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ABSTRACT The integration of artificial intelligence (AI) and the Internet of Things (IoT) has tremendous
prospects in smart healthcare. The advancement of AI in the form of deep learning brought a revolution
in automatic classification and detection systems. In addition, next-generation wireless communications
such as 5G networking brought speed and the seamless transmission of data. With the convergence of
these elements, the smart healthcare sector is currently booming. Particularly during the post-COVID-19
pandemic, the necessity of smart healthcare has come to light more than before. A significant number of
people suffer from voice pathology. This pathology can be easily cured if detected early. In this study, a voice
pathology detection system within a smart healthcare framework is proposed. The inputs are obtained by
the IoT, namely microphones and electroglottography (EGG) devices to capture voice and EGG signals,
respectively. Spectrograms are obtained from these signals and fed into a pretrained convolutional neural
network (CNN). The features extracted from the CNN are fused and processed using a bi-directional long
short-term memory network. The proposed system is evaluated using a publicly available database, called
the Saarbruecken voice database. The experimental results show that bimodal input performs better than a
single input. An accuracy of 95.65% is obtained for the proposed system.

INDEX TERMS Smart healthcare, deep learning, convolutional neural network (CNN), long short-term
memory (LSTM), voice pathology detection.

I. INTRODUCTION
Owing to the excessive use of their voice, numerous individ-
uals today suffer from voice pathologies. Specifically, teach-
ers, students, musicians, attorneys, and the like are among
those who commonly experience these problems [1]. Human
voices provide a vast amount of informative material; as
a result, they convey much about human wellbeing. This
knowledge is applicable in the fields of automated speech
pathology diagnosis and speaker identification, as well as
other areas. Thus, the area of speech pathology draws a large
number of scholars who are interested in investigating and
studying voice disorders. The irregular growth of masses or
tissue in the vocal folds results in a voice tone that differs from
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the norm [2]. Examples of abnormal growths in vocal folds
resulting in voice pathologies include polyps, nodules, cysts,
and sulci [3]. Most speech pathology signs include persistent
hoarseness, scratchy throat, abnormal volume, and reduced
capacity to speak clearly.

The methods used to investigate speech or voice problems
may be analytical or empirical. The assessment of a disor-
dered expression, such as ‘‘dysphonia,’’ which is a medical
term for voice disorders that prevent an individual from mak-
ing a sound using the vocal organs, may be referred to as
voice disorders. Perceptual and auditory evaluation methods
are critical to the therapeutic treatment of dysphonia, as is the
endoscopic evaluation of the larynx and vocal folds.

Although the Consensus Auditory-Perceptual Evaluation
of Voice (CAPE-V) and GRBAS (grade, roughness, breath-
iness, asthenia, strain) scales use rating scales to evaluate
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speech (including frequency, quality, roughness, breathiness,
exhaustion, and stress), the average grade of dysphonia,
degree of roughness, breathiness, asthenia, and strain is
assessed using the CAPE-V [4]. Because these assessment
methods are often used in clinical practice, however, there
are caveats for the analytical test. The clinician’s expertise,
the degree of the patient’s dysphonia, the form of the auditory
perceptual rating system, and the stimulation or speech task
are all factors in the limits imposed on a given treatment.
As a result of failure in auditory appraisal, physicians and
researchers have designed a more quantitative voice recog-
nition metric to measure dysphonia levels in patients [5].
Numerical values for pathology severity, along with a treat-
ment plan, can be created through acoustic examination, and
this knowledge can be made accessible to other stakeholders.
Often, patients’ acoustic analyses are performed by voice
clinicians using sustained vowel recordings rather than con-
stant speech samples [6]. While it has been established that
the continuous vowel is the best method for producing a
voice sample that captures various rhythms of expression,
this does not reflect how people talk every day [7]. Just as
voice onset, voice cessation, and voice breaks are essential
in the assessment of voice consistency, variations in vocal
characteristics with respect to these three phenomena are not
entirely captured in continuous signals, such as vowels. The
third thing to note is that dysphonia signs aremore apparent in
dialogue voice development than in sustained vowels. In com-
parison, adductor spasmodic dysphonia is distinct from nat-
ural voice due to differences in the duration of sound output.
Additionally, adductor spasmodic dysphonia is due to the
effect of the phonetic and supra-segmental structure of speech
that is unrepresented in the continuous vowel that some of the
acoustic correlates of an individual’s voice are formed [8].

