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ABSTRACT Camera pose estimation is crucial for 3D surface reconstruction and augmented reality
applications. For systems equipped with RGB-D sensors, the corresponding transformation between frames
can be effectively estimated using the iterative closest point (ICP) algorithms. Edge points, which cover
most of the geometric structures in a frame, are good candidates for control points in ICP. However,
the depth of object contour points is hard to accurately measure using commercial RGB-D sensors. Inspired
by the model-agnostic meta-learning (MAML) algorithm, this work proposes a meta-ICP algorithm to
jointly estimate the optimal transformation for multiple tasks, which are constructed by sampled datapoints.
To increase task sampling efficiency, an edge-based task set partition algorithm is introduced for constructing
complementary task sets. Moreover, to prevent ICP from being trapped in local minima, a dynamic model
adaptation scheme is adopted to disturb the trapped tasks. Experimental results reveal that the probability of
unstable estimations can be effectively reduced, indicating a much narrower error distribution of repeated
experiments when adopting re-sampled points. With the proposed scheme, the overall absolute trajectory
error can be improved by more than 30% as compared to the related edge-based methods using frame-
to-frame pose estimation.

INDEX TERMS Camera pose estimation, iterative closest point, model-agnostic meta-learning.

I. INTRODUCTION
In augmented reality (AR) applications, the quality of virtual
content registration highly relies on the understanding of
the camera viewing angle and position. The camera trajec-
tory, consisting of a series of camera poses, needs to be
reliably estimated for high-quality virtual content render-
ing. By estimating the transformation between the incoming
frame and an estimated frame, the corresponding camera pose
of the incoming frame can then be obtained. Commercial-
ized light-weight RGB-D sensors are commonly equipped
in nowadays AR systems for accessing the point clouds of
the surrounding environment. By using the point clouds,
transformation between frames can be efficiently estimated
using point cloud registration methods such as the iterative
closest point (ICP) algorithm [1], [3].

ICP computes the relative transformation between two
point clouds by iteratively minimizing the distance metric
between correspondences estimated according to the spatial
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distance. It tends to become trapped in local minima due to
the adopted nonlinear local search strategy [2]. Adopting the
point-to-plane error metric [3] instead of the point-to-point
metric [1] makes ICP less likely to fall into local minima,
and can take advantage of convergence speed [4]. In point-
to-plane error metric, an error vector is projected onto the cor-
responding normal vector; thus correspondences located at
smooth regions do not affect the error metric. The surface can
thus freely slide away from the trapped location. However,
when the geometry constraint of the correspondences is insuf-
ficient, ICP might not be able to converge stably. To improve
stability, correspondences are sampled [5] or weighted [6]
by analyzing the covariance matrix. To guarantee retaining a
sufficient number of constraining points after correspondence
pairing and rejection, Gelfand [2] proposed a sampling strat-
egy for the input mesh. However, constraint-based sampling
strategies might over-emphasize noisy regions while trying to
improve the geometric constraint.

Edge points preserve most of the structure details in a
scene [7]. Assuming the edge points are consistently detected,
an optimized transformation can then be obtained by
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minimizing the distance to the closest edge in the target
image. Tarrio [10] presented an efficient matching algorithm
that searches for the corresponding edge point along the
normal direction. The matching procedure can further be
simplified by pre-computing the edge distance map for the
target image using the distance transform [11]. Therefore,
the distance to the closest edge point can be efficiently
obtained by transforming the source edge points onto the tar-
get edge distance map [12]. Recently, Schenk [13] analyzed
the influence of adopting different machine-learned edges,
such as the structured edges (SE) [14] or a CNN-based edge
detector [15]. Their experimental results revealed that
machine-learning-based edge detectors can provide higher
repeatability for detecting edges as compared to the tra-
ditional Canny edge detector [16]. However, even though
promising results are obtained using machine-learning-based
edge detectors, the Canny edge detector still outperforms
them in some cases.

