rectangle dn in the figure. Consequently, both oi and oj
are bucket skylines and both have a potential to be the skylines
of Dn.

However, it is not easy to differentiate between cases II
and III without analysing the dn.
In deriving a new skyline set, Sn, similar steps as described

in 1+Skyline are followed. They are: (i) Identify the objects
that are dominated by a bucket skyline, (ii) perform domi-
nation analysis between the objects identified in (i) and the
bucket skyline based on d<remove>, (iii) derive the candidate
skylines, (iv) perform domination analysis between the can-
didate skylines, and (v) derive the final skylines of Dn. Each
step is elaborated further in the following paragraphs with
d<remove> and bucket skylines as given in Fig. 13 and Fig. 6,
respectively. Here, we refer to the example given in Fig. 3 in
which the dimension d3 is to be removed.

FIGURE 13. Example of Dm−n with d<remove>.

Step 1: Identify the Objects That Are Dominated by a
Bucket Skyline: Given the d<remove>, for every dominance
relationship, oi � oj, that has been established earlier needs
to be re-examined as these relationships might no longer be
valid as shown by Case III. Hence, for each bucket skyline, oi,
the set of objects dominated by oi is retrieved from the DAL.
Given the following bucket skylines, SB1 = {o10}, SB2 =
{o3, o9}, and SB3 = {o6, o13}, the objects dominated by
each of these bucket skylines are retrieved from the DAL. For
instance, o10 �{o1, o6, o12}, o3 �{o6, o8, o13}, o9 �{o10,
o13, o15}, o6 �{o5, o7, o11, o12, o14}, while o13 does not
dominate any objects.

FIGURE 14. The updated DAL.

Step 2: Perform Domination Analysis Between the Objects
Identified in Step 1 and the Bucket Skyline Based on
d<remove>: Once the objects that are dominated by each
bucket skyline have been identified, domination analysis is
then performed between these objects based on the d<remove>
to update the dominance relationships that have been captured
earlier. These updated dominance relationships are saved
in the DAL. For instance, comparing the values of o10 against
the values of o1, o6, and o12 based on d<remove> = {d3},
the following are observed: (i) o10 is better than o1 in d3, i.e.
6 > 3, however whether o10 still dominates o1 can only be
verified by analysing the dn = {d1, d2}. This example reflects
Case II and Case III. (ii) o10 is not comparable to o6 on d3;
since o10 initially is a bucket skyline while o10 � o6 based
on dm, then o10 must have a value that is better than o6 in
dn. This example reflects Case I. (iii) o10 has the same value
as o12, i.e. 6, then o10 must have a value that is better than
o12 in dn. This example reflects Case I. The updated DAL
is as shown in Fig. 14. Algorithm 2 presents the domination
analysis algorithm for d<remove>.

Algorithm 2 Domination Analysis Algorithm for d<remove>
Input: d<remove>; a dominance relationship, oi � oj, where oi
is a bucket skyline and oj is the object it dominates; DAL
Output: Updated DAL
1 Begin
2 If oi 6� oj and oj 6� oi on d<remove> Then

/∗ Case I – oi totally dominates oj ∗/
3 Exit
4 Else If oi � oj on d<remove> and oi � oj on dn Then

/∗ Case II – oi totally dominates o∗j /
5 Exit
6 Else If oi � oj on d<remove> and oi 6� oj and oj 6� oi

on dn

Then /∗ Case III – oi and oj do not dominate
each other ∗/

7 DAL = DAL – < oi, oj >
8 End

Step 3: Derive the Candidate Skylines: Based on Step 2,
a set of candidate skylines is derived. This is simply obtained
by comparing the updated DAL against the list of objects a
bucket skyline dominates, for instance initially o10 �{o1, o6,
o12} and based on the updated DAL, o10 �{o6, o12} which
implies that the object o1 is no longer being dominated by
o10 and hence is one of the candidate skylines. Following the
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same step, the set of candidate skylines is as follows: Sc =
{o1, o3, o6, o8, o9, o10, o13}. Fig. 15 shows the details of the
candidate skylines derived based on the given d<remove>.