To successfully identify and treat voice issues, it is abso-
lutely imperative to be able to detect certain problems. To help
physicians, an automatic voice pathology detection (VPD)
system can be used. The VPD system only works for sus-
tained vowels where the speech signal remains constant for
about 6–9 s However, in day-to-day conversations, people
should not use prolonged speaking, but continuous expres-
sion instead. Conceptually, a practical VPD system must be
able to detect pathology from continuous sentences, which
would mean that a practical VPD system would be able to
detect pathology from continuous sentences [9]. According
to [9], a VPD’s speech recognition technology uses contin-
uous speech, however, it is far from ideal. There are some
basic reasons for this. Themain reason is that we are unable to
obtain proper voice impairment features, so many of the fea-
tures come from speech processing and speaker recognition.
There are many forms of voice dysfunction, each of which is
defined as a separate class. In short, it is difficult to obtain
information from human voice signals, and having reliable,
effective, and scalable features with discriminative capacity
is of primary importance.

In voice disorders, the quality, volume, or pitch of the
sound made by the larynx is irregular [10]. Voice disabilities

may result from several conditions, including emotional prob-
lems, traumatic experiences, physical illnesses, and diseases.
By and large, speech disorders are not life-threatening and
are easy to correct. Vocal abuse is one of the most frequent
forms of speech impairment. If we experience vocal trauma,
we can look for long-term vocal symptoms such as nodules,
polyps, cysts, and edema (swelling) of the vocal folds [11].
Parkinson’s disease, endocrinological (hormonal) abnormali-
ties, and surgical procedures such as thyroidectomy or cardiac
bypass both may result in speech disorders.

Based on the above discussion, we understand that there
is a need to assess voice pathology at its earliest occur-
rence. Until now, many VPD systems have been proposed
in the literature. A recent trend is to incorporate VPD sys-
tems in smart healthcare [12]. Smart healthcare takes advan-
tage of developments in artificial intelligence (AI), machine
learning (ML), deep learning, edge and cloud comput-
ing, and next-generation wireless communications. Various
pathology detection systems have been embedded in smart
healthcare [13], [14].

Smart healthcare frameworks are becoming popular
because they bring comfort and ease to our lives. A person
can get his disease diagnosed while remaining at home, can
get advice from multiple physicians across the world, and
can avoid the hassle of obtaining an appropriate appoint-
ment at the hospital. The precision and reduced latency of
smart healthcare are made possible by integrating the Inter-
net of Things (IoT), edge and cloud computing, and 5G
networks. Furthermore, sophisticated ML algorithms such
as deep learning algorithms have increased the accuracy of
healthcare systems [15].

In this paper, we develop a VPD system within a smart
healthcare framework. The system involves two modali-
ties: voice signals and electroglottograph (EGG) signals.
We design the system using a convolutional neural net-
work (CNN) model to extract features from these two modal-
ities. The features are fused using a long short-term memory
(LSTM) model. The Saarbruecken voice database (SVD) is
used in the experiments [16].

As the primary contributions of this research, we list the
following:

(i) A multi-modal VPD system, which utilizes voice and
EGG signals, and is therefore able to diagnose patients with
dysarthria with increased accuracy and provide a better foun-
dation for pathological voice identification. This system helps
unite the two modalities and provides confidence in the
outcomes.

(ii) Several pre-trained CNN models such as ResNet50,
MobileNet v2, and XceptionNet are investigated as the back-
bone of the VPD system to minimize training time and pro-
vide more accurate results.

(iii) Using an LSTM network, features that were merged
before were used to enrich the sound features, filter out
redundant information, and increase classification accuracy.