Recently, meta-learning approaches have gained
increasing attention due to the feasibility of tackling few-shot
learning problems. For example, Finn [18] introduced an
efficient model-agnostic meta-learning algorithm (MAML)
that is applicable to general gradient-updated learning prob-
lems including classification, regression, and reinforcement
learning. To prevent overfitting in learning from few samples,
MAML seeks for initial model parameters which are suitable
for fast adapting to the desired task through few gradient
updates. By jointly training a representative model from the
prepared training tasks, the meta-trained model can quickly
adapt to unseen tasks in the meta-testing phase. Based on
MAML, lots of extension works have been presented in
the literature such as the first-order variant [20], the prob-
abilistic extension [19], the multimodal extension [23], and
the approach using unsupervised task construction [24].
To realize the root cause of MAML effectiveness, Raghu [26]
analyzed the MAML-trained model and concluded that the
model effectiveness is primarily due to the feature reusability
rather than the rapid learning ability.

Instead of adopting CNN-based edge detectors as pre-
sented in [15] to learn the edges, this work explores how to
efficiently apply the concept of meta-learning strategy [18] to
the edge-based ICP algorithm for improving the accuracy and
reliability of pose estimation. Conventional low-complexity
edge detectors were adopted in this work to demonstrate
the effectiveness of introducing the meta-learning strategy.
To the best of our knowledge, this is the first work to
investigate the combination of these two schemes. More-
over, since the meta-learned model can be trained more
effectively by using properly selected training tasks [27],
this work also presents schemes to construct comprehensive
data sets that are employed to sample datapoints for training
tasks. For example, due to the limitation of commercialized
light-weight depth sensors, the depth of boundary points
might be unstable, and a straight edge might appear as a
zig-zag line in a depth image [9]. Thus, we extended the
extracted depth edges by considering points in regions near

the edges to obtain a more reliable estimation while trying to
retain the abundant structures provided by edge points.

This paper presents an edge-based meta-ICP algorithm to
jointly learn the transformation frommultiple edge types. The
main contributions of this work are summarized as follows:

1. This work presents a novel ICP algorithm based on
the meta-learning strategy. An effective edge-based
task set partition algorithm is introduced to con-
struct complementary tasks for meta-training. More-
over, an entropy-based objective function is introduced
to balance the size of task sets.

2. To prevent ICP from being trapped in local minima, this
work introduces a dynamicmodel adaptation scheme to
disturb the trapped tasks by considering the parameters
of the other tasks.

3. Using the proposed schemes, experimental results
show that the worst-case performance of the absolute
trajectory error, evaluated by repeated experiments,
can be effectively suppressed. For frame-to-frame pose
estimation, the overall absolute trajectory error is
improved by more than 30% in comparison with the
results derived by REVO [13], Canny VO [25], and
ORB2 VO [22].

The rest of this paper is organized as follows: Section II
briefly reviews the depth edge detection, the ICP algorithm,
and the MAML algorithm. Section III presents the proposed
edge-basedmeta-ICP algorithm. Section IV shows the experi-
mental results and comparisons with relatedmethods. Finally,
Section V concludes this work.

II. BACKGROUND
A. DEPTH EDGE DETECTION
Depth edge points, which preserve most of the details in
a scene structure, are good candidates used in geometric
alignment. By evaluating the depth discontinuity between
neighboring pixels, edge pairs can then be identified [7, 8].
Pixels (i,j) belong to an edge pair only if pixel i and the nearest
valid depth pixel j satisfy the following equation:∣∣zi − zj∣∣ > TD ·min

(
zi, zj

)
, (1)

where TD is a positive sensitivity constant and zk denotes
the depth value of pixel k . Because the pixels in Kinect
depth images are calculated from inverse disparity values,
which are normalized and quantized to 11-bit integer values,
the depth uncertainty caused by the disparity quantization
error is not uniformly distributed over the depth values.
Moreover, the space between two readable depth values is
not constant but proportional to the true distance [28]. Thus,
a proportional depth threshold is needed for determining the
real depth discontinuity.

The edge with a smaller depth value is an occluding edge,
and the other is an occluded edge. To effectively find the depth
edges in a depth image, Bose [8] employed a row-column
search strategy to find the depth discontinuity.When conduct-
ing a column search on row vi, every pixel i = (ui, vi)T that
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has a valid depth value is compared with the most recently
found valid depth pixel j = (ui–1u, vi)T. A row search is
conducted in the same manner.

B. ICP ALGORITHM
The ICP algorithm is an iterative approach that can be applied
to align two point clouds by repeatedly refining the relative
rigid-body transform. The process in each iteration of the
conventional ICP algorithm consists of the following steps.