FIGURE 15. The candidate skylines after d3 is removed.

Step 4: Perform Domination Analysis Between the Candi-
date Skylines: This step is similar to the Step 4 of Phase I.
Here, the domination analysis is performed over the candidate
skylines, Sc. Every candidate skyline is compared to each
other in a pairwise manner. Since these candidate skylines
might have missing values in different dimensions, hence
the AND operation is performed between the bitmap repre-
sentations of the candidate skylines before comparisons are
conducted. The results of the domination analysis are cap-
tured and appended to theDAL. Besides, for every dominance
relationship, say o3 � o13, identified while performing the
domination analysis, the object that dominates other object,
o3, is listed in the�OLwhile the object that is dominated, o13,
is listed in the 6�OL. Also, objects that are neither dominate
nor being dominated are saved in the �OL. Based on the
candidate skylines, Sc, given in Fig. 15, the �OL = {o1,
o3, o6, o9, o10, o13} while 6�OL = {o1, o6, o8, o9, o13}.
Step 5: Derive the Final Skylines of Dn: This is the final

step of Phase II which derives the skyline set, Sn, of the
database, Dn given the d<remove>. Similar to the Step 5 of
Phase I, Sn is derived by comparing the objects of �OL
and 6� OL. Thus, the skyline set of Dn is defined as Sn =
{oi|oi ∈�OL ∧oi /∈6�OL}. Hence, the skyline set of the
sample database given in Fig. 3 with d<remove> as shown
in Fig. 13, Sn = o3, o10. Comparing Sn to S produced in
Phase I, i.e. S = {o3, o9}, the object o3 is still the skyline
of the new structure/state of the database, Dn, while o9 is no
longer the skyline of Dn.
Theorem: For every object, oi ∈ Dn, not dominated by

other objects, oj ∈ Dn,the 1− Skyline will identify oi as a
skyline.
Proof: Assume an object oi ∈ Dm is a skyline of Dm and

after removing d<remove> from Dm, oi ∈ Dn is not dominated
by other objects, say oj ∈ Dn, but oi ∈ Dn is not identified as
a skyline. An object oi ∈ Dn is not a skyline if and only if it is
not a bucket skyline or it is a bucket skyline but it is dominated
by other bucket skylines. Hence, there are two cases to be
considered, as follows:
Case 1: Assume that oi ∈ Dm is a bucket skyline, which

implies that there is no other objects of the bucket, oj ∈
Dm, that dominate oi ∈ Dm. After removing the dimen-
sion d<remove>, assume that oi ∈ Dm−n is dominated by

oj ∈ Dm−n. Based on the Definition 11 Dominance Rela-
tionship of Dnbased on d<remove>, oj � oi in which oi is not
a skyline if and only if ∀dk ∈ dn, oj.dk ≥ oi.dk ∧ ∃dl ∈
dn, oj.dl > oi.dl hold. Based on 1− Skyline, if oi is a
bucket skyline then oi will remain to be a bucket skyline and
has a potential to be a skyline, which contradicts the earlier
statement. �
Case 2: If oi ∈ Dn is a skyline, then oi ∈ Bucket Skyline(
SBi
)
and oi ∈> OL. If oj dominates oi, then based on

the Definition 11 Dominance Relationship of Dn based on
d<remove> ,∀dk ∈ dn, oj · dk ≥ oi · dk ∧ ∃dl ∈ dn, oj · dl >
oi · dl, oj ∈� OL and oj /∈� OL while oi ∈� OL. Since oi ∈
6= OL and based on the 1−skyline, oi is not a skyline which
contradicts with the earlier statement. �

From Case1 and Case 2, the assumption that oi is a sky-
line but not identified by the 1−Skyline is invalid. Hence,
the 1−Skyline derives all the skylines, Sn, of Dn.