The rest of this paper is organized as follows. Section II
describes the types of voice pathologies. Section III provides
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FIGURE 1. Voice pathology classification.

a brief literature review. Section IV presents the proposed
VPD system. Section V presents experimental results and
discussion. Finally, Section VI presents the conclusion and
gives some directions for future work.

II. TYPES OF VOICE PATHOLOGIES
There are several types of voice pathologies. As mentioned
earlier, an abnormal growth in the vocal fold(s) causes a
voice pathology. Fig. 1 shows a voice classification strategy.
The voice is mainly classified as either normal or disor-
dered (pathological). A disorder can be caused by inflam-
mation, abnormality in structural or neuromuscular design,
or muscle tension imbalance. The structural abnormality can
be generated by vocal fold(s) cysts, polyps, nodules, paral-
ysis, and sulcus vocalis (some example images are given
in Fig. 2). The focal point of this research is structural voice
pathology.

A. CYST
A cyst is a development that can be found under the vocal
fold mucosa’s surface layer. If a void forms between the
two vocal folds, the vocal folds cannot vibrate normally.
Additionally, a cyst can stiffen the vocal fold mucosa, which
may render the folds unable to vibrate normally. A cyst can
also influence voice strength and/or affect the development of
the voice.

On rare occasions, cysts will appear on only one vocal
fold. The voice’s tone can include natural speech, breathy
speech, and harsh, raspy speech.Many of these patients suffer
from cysts, and their complaints include fatigue after a long
conversation.

B. VOCAL FOLD POLYP
Polyps and cysts both grow from the vocal fold mucosa.
Strong or fluid packed, they may expand to quite large sizes.
The size and position of the vocal folds determines the inten-
sity of their vibrations.

The voice may range from only barely intelligible to seri-
ously dysphonic (extremely poor voice quality). People who
are suffering from cysts will generally express their com-
plaints with the following: fatigue after a long conversation,
and intolerable irritation in the throat.

FIGURE 2. Different types of voice pathologies.

C. NODULES
A symmetric prose is known as a vocal fold nodule when it
is located on both sides of the vocal folds in the center of
the voicebox. When vocal fold nodules stop the folds from
closing completely, dysphonia is the most prominent vocal
symptom. Young males and females who serve in occupa-
tions that rely on speech, including teachers, attorneys, and
musicians, are more likely to have vocal fold nodules.

Nodules in the vocal folds maymake a voice sound natural,
breathy, or extremely raspy. People who are severely deaf or
hard of hearingmay become unable to talk softly andwill find
it difficult to produce gentle noises. The sound does not start
immediately as a person attempts to talk higher and softer.
There is a pause when an audible air escape occurs, and then
the sound suddenly begins.Many of these patients suffer from
cysts, and their complaints include using their voices for an
extended period.

D. PARALYSIS
Paralysis originates from vocal fold immobility. A significant
distance between the two vocal folds is due to one or both
vocal folds becoming immobile. This distance permits air to
escape and interferes with natural movement. Such forms of
paralysis are caused by the position of the vocal folds, while
others arise because of the contraction of the vocal folds.
Another example is where no action is present in the vocal
folds; this situation is classified as paralysis. Paresis, which
means ‘‘weakness,’’ may refer to movement.

Because of paralysis, the voice may be weak, raspy, harsh,
two-toned (sounding like two different notes at the same
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time), or nothing more than a whisper. Many of these patients
suffer from cysts, and their complaints include difficulty
projecting their speech effectively due to being tired.

E. SULCUS
The sulcus is a linear depression that is located on themucosal
surface of the vocal folds parallel to the free border, and it
is characterized by a variable depth and bilateral symmetry.
As a consequence of the sulcus vocalis, the vocal folds are
inhibited from closing, and, therefore, a mild to a serious
degree of dysphonia is generated.