1) CORRESPONDENCE PAIRING
For the i-th selected point in the source cloud P, find the
closest point qi as its correspondence in the destination cloud
Q. The correspondence determination problem can be formu-
lated as:

qi = argmin
q∈Q

∥∥T tpi − q∥∥ , (2)

where T t = [r |τ ] is the initial transformation used for the t-
th iteration. r and τ are the rotation matrix and the translation
matrix, respectively. The transformation matrix T can then
be decomposed into the transformation vector θ = [θr , θτ ],
where θr and θτ stand for the rotation angles around the xyz
axes and the translation vector, respectively.

However, if the closest point is far away from the true cor-
respondence, the transformation will be incorrectly estimated
when using correspondences without removing the outlier
pairs. Pulli [17] suggested using dynamic threshold Ts and
hard threshold Th to reject outliers. The hard threshold is
applied to discard pairs with a distance larger than Th and the
dynamic one is used to keep the Ts percentage of the closest
correspondences, aiming to remove those spurious pairs in
the early iterations of ICP.

2) TRANSFORMATION ESTIMATION
After removing the outliers, the remaining correspondence
pairs are used to estimate the relative transformation, also
denoted as the incremental transformation T ∗. The T ∗ of the
t-th iteration derived from minimizing the predefined cost
function such as the point-to-plane error metric [3] can then
be calculated by

T ∗ = fT
(
D,T t

)
= argmin

T

∑
i

∥∥(T · T tpi − qi) · nqi∥∥ , (3)

where nqi is the estimated normal vector of point qi, and D =
{pi, qi,. . . } is the set of the correspondence pairs.

3) TRANSFORMATION UPDATES
The derived incremental transformation is applied to trans-
form the source frame and update the transformation as
T t+1← T ∗T t .

The iteration process terminates when it reaches the max-
imum iteration number.

C. MAML ALGORITHM
MAML algorithm, which consists of two optimization loops,
aims at learning a representative model that can fast adapt to

Algorithm 1 MAML for Supervised Learning [17]
Require: p(T ): distribution over tasks
Require: α, β: step size hyper-parameters
// the model is represented by a parameterized function fθ
with parameters θ
// the cross-entropy loss for task i using model fθ with data
D is denoted as Li (fθ ,D)
Randomly initialize θ
While not done do

Sample batch of tasks Ti ∼ p(T )
for all Ti do
Sample K datapoints Di = {xk , yk}, k = 1∼ K ,
from Ti
Evaluate ∇θLi (fθ ,Di)
Compute adapted parameters using one gradient
update:

θ ′i = θ − α · ∇θLi (fθ ,Di)

Sample another K datapoints D′i = {xk , yk},
k = 1∼ K , from Ti
end for
Update θ ← θ − β · ∇θ

∑
Li
(
fθ ′i ,D

′
i

)
end while

new tasks. In the inner loops, the adapted parameters for each
sampled training task will be computed based on a shared
model. Then, the shared model is trained by optimizing
the performance across all sampled training tasks using the
adapted model parameters in the outer loops. The MAML
algorithm iteratively refines the shared model until the model
is broadly applicable to most of the sampled training tasks
within few gradient updates. The complete MAML algorithm
for task adaption using single gradient update is described in
Algorithm 1.

III. PROPOSED EDGE-BASED META-ICP ALGORITHM
Since the depths of object boundaries are hard to be pre-
cisely measured using commercial depth sensors, this work
leverages the concept of meta-learning techniques to improve
the robustness of the ICP algorithm. Moreover, conven-
tional low-complexity edge detectors were adopted in this
work to demonstrate the effectiveness of introducing the
meta-learning strategy.

MAML algorithm is a promising technique adopted for
few-shot learning problems. By learning from the prepared
training tasks, MAML algorithm explores an initial model
that can be quickly adapted to new tasks. Inspired by MAML
algorithm, this work proposes a novel edge-based meta-ICP
algorithm to jointly learn the optimal transformation across
multiple tasks. Through meta-training, the impact of indi-
vidual spurious estimations caused by noisy depths can thus
be suppressed. Since the meta-training process can provide
a reliable transformation with respect to all the training
tasks, ICP algorithm would be much robust to noisy depths
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FIGURE 1. Paradigm of the proposed meta-ICP algorithm with two task
sets configuration in which circles denote camera poses. All non-black
arrows represent the transformation estimated using (3), while adopting
data from different task sets are marked in different colors.

when it is initialized using the meta-trained transformation.
Moreover, to effectively sample useful tasks for performing
meta-training, an edge-based task set partition algorithm is
introduced. Data for each task are then sampled from the
corresponding task set. A paradigm of the proposed edge-
based meta-ICP algorithm is depicted in Fig. 1.