V. RESULTS AND DISCUSSION
A. EXPERIMENTAL SETTINGS
Several extensive experiments have been designed with the
main aim to evaluate the performance of our proposed frame-
work, 1Skyline. As elaborated in the previous sections,
1Skyline is introduced with an attempt to avoid unneces-
sary skyline computations when changes made towards an
incomplete database are due to a new dimension(s) is added
to a database or an existing dimension(s) is removed from a
database; which will not only change the state of the database
but also its structure. The experiments are conducted on Intel
Core i7 3.6GHz processor with 32GB of RAM and Windows
8 professional; while VB.NET 2013 is used as the implemen-
tation platform of1Skyline. To verify the arguments made in
this paper, we compare the performance of 1Skyline against
three notable existing approaches that are designed mainly to
deal with the issues related to incompleteness of data, namely:
ISkyline [24], SIDS [6], and Incoskyline[3].
Fig. 16 presents the design flow of the experiments. Given

an initial incomplete data set with m dimensions (criteria) to
be considered in the skyline computation, Dm, we first run
each algorithm, namely: ISkyline, SIDS, and Incoskyline as
well as the Phase I of our proposed framework, 1Skyline,
to derive the skyline set, Sm. This is represented by Fig. 16(a)
and Fig. 16(c), respectively. We use the same notation, Sm,
to indicate that each algorithm should produce the same sky-
line set, Sm, which ensures the correctness of the algorithms.
Meanwhile, when changes are made towards, Dm, in which
a different set of dimensions (criteria) is to be considered in

FIGURE 16. The design flow of the experiments.
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TABLE 3. The parameter settings of the synthetic and real data sets.

the skyline computation, we run again the ISkyline, SIDS, and
Incoskyline on the new structure and state of Dm, denoted
as Dn, to derive a new skyline set, Sn. This is as shown
in Fig. 16(b). Meanwhile, the 1Skyline is evaluated based
on the type of operation used to trigger the changes. If the
changes are due to a new dimension(s) is added to theDm, i.e.
d<add>, then a new skyline set, Sn+, is derived by invoking
the 1+Skyline over the Dn−m. Otherwise, a new skyline set,
Sn−, is derived by invoking the 1−Skyline over the Dm−n.
This is represented by Fig. 16(d) and Fig. 16(e), respectively.
Note that we use the notations Sn+ and Sn− simply to show
that both sets might have different set of objects. However,
Sn+ and Sn− should be equal to the set Sn produced by
ISkyline, SIDS, and Incoskyline given the same set of d<add>
and d<remove>, respectively.

Two types of data sets are used in the experiments, namely:
synthetic and real data sets. We use the same real data sets as
used by the previous works [3], [6], [9], [24], [35], [46], [47],
[45] namely: NBA, MovieLens, and stock market. Table 3
presents the parameter settings for both the synthetic and
real data sets. The initial sizes of the synthetic, NBA, stock
market, andMovieLens data sets are 300K, 120K, 500K, and
1200K, respectively.While, the initial numbers of dimensions
for synthetic, NBA, stock market, andMovieLens data sets are
15, 13, 16, and 4, respectively. As we regard the data sets as
incomplete, hence we set the incompleteness rate to 20% of
the size of the data set. Consequently, a data set with the size
of 40K will have 4K missing values while a data set with the
size of 1200K will have 240K missing values. The number
of dimensions to be added, |d<add>|, and to be removed,
|d<remove>|, are varied between 1 and 8 as shown in Table 3.
To ensure the validity of the results, each experiment is

run 10 times and the average value of these runs is reported.
In deriving the skyline set, we assume that greater values are
preferable compared to smaller ones. The performance mea-
surements used in our experiments are number of pairwise
comparisons and processing time as they are the most com-
monly used measurements in evaluating the performance of
skyline algorithms [3], [6], [24]. These results are compared
to the results of ISkyline [24], SIDS [6], and Incoskyline [3].