III. LITERATURE REVIEW
There are research works on VPD in the literature. We briefly
describe some of them below.

Measurement of voice quality is important for both testing
and voice assessment. Auditory perceptual appraisal is used
by professional voice therapists who practice in facilities that
have access to advanced acoustic, aerodynamic, and vocal
fold imaging instrumentation. Furthermore, the APA (Ameri-
can Psychological Association) provides baseline knowledge
on the degree of dysphonia, whichmay be used to evaluate the
improvement in a patients’ condition over time. The useful-
ness of auditory-perceptual evaluations of voice dysfunction
may be due, at least in part, to the following: low expense,
little time required, and patient convenience. Additionally,
auditory-perceptual evaluation defines speech quality and
vocal intensity by examining particular auditory parameters
that are present in sound. It has many problems when it comes
to the issue of objectivity: (i) judges consistently disagree
with each other, (ii) there are no quantitative metrics, and (iii)
a common scale of perceptual measurement is lacking. The
subjects assert that scales based on the senses may also have
an effect on errors and variability for the following reasons:
Scales used in clinical and research settings are, at times,
not the best choice for measuring voice quality attributes;
when evaluating persons with laryngopharyngeal symptoms,
however, scales should not be used solely as a diagnostic
instrument, given that low positive and negative predictive
values for visual and auditory tests are seen when combined
with the laryngoscopic review [17]; several experiments have
shown that there are only modest correlations between instru-
mental tests (i.e., machine measurements of voice quality)
and perceptual ratings of voice quality (i.e., the listener’s
impression of voice quality) [18].When judges evaluate voice
content, they use several different kinds of voice stimuli,
including sustained vowels and running speech. Some claim
that running speech gives a more accurate and realistic repre-
sentation of natural speech than do continuous vowels [19].
External rating systems with predefined parameters are used
in order to decide whether or not a psychiatric speech con-
dition is present. A common scale, used by both Hirano [20]
and Cummings [21], is the GRBAS, according to Hammar-
berg [22]. This phonetic scales and vocabulary sets were
created and adopted in 1969 by the Committee for Tests
of Phonatory Functions of the Japan Society of Logopedics

and Phoniatrics. G, grade of dysphonia, R, roughness, B,
breathiness, A, asthenia, and S, strain make up the acronym
GRBAS. For the evaluation of parameters, values are graded
into four categories: 0, no deviations; 1, minor variations; 2,
mild variations; and 3, significant variations.

Various risk factors may trigger organic and functional lar-
ynx disorders that contribute to persistent voice loss (harmful
chemicals, neglect of hygienic requirements in jobs with high
voice tension, stress, etc.). Disabling the vocal folds to vibrate
correctly is one of manymodifications that may be carried out
in the larynx. Some speech conditions like partial paralysis
or total paralysis of the laryngeal muscles, as well as tumors,
are causes of these improvements. Hoarseness of the voice or
speech is the consequence of voice pathology. Changes in the
voice may be caused by any one of the following: A decrease
in vocal capacity, an increase in vocal tone, an increase in
noise or wind in the original voice, a widening of the vocal
spectrum (or an increase in low-frequency level), etc. Any
of these indications (symptoms) can be present depending
on the form of the voice condition. There are several testing
facilities worldwide whose aim is to create diagnostic support
approaches that are focused on acoustic voice analysis [23].

Using complex neuronal representations, Hadjitodirov
et al. [24] studied larynx pathology identification. Their new
solution is expected to lead to a significant improvement in
the diagnosis of laryngeal disease and, thus, to the elimination
of the most common mistake in classifying patients with
laryngeal disorders as regular speakers. Probability density
functions (PDFs) for the input vectors for regular and patho-
logical topics are used as the foundation of their method,
which is called probability distribution map (PDM). Using
a template PDM, the PDF of uncertain regular or abnormal
topics was also modeled. It was done using a formula derived
from unique comparisons, instead of by simply comparing a
threshold with any sort of distance/similarity. In their stud-
ies, they enhanced the precision of the classification and
provided a tool for screening laryngeal pathologies in their
paper. Speech analysis methods using nonlinear processing
have been proposed and thoroughly tested. The strategies
for obtaining voice parameters for speech analysis have been
committed. This research demonstrates that the extraction of
the first formant AM (amplitude modulation) characteristics
are possible during pre and post clinical voice therapy, and
analyzed using this algorithm. In this study, the authors state
that the extracted function can be linked to safe and patholog-
ical patterns of vocal fold vibratory movement.