As shown in Fig. 1, the meta-ICP iterations are divided
into the meta-training phase and the meta-testing phase. In
the meta-training phase, transformation vectors are estimated
according to the corresponding adapted tasks. An optimal
transformation vector, denoted by the black arrow, is then
estimated across all tasks. Once the meta-training is com-
pleted, the globally covered task set is used for performing
ICP.

A. EDGE-BASED TASK SET PARTITION ALGORITHM
Since the optimal transformation for each frame is differ-
ent, the ground-truth corresponding point for the sampled
source point cannot be prepared offline. Following the ICP
assumption, the nearest point in the target cloud is selected
as the corresponding point. A task is composed of a set of
source points and their corresponding points, which can be
calculated using (2). Since the output is mapped using the
selected input point, the tasks are defined by the input source
points discussed as follows.

By definition, any subset of the source cloud can be treated
as a task. However, the distribution of the sampled tasks
would be similar when directly adopting the random sam-
pling strategy. To spread the risk of spurious estimation, this
work explores to select tasks that are complementary to each
other. By partitioning the source frame into regions with
complementary features, complementary tasks can then be
effectively constructed by sampling points according to the
partitioned regions.

Based on the extracted edge information, this work intro-
duces a two-level partitioning scheme to construct comple-
mentary task sets. At the first level, two edge types are consid-
ered: the occluding-edge regions and the Canny-edge regions.
Each edge type is further partitioned into the inner-edge
regions and the outer-edge regions at the second level. The
hierarchical structure is depicted in Fig. 2.

FIGURE 2. Hierarchical structure of the edge region partition in which Si,j
denotes the j-th task set at the i -th hierarchical level.

In this work, the occluding-edge detector presented in [8]
was employed to extract major object boundaries which have
significant depth discontinuity as compared to neighboring
pixels. Luminance edges with large gradients were extracted
by using the Canny-edge detector [16]. Let the binary edge
map of detected occluding-edge pixels and Canny-edge pix-
els be denoted as G and L, respectively. Moreover, to extend
edge features, the edge pixels are dilated to the edge regions
which are further partitioned into two parts: inner regions and
outer regions. The binary edge map of inner-occluding-edge
regions M2,1 and the inner-Canny-edge regions M2,3 can be
written as:

M2,1 = G⊕ BI ,G,

M2,3 = L ⊕ BI ,L , (4)

where the symbol ⊕ stands for the morphological dilation
operator. BI ,G and BI ,L are the inner dilation kernels for G
and L, respectively. The outer regions for G and L can be
extracted using another dilation kernels as described in the
following equations:

M2,2 =
(
D⊕ BO,G

)
&
(
∼ M2,1

)
,

M2,4 =
(
L ⊕ BO,L

)
&
(
∼ M2,3

)
, (5)

where BO,G and BO,L are the outer dilation kernels for G
and L, respectively. Finally, the set S2,j can be constructed
using the corresponding edge map M2,j, for 1 ≤ j ≤
4. To avoid repeatedly sampling data in certain regions,
the intersection of the sets within the same hierarchical level
is discarded. Finally, the parent node is built by the union of
all child nodes and the corresponding binary edge map can be
written as:

Si,j = Si+1,j ∪ Si+1,j+1. (6)

According to the structure of a captured scene, the amount
of occluding edges and Canny edges might be quite imbal-
anced. Sampling points from task sets with insufficient points
might also lead to unstable estimation. To balance the sizes of
the partitioned task sets, the four dilation kernels are adjusted
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FIGURE 3. Results of edge region partition selected from the TUM RGB-D
SLAM benchmark sequence (freiburg1_rpy) [21]. (a) Color image,
(b) corresponding inner-occluding-edge regions S2,1 (red) and
outer-occluding-edge regions S2,2 (green), (c) inner-Canny-edge regions
S2,3 (red) and outer-Canny-edge regions S2,4 (green), and (d) root-level
edge regions S0,1 which contain occluding-edge regions S1,1 (green),
Canny-edge regions S1,2 (red), and the intersection regions (yellow).

by solving the proposed entropy-based objective function
defined as:

B∗ = argmin
B

∑
i

∑
j
Pi,j logPi,j, Pi,j = S̄i,j/

∑
k
S̄i,k ,

subject to S̄i,j > Ts, (7)

where S̄i,j represents the cardinality of the set Si,j, Ts is
the threshold value for the minimum number of required
points, and B = {BI ,G, BI ,L , BO,G, BO,L} is the set of
four adjustable dilation kernels. The optimal dilation ker-
nels, B∗ =

{
B∗I ,G,B

∗
I ,L ,B

∗
O,G,B

∗
O,L

}
, are estimated by solv-

ing (7) for each frame. Note that both level-1 and level-
2 entropy are considered in (7) to ensure that the task sets
are balanced at all hierarchical levels. Moreover, to restrict
the solution space of (7), dilation kernels are defined as
odd-valued NxN all-ones matrices, e.g., 3 × 3 or 5 × 5
kernels, and the maximum size of the adopted dilation kernel
is set to 11 × 11 to prevent sampling points that are far
from the edge pixels. Since the number of possible dilation
kernels is finite, the solution of (7) can be obtained by using
exhaustive search. An example that illustrates the four edge
regions extracted by using the proposed method is depicted
in Fig. 3.

As shown in Fig. 3 (b), most of the boundary regions of the
objects on the table are effectively detected. Detailed struc-
tures, such as the keyboard and the mouse, can be detected
using the Canny edge detector as depicted in Fig. 3 (c).
Moreover, the band of occluding-edge regions is wider than
that of Canny-edge regions to balance the set size, which is
automatically adjusted using (7). The intersection regions,
as marked in yellow color in Fig. 3 (d), are discarded in the
meta-training phase.

Algorithm 2 Edge-based meta-ICP algrithm
Require: Ts, Tθ , Tp: threshold values
Require: α, β: step size hyper-parameters
Require: N , M : number of iterations
Initialize the transformation vector θ as zero vector
Get the optimal dilation kernels B∗ by (7) and then get the
partitioned task sets {S0,1, S1,1, S1,2, S2,1, S2,2, S2,3, S2,4}
using B∗

//meta-training iterations
for t = 1 to (N–M ) do
for i = 1 to 4 do
Sample K datapoints Di = {pk , qk}, k = 1∼ K , from
S2,i
Compute the adapted parameter vector:

θ ′i = θ
t
+1θi = θ

t
+ fθ

(
Di, θ t

)
Sample another K datapoints D′i = {pk , qk},
k = 1∼ K , from S2,i
end for
Update θ t+1 = θ t + α ·

∑
i fθ
(
D′i, θi

′′
)

Update C using (11)
If C == 1 then

M = t
break end for

//use the root-level task set S0,1 to perform meta-testing
iterations
for t = (N–M+1) to N do

for j = 1 to T do
Sample K datapoints Djt = {pk , qk , . . .}, k = 1∼ K ,
from S0,1
Evaluate 1θ jt =

(
Djt , θ

t
)

end for
Update θ t+1 = θ t + β ·

∑
j1θ

j
t

end for

B. DYNAMIC MODEL ADAPTATION
At the beginning of a meta-training iteration, the datapoints
for each task are sampled from the corresponding edge
regions. The adapted parameter vector for task i, calculated
using the sampled datapoints and the shared parameter vector,
is defined as:

θ ′i = θ
t
+1θi = θ

t
+ fθ

(
Di, θ t

)
, (8)

where θ t is the shared parameter vector for the t-th iteration,
which is the transformation vector introduced in II-A. 1θi is
the incremental transformation for task i, which is obtained
using (3). Di = {pk , qk , . . .} is the sampled datapoints (also
known as the support set) for task i. pk and qk are the k-th
sampled correspondence pair.

Since the traditional ICP tends to become trapped in local
minima, adopting different sampled point sets might result
in different locally optimal solutions. By jointly updating the
shared parameter vector across all tasks based on the adapted
parameters, edge regions that belong to different tasks can be
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equally treated. Therefore, the impact of individual spurious
estimation, caused by certain noisy edge regions, can then be
suppressed. Note that once the adapted parameters become
trapped, the task can no longer contribute to the shared param-
eters until next iteration.