B. THE EXPERIMENTAL RESULTS
This section presents the experimental results of 1Skyline in
an attempt to avoid unnecessary skyline computations over
an incomplete database that changes its structure and state

TABLE 4. The parameter settings for d<add> operation.

due to a new dimension(s) is added, d<add>, to the database
or an existing dimension(s), d<remove>, is removed from the
database.
Effect of Adding a New Dimension(s), d<add>: In this

section, we illustrate the experimental results of our proposed
solution, 1Skyline, and the previous algorithms, namely:
ISkyline [24], SIDS [6], and Incoskyline [3], for both the
synthetic and real data sets with respect to the number of
pairwise comparisons and processing time for the case when
changes made to the data sets are due to a new dimension(s) is
added, d<add>, to the data sets. We start the experiment with
the following initial number of dimensions, |dm|: synthetic
data set with 7, NBA data set with 5, MovieLens data set
with 1, and stock market data set with 8 as shown by the
column |dm| of Table 4. Then, a set of dimensions is added
to the data sets, d<add>, in five iterations with 1, 2, 4, 6,
and 8 new dimensions added to the synthetic, NBA, and stock
market data sets, while only one new dimension is added to
the MovieLens data set. This is shown by the column |dn| =
|dm| + |d<add>| of Table 4. For instance, in iteration 1, one
dimension is added to each data set, i.e. |d<add>| = 1, which
result in |dn| = 8, 6, 9, and 2 dimensions for synthetic, NBA,
stock market, andMovieLens, respectively.
Figs. 17(a), (b), (c), and (d) present the number of pairwise

comparisons achieved by 1Skyline, ISkyline [24], SIDS [6],
and Incoskyline [3], based on the synthetic, NBA,MovieLens,
and stock market data sets, respectively. It is apparent that
1Skyline shows a steady performance for all data sets which
reveals that the number of new dimensions added, |d<add>|,
to the current structure of a data set has no significant impact
on the performance of 1Skyline. Intuitively, when the num-
ber of added dimensions increases, the number of pairwise
comparisons performed increases, as verified in the results
of all the previous algorithms. The results of 1Skyline show
no exemption, however the increment shown by 1Skyline
is small and 1Skyline achieved better performance as com-
pared to ISkyline, SIDS, and Incoskyline, since it avoids
unnecessary skyline computations. This is achieved by per-
forming pairwise comparisons only on those affected objects
while the dominance relationships between these objects are
inferred based on the new added dimensions, d<add>. This
is realised by utilising the �OL, 6�OL, DAL, and SBi that
keep track of the dominating objects, dominated objects,
dominance relationships, and bucket skylines, respectively.
While, ISkyline, SIDS, and Incoskyline perform pairwise
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FIGURE 17. The results of number of pairwise comparisons with varying number of new added dimensions.

FIGURE 18. The results of processing time with varying number of new added dimensions.

comparisons between all objects by analysing the values of
the entire dimensions, i.e. dn, including those dimensions
that are not affected by the changes made towards the data
set, i.e. dm.

Figs. 18(a), (b), (c), and (d) present the processing time
achieved by 1Skyline, ISkyline [24], SIDS [6], and Incosky-
line [3], based on the synthetic, NBA, MovieLens, and stock
market data sets, respectively. It is obvious that 1Skyline
shows a steady performance which verifies that the number
of new dimensions added, |d<add>|, to the current structure
of a data set has no significant impact on the performance