Many methods have been used in the area of auto-
mated voice pathology identification and classification,
and we found that similar nonlinear methods were often
employed. Due to its failure to work with nonlinearities,
this process does not accurately depict machine nonlineari-
ties. These authors [23] analyzed some parameters and the
effects of these parameters on function regularity estimation.
Additional methods that were used to estimate parameters
included the baseline value of 1, which is used in sev-
eral methods that use the auto mutual information criterion;
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and using a parameter that was calculated from the embed-
ding window. Other experiments have shown that nonlinear
dynamic regression can be used to examine conventional evi-
dence from both healthy and dysphonic pediatric populations.
Additionally, it was discovered that perturbation methods
such as jitter analysis can be used to determine the number
dysphonic populations, such as infants. An alternate approach
to studying pseudo periodic signals using a dynamic network
methodology that featured a network-based transformation
was shown. Novel methods that could be useful for patho-
logical evaluation were suggested to aid in distinguishing
mild and pathological topics. A new methodology to remove
features was introduced in [25], in which dynamic networks
were referred to as new concepts. This approach demonstrates
a graphical way of visually distinguishing healthy individuals
from those who are experiencing obesity.

In reference [26], voice samples in compressed MP3 for-
mat and other various binary rates (160, 96, 64, 48, 24,
and 8 kb/s) were used. This study attempted to define the
spoken signal using the Gaussian mixture model (GMM)
and support vector machine (SVM) as classifiers. Accord-
ing to Wang et al. [27], mel-frequency cepstral coeffi-
cients (MFCCs) have an influence on classification, and other
approaches (e.g., GMM) may help to boost classification
accuracy. The study compared the GMM classifier and the
SVM with the GMM classifier to see whether they could
identify speech abnormalities. The phonation of sustained
vowels was tested, and they discovered that a result of 96.1%
was possible. In their research, Jang et al. [28] compared
many different designed pitch detection algorithms (PDAs)
on 99 patients with vocal fold polyps, cysts, and nodules.
The research authors then determined that PDAs were ade-
quate. They noticed that when the vocal subject had a higher
level of chaotic and aperiodic voice, they saw an increase
in the number of pitch mistakes. Another study conducted
by Gomez-Velda et al. [29] showed how they employed
biomechanical measurements as characteristics. This feature
was obtained from a sample of vocal sounds and could esti-
mate vocal fold displacement noninvasively. Their research
subjects were 52 patients who suffered from polyps, nodules,
persistent laryngitis, and Reinke’s edema as a result of vocal
fold polyp surgery.

In a recent study [30], Vasilakis and Stylianou studied
how tiny temporal gaps (or jitter) could be utilized to diag-
nose vocal disease. Eadie and Doyle [10] used both acoustic
and auditory perception measurements in classifying dys-
phonic voices. Overall voice severity was 48%, whereas
dysphonic voice speakers were considered perceptually to
have a rating of 40%. The authors used a logistic regression
analysis to assess the categorization performance of both
auditory-perceptual measurements and acoustic measure-
ments. With these steps, they were able to achieve the correct
categorization of objects with respect to their acoustic prop-
erties, while also considering how the items were seen. When
both acoustic and auditory-perceptual data were merged,
the accuracy of categorization was enhanced to 100 percent.

Many patients with dysphonia come to a physician’s
office. Various pathological situations ranging from func-
tional issues to malignancy may induce vocal abnormalities,
as defined by the category of vocal disorders that includes
dysphonia. More common among those who use their voices
professionally [31]. A detrimental effect on the quality of
life, and hence on economic output, may be caused by this
condition. Benign lesions of the vocal folds are a significant
contributor to dysphonia, and their source is widely character-
ized according to the tissue layer they originate in and their
anatomic location. While benign vocal fold lesions include
vocal fold polyps, nodules, and cysts, certain lesions are
classed as benign vocal fold lesions as well. Males are more
likely to have vocal fold polyps, and vocal fold polyps arise
almost exclusively on one side of the vocal fold mucosa.Most
of the time, they happen because of some kind of vocal abuse.
Polyps result in excessive air stimulation via the process of
phonation, and this happens because the condition mostly
involves early vocal fatigue, such as frequent voice breaks in
singers, and severe dysphonia.