To increase the estimation efficiency, this work inves-
tigated the updating strategy of the model parameters in
MAML algorithm and introduced a dynamic model adap-
tation scheme to disturb the trapped tasks. Specifically,
the shared parameter vector is updated using the following
equation:

θ t+1 = θ t + α ·
∑
i

fθ
(
D′i, θi

′′
)
, (9)

where D′i = {pk , qk , . . .} is the re-sampled datapoints (also
known as the query set) for task i, and α is the step size. The
symbol θi′′ represents the adapted parameter vector for task i,
which is dynamically adjusted as follows:

θi
′′
= θ t +1θj, j =

argmax
k
‖1θk‖1 , ‖1θi‖1 < Tθ

i, others,
(10)

where Tθ is the threshold value used for evaluating the param-
eter trapping condition. The parameter vector with maximal
L1 norm is suggested as the alternative adapted parame-
ter vector. Moreover, to save the computational power for
performing meta-testing, a convergence checking criterion
is adopted to early terminate the meta-training phase. That
is, the meta-training process is terminated once the average
point-point distances for all tasks are acceptably small. The
termination enabling signal C is expressed as:

C=

{
1, max (d1, d2, d3, d4) < Tp
0, others,

(11)

where di and Tp are the average point-point distance of the
support set Di and the distance threshold value, respectively.
In the meta-testing phase, the root-level task set S0,1, con-
structed by all task sets used in meta-training, is adopted
for pursuing a globally optimized result with respect to the
introduced edge features. Moreover, in eachmeta-testing iter-
ation, this work performed repeated task sampling and then
aggregated the estimations to further improve the estimation
robustness. The complete edge-based meta-ICP algorithm
involving both meta-training and meta-testing is summarized
in Algorithm 2.

IV. EXPERIMENTAL RESULTS
The TUM RGB-D dataset [21] was used for evaluating
the proposed edge-based meta-ICP algorithm. The dataset
includes image sequences recorded from the Kinect V1 along
with the corresponding ground-truth camera poses captured
from a motion capture system. Two commonly used error
metric were adopted for evaluating the resulting performance.
The relative pose error (RPE) was used for measuring the
translation drift over a predefined interval which was set as
one second (corresponding error unit: cm/s). The absolute

trajectory error (ATE) was used for measuring the absolute
distances between the estimated and the ground-truth trajec-
tory. The root-mean-square error (RMSE) of the RPEs and
the ATEs was adopted for evaluating the resulting accuracy
for each sequence. Moreover, to remove the impact of initial
prediction and fairly compare different strategies, all experi-
ments were conducted using frame-to-frame estimation with-
out initial pose prediction. The experiments were conducted
by using a PC with Intel Core i5-4590 CPU @ 3.3GHz and
32GB memory, and the developed algorithms were coded in
un-optimized python code on Ubuntu 18.04 to perform the
desired simulation.

A. EDGE FEATURE COMPARISONS
The experiments were performed by first constructing the
complementary task sets obtained by extending the extracted
occluding edges and Canny edges, and then partitioning those
edges into task sets. After that, the performance of adopt-
ing the extended edge features (root-level set S0,1) and the
original edge features (occluding edges and Canny edges)
was compared by using traditional ICP algorithm. Moreover,
to relax the influence of Kinect noise for achieving better
alignment quality, each correspondence was weighted based
on the noisemodel introduced in [9]. The experimental results
of performing 30 iterations with 1000 points for each iteration
are summarized in Table 1 where the best value for each test
sequence is marked in bold. Because the proposed algorithm
adopted random sampling, we reported the average results
and the worst results from 30 repeated experiments.

The occurrence and impact of unstable estimations in a
test sequence can be evaluated using the ATE metric because
the pose estimation errors of the past frames are accumu-
lated. As shown in Table 1, sampling points in the extended
edge regions instead of adopting the original edge points can
overall improve ATE by 19.7% on the average. As known,
camera pose estimation for fast motion sequences are chal-
lenging [13]. For the two fast motion sequences fr1/desk
and fr1/desk2, adopting the proposed extended edge features
can greatly reduce the ATE by 28% on the average. In par-
ticular, the worst-case ATE among the 30 repeated experi-
ments is significantly improved by more than 50% for the
desk2 sequence.