of 1Skyline. Also, 1 Skyline achieved less processing time
as compared to ISkyline, SIDS, and Incoskyline. Similar
trends as presented in Figs. 17(a) – (d) can be seen in
Figs. 18(a) – (d). This is due to the fact that reducing the
number of pairwise comparisons would reduce the processing
time. This is achieved by re-examining only those domi-
nance relationships captured by DAL that are affected by
the changes over the values of the new added dimensions;
hence avoiding performing pairwise comparisons between
the objects of the entire data set on all values of the
dimensions.
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Effect of Removing an Existing Dimension(s) d<remove>:
In this section, we illustrate the experimental results of our
proposed solution, 1Skyline, and the previous algorithms,
namely: ISkyline [24], SIDS [6], and Incoskyline [3], for both
the synthetic and real data sets with respect to the number
of pairwise comparisons and processing time by varying the
number of dimensions removed, d<remove>, from the existing
structure of a data set. We start the experiment with the
following initial number of dimensions, |dm|: synthetic data
set with 15, NBA data set with 13, MovieLens data set with 4,
and stock market data set with 16 as shown by the column
|dm| of Table 5. Then, a set of dimensions is removed from
the data sets, d<remove>, in five iterations with 1, 2, 4, 6, and
8 existing dimensions are removed from the synthetic, NBA,
and stock market data sets, while only one new dimension is
removed from the MovieLens data set. This is shown by the
column |dn| = |dm| − |d<remove>| of Table 5. For instance,
in iteration 1, one dimension is removed from each data
set, i.e. |d<remove>| = 1, which result in |dn| = 14, 12,
15, and 3 dimensions for synthetic, NBA, stock market, and
MovieLens, respectively.

TABLE 5. The parameter settings for d<remove> operation.

Figs. 19(a), (b), (c), and (d) present the number of pairwise
comparisons achieved by 1Skyline, ISkyline [24], SIDS [6],
and Incoskyline [3], based on the synthetic, NBA,MovieLens,
and stock market data sets, respectively. As clearly shown
in the figures, 1Skyline shows a steady performance which
reflects that the number of removed dimensions, d<remove>,
from the current structure of a data set has no significant
impact on the performance of 1Skyline. Intuitively, when
the number of removed dimensions increases, the number of
pairwise comparisons performed decreases, as reflected in
the results of all the previous algorithms. Similar trend can
be seen in the results of 1Skyline, however the percentage
of decrement shown by 1Skyline is small with better per-
formance as compared to ISkyline, SIDS, and Incoskyline.
This is because 1Skyline performs pairwise comparisons
only on those affected objects while the dominance rela-
tionships between these objects are inferred based on the
removed dimensions, d<remove>. This is realised by utilising
the �OL, 6�OL, DAL, and SBi that keep track of the domi-
nating objects, dominated objects, dominance relationships,
and bucket skylines, respectively. While, ISkyline, SIDS,
and Incoskyline perform pairwise comparisons between all
objects by analysing the values of the entire dimensions, dn,

TABLE 6. The parameter settings of the synthetic data sets.

i.e. the dimensions that are not affected by the changes made
towards the data set.

Figs. 20(a), (b), (c), and (d) present the processing time
achieved by 1Skyline, ISkyline [24], SIDS [6], and Incosky-
line [3], based on the synthetic, NBA, MovieLens, and stock
market data sets, respectively. From these figures, 1Skyline
shows a steady performance which reflects that the number of
dimensions removed from the current structure of a data set
has no significant impact on the performance of 1Skyline.
Also, 1 Skyline gained less processing time as compared to
ISkyline, SIDS, and Incoskyline. Similar trends as presented
in Figs. 19 (a) – (d) can be seen in Figs. 20 (a) – (d). This
is due to the fact that reducing the number of pairwise com-
parisons would reduce the processing time. By re-examining
only those dominance relationships captured by DAL that
are affected by the changes over the values of the removed
dimensions, the unnecessary pairwise comparisons between
the objects are significantly avoided.
Effect of Adding New Dimensions and Removing Existing

Dimensions on the Skyline Results and Processing Time:
In this section, we illustrate the experimental results of our
proposed solution, 1Skyline, on the synthetic data sets with
respect to the processing time and the number of skylines
produced by Phase I denoted as Sm and Phase II denoted
as Sn. The experiment is conducted over three synthetic data
sets with different initial data set sizes as follows: (a) 120K
(b) 300K, and (c) 500K while incompleteness rate is set
to 20%. The initial numbers of dimensions for each data
set are 5, 7, and 9, respectively for the case of adding new
dimensions; while 13, 15, and 17, respectively for the case
of removing existing dimensions as shown in Table 6. Mean-
while, the number of dimensions added and the number of
dimensions removed are based on the percentages of dimen-
sions being added/removed with respect to the total number
of dimensions. Here, the round function is used (where nec-
essary) to round the obtained values that contain fractional
part to the nearest whole number. The experiment was run
10 times and we report the average value of these runs. These
parameter settings are summarised in Table 6.
Intuitively, There Are Two Cases, Namely: (i) Sm = Sn –

this indicates that the changes made towards the data set have
no effect on the number of skylines produced in Phase I as
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FIGURE 19. The results of number of pairwise comparisons with varying number of removed dimensions.

FIGURE 20. The results of processing time with varying number of removed dimensions.

either all the skylines in Sm are also the skylines of Sn or the
number of skylines eliminated from Sm (no longer skylines)
is equal to the number of new skylines being identified; and
(ii) Sm 6= Sn – this case is more realistic and it indicates that
the changes made towards the data set affect the skyline set
produced in Phase I. Fig. 21 shows the results with regard
to the number of skylines produced when new dimensions

are added, d<add>, to the data sets while Fig. 22 presents
the results with regard to the number of skylines produced
when existing dimensions are removed, d<remove>, from the
data sets. For all of the runs with d<add> being added to
the data sets, the number of skylines produced in Phase II
is slightly higher than those produced in Phase I with all runs
showing Sm 6= Sn and Sm ∩ Sn 6= ∅. These results verify
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FIGURE 21. The results of number of skylines when new dimensions are
added.

our cases presented in earlier sections. When a new dimen-
sion(s) is added, d<add>, for each dominance relationship,
oi � oj, oi is known to be better than oj on dm; regardless
whether oi is better or worse than oj over d<add>, oi is still
one of the candidate skylines. While if oj is better than oi
over d<add>, then oj is one of the candidate skylines which
contributes to the increment of the number of skylines. This
is also in line with [21], [42], as the number of dimensions
(criteria) being considered increases, the number of skylines
also increases. Meanwhile, when an existing dimension(s)
is removed, d<remove> from the data sets, an opposite trend
can be observed. The only case in which the dominance
relationship, oi � oj, is affected is when oi dominates oj over
d<remove>. While, for other cases, the dominance relation-
ships are still valid. Nonetheless, the chances for a candidate
skyline to be a final skyline is low if the dimension (cri-
teria) being removed is the best value, vb, that the object
has over the other candidate skylines. For instance, consider
o3(7, –, 6) and o9(6, –, 7). Initially both objects do not
dominate each other; however once the third dimension
is removed, this results in o3 dominates o9. Apparently,

FIGURE 22. The results of number of skylines when existing dimensions
are removed.

the more dimensions are being removed, the more chances
that the vb of an object is being removed.

Fig. 23 shows the results with regard to processing time
when new dimensions are added, d<add>, to the data sets
while Fig. 24 presents the results with regard to processing
time when existing dimensions are removed, d<remove>, from
the data sets. Although the number of skylines produced in
Phase II is slightly higher than those produced in Phase I
when new dimensions, d<add>, are added to the data sets
while opposite trend is observed when the existing dimen-
sions are removed, d<remove> from the data sets as shown
in Fig. 21 and Fig. 22 respectively, the processing time taken
by Phase II for both operations is lower than the processing
time taken by Phase I for the three synthetic data sets. This is
because by re-examining only those dominance relationships
captured by DAL that are affected by the changes over the
values of the added/removed dimensions, the unnecessary
pairwise comparisons between the objects are significantly
avoided. Consequently, the processing time is significantly
reduced.