B. META-ICP EVALUATION
To evaluate the performance of the proposed meta-ICP algo-
rithm, experiments were done using the same set of extended
edge features as those obtained in Table 1. The total number
of iterations was set as N = 30, including M = 3 for
meta-testing iterations. Note that the task sets were jointly
optimized during the meta-training phase. The size of a sup-
port set and a query set was set as K = 1000. To guarantee
that all task sets have enough points for sampling, the min-
imum number of points for each task set, Ts, was set as
2000. The experimental results of employing the proposed
algorithm are listed on the right side of Table 2. For ease of
comparison with the results of applying the traditional ICP
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FIGURE 4. Boxplots of traditional ICP and meta-ICP algorithms employing extended edge features. Figures in the top row and bottom row are RPE plots
and ATE plots, respectively. The average value of each boxplot is indicated by the green diamond.

TABLE 1. Performance comparsions when applying two different edge
features.

algorithm, the information in Table 1 is duplicated on the left
side of Table 2.

As shown in Table 2, meta-ICP outperforms traditional
ICP for almost all the test cases. Traditional ICP only per-
forms slightly better (<1%) than meta-ICP for desk2 and
room sequences in terms of the average ATE. Moreover,
by adopting the proposed meta-ICP algorithm, the occur-
rences of unstable estimations can be effectively suppressed,
thus improving the worst ATE. The experimental results
reveal that the worst ATE can be reduced by more than 25%
for desk, and 9% for desk2, rpy, and room using the proposed
algorithm. Since the worst-case performance is quite close
to the average-case performance when using the proposed
algorithm, this indicates a much reliable and robust pose
estimation than the traditional one.

For more detailed analysis, the boxplot was adopted to
illustrate the error distribution over 30 repeated experiments.

TABLE 2. Performance comparisons between traditional ICP and
Meta-ICP algorithms.

The resulting RPE and ATE boxplots of all sequences are
depicted in Fig. 4, where the outlier data are denoted by red
crosses in the boxplots. As can be observed from the figures,
the outlier probability of applying the proposed meta-ICP is
much smaller than that of using the traditional ICP for desk
and rpy. Moreover, adopting the proposed one can effectively
reduce the interquartile range (IQR) of both RPE and ATE
for all sequences. The error distributions exhibit that the
proposed one possesses good generalization ability for the
evaluated sequences.

Table 3 shows the RPE and ATE comparisons with related
edge-based visual odometry (VO) algorithms [13], [25]
and a typical feature-based approach ORB-SLAM 2 [22].
Specifically, Canny-VO [25] presented two alternatives,
namely the approximate nearest neighbor fields (ANNF) and
the oriented nearest neighbor fields (ONNF), to replace the
distance transform for improving the registration efficiency
and accuracy. REVO [13] evaluated two machine learning

89026 VOLUME 9, 2021



C.-W. Chen et al.: Edge-Based Meta-ICP Algorithm for Reliable Camera Pose Estimation

TABLE 3. RPE and ATE comparisons with related edge-based VOs.

edge detectors [14], [15] and estimated camera poses by min-
imizing the total edge distances between the source and target
frames. Note that for comparison with the proposed algo-
rithm, only the frame-to-frame tracking results in REVO [13]
are considered. As shown in Table 3, the proposed algorithm
achieves the best RPE for the two fast motion sequences,
namely desk and desk2, and the lowest ATE for four out of
six sequences. Overall, the experimental results demonstrates
that the proposed one can obtain the lowest RPE and ATE
on the average as compared to the related works. Leveraging
the concept of meta-learning technique [17], the proposed
edge-based meta-ICP algorithm can be effectively adopted
in different application scenarios according to our experi-
ments. Finally, although the meta-ICP algorithm may take
more computational effort than the traditional ICP due to
the demand for multiple task estimations, these tasks can be
easily dispatched to different processing units to reduce the
overall computational time.

V. CONCLUSION
This paper proposed an edge-based meta-ICP algorithm
for reliable camera pose estimation. To construct use-
ful and complementary tasks for performing meta-training,
this paper first presented a task set partition algorithm
based on the extracted occluding edges and Canny edges.
An entropy-based cost function was also introduced to deter-
mine the optimal partition of the inner and outer regions for
these two edge types. Moreover, a dynamic model adapta-
tion scheme was employed to adaptively adjust the adapted
parameters for disturbing the trapped tasks. Experimental
results have shown that the worst-case RPE and ATE can be
effectively suppressed by adopting the proposed meta-ICP
algorithm. Finally, as compared to the traditional ICP algo-
rithm, the proposed one can achieve a smaller IQR of
error distributions, indicating much reliable pose estima-
tions. A lower average RPE and ATE can also be achieved
using the proposed algorithm in comparison with the related
works.
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