It is also observed that, as the percentage of added dimen-
sions increases, i.e. the number of dimensions (criteria)
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FIGURE 23. The results of processing time when new dimensions are
added.

considered in the skyline computation increases, the process-
ing time also increases. As explained earlier, as the number of
dimensions (criteria) being considered increases, the number
of skylines also increases. Consequently, the processing time
increases as reflected in Fig. 23. Meanwhile, the opposite
trend can be observed when the existing dimensions are
removed from the data sets. As the percentage of removed
dimensions increases, i.e. the number of dimensions (criteria)
considered in the skyline computation decreases, the number
of skylines also decreases. As described earlier, the more
dimensions are being removed, the more chances that the
best value, vb, of an object is being removed. Consequently,
the processing time decreases as reflected in Fig. 24.
Effect of a Sequence of Mixed Operations: In this section,

we illustrate the experimental results of our proposed solu-
tion, 1Skyline, on the synthetic data sets with respect to the
number of pairwise comparisons and the processing time
taken by Phase I and Phase II for a sequence of mixed
operations. The sequence of mixed operations is randomly
selected between the add and remove operations. We have
designed 4 sets of sequence of mixed operations labelled as 2,
3, 4, and 5 with each indicates the number of operations

FIGURE 24. The results of processing time when existing dimensions are
removed.

that are in the sequence while each sequence contains both
operations, add and remove. The experiment is conducted
over three synthetic data sets with different initial data set
sizes as follows: (a) 120K (b) 300K, and (c) 500K while
incompleteness rate is set to 20%. The initial numbers of
dimensions for each data set are 5, 7, and 9, respectively as
shown in Table 7. Meanwhile, the number of dimensions to
be added and the number of dimensions to be removed are
randomly generated. The experiment was run 10 times and
we report the average value of these runs. These parameter
settings are summarised in Table 7.

Fig. 25 shows the results of number of pairwise compar-
isons while Fig. 26 presents the results of processing time
for a sequence of mixed operations. Form these figures, it is
obvious that for any number of operations in a sequence,
the number of pairwise comparisons and processing time
of Phase II are always lower than Phase I. This is due to
the fact that for each operation in the sequence of mixed
operations, the1+Skyline and1−Skyline utilised theDAL to
identify the dominance relationships that are affected by the
changes made towards the data sets and ignore the necessity
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FIGURE 25. The results of number of pairwise comparisons for a
sequence of mixed operations.

TABLE 7. The parameter settings of the synthetic data sets for a
sequence of mixed operations.

to perform domination analysis on the entire data sets. In this
experiment, it is observed that there is no correlation between
the number of operations in a sequence and the number
of pairwise comparisons; similarly there is no correlation
between the number of operations in a sequence and the
processing time. Hence, it is unlikely to conclude that as
the number of operations in a sequence increases, then the
number of pairwise comparisons as well as the processing
time also increases as each sequence contains random num-
ber of add and remove operations with random number of

FIGURE 26. The results of processing time for a sequence of mixed
operations.

dimensions added/removed to/from the data sets, that reflects
the real-world applications.

VI. CONCLUSION
In this paper, we proposed a solution named 1Skyline that is
introduced with the main aim to avoid unnecessary skyline
computations when a database changes its state and structure
due to a data definition operation(s) (add or remove a dimen-
sion(s)). 1Skyline consists of two optimisation components,
namely: 1+Skyline which derives a new skyline set when
a new dimension(s) is added to a database and 1−Skyline
which derives a new skyline set when an existing dimen-
sion(s) is removed from a database. These components utilise
theDAL,�OL, and 6�OL that have been devised to keep track
of the domination relationships, dominating, and dominance
relationships captured by the DAL; only the necessary pair-
wise comparisons need to be performed based on the new set
of dimensions to be considered in the skyline computation.
This has proven to reduce unnecessary skyline computations
that are clearly demonstrated in the results of the experiments.
Further enhancement to the proposed solution can be done by
investigating the following area: data stream, crowd-sourced
enabled databases, uncertain database, and big data.
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