Detecting and classifying speech pathology has the poten-
tial to expedite the treatment process and link the medical and
IT domains [32], [33]. Voice pathology evaluation cannot be
trusted because it varies according to experience and com-
petence. Either an automated system for speech pathology
detection and classification may be suboptimal if it is not
properly built, or suboptimal design may lead to VPD and
classification failure [34].

Dysphonia, that is, disordered speech, has been included
in the examination and therapy of the human voice because
it is an energetic component in clinical voice evaluations and
treatments. The method of perceptual and acoustic measure-
ment is combined with an endoscopic examination of the
larynx and voice folds in order to comprehensively evaluate
dysphonia. The exam incorporates several evaluation scales,
such as a CAPE-V and the GRBAS, which evaluates the over-
all level of dysphonia, the degree of roughness, breathability,
asthenia, and strain. Clinical applications of these procedures,
however, may be limited because of the subjectivity of the
assessment. Such restrictions may include the clinician’s
expertise, the degree of dysphonia in the patient, the kind
of auditory perception scale and the incentive or speaking
function. Researchers and physicians have created a new way
to assess the amount of dysphonia a patient has by evaluat-
ing their voice using an acoustic analysis. Acoustic analysis
yields a numerical number that characterizes the severity
of the disease, informs patients about their conditions, and
offers therapy and follow-up. In an acoustic analysis, many
voice physicians employ sustained vowel samples instead of
continuous speech samples for their patients [35].

Various kinds of characteristics, such as long-term and
short-term signal analysis, may be used to produce automatic
speech pathology identification and categorization. Acoustic
analysis may be used to obtain long-term parameters. The
short-term parameters are separated into two groups: para-
metric features and non-parametric characteristics [which are
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also referred to as parametric features and non-parametric
features, respectively]. LPC (linear predictive coding)-based
cepstrum (LPCC) and LPC-based parametric character-
istics depict the resonant structure of the human vocal
cords. Mel-frequency cepstral analysis (MFCC) [36] cre-
ates nonparametric characteristics that are similar to the
human auditory system. The HMM (hidden Markov model),
GMM, vector quantization (VQ), SVM, MLP (multilayer
perceptron), NN (neural networks), KNNs (k-means nearest
neighbors), LDA (linear discriminant analysis), and LVQ
(learning VQ) are used to detect and classify voice disorders.
There are several methods in which one may report different
parameters. The parameters may be reported as correctly
accepted, which means that a pathology has been found,
correctly rejected (ii), which means that no pathology has
been found, falsely accepted (iii), whichmeans that pathology
has not been found, and falsely rejected (iv), which means
that pathology has really been found. The results of the
automated pathology identification system were previously
published in [37]. There were many early studies, and all
of them found that long-term acoustic characteristics could
detect vocal diseases. However, calculating the fundamen-
tal frequency was quite difficult for abnormal voices. This
technique is useful for differentiating voice pathologies and
distinguishing them from the normal state because of sev-
eral long-term acoustic features, namely, pitch, shimmer,
jitter, APQ (amplitude perturbation quotient), PPQ (pitch
perturbation quotient), HNR (harmonic to noise ratio), NNE
(normalized noise energy), VTI (voice turbulence index), SPI
(soft phonation index), FATR (frequency amplitude tremor),
and the glottal to noise excitation ratio (GNE), which are
often used in published studies [38]. The vocal fold vibration
characteristics, namely jitter, and shimmer, may be used to
diagnose both diseased and healthy persons. Both parameters
are used in clinical and scientific studies. The aforementioned
seven acoustic characteristics, including shimmer and jitter,
were recovered using an iterative residual signal estimator
developed by Rosa et al. [39], and jitter supplied over half of
the total pathology diagnosis accuracy (54.8 percent) when
used for the detection of 21 diseases.

Classifiers KNN and SVM were employed in [40] to iden-
tify two kinds of characteristics, LPC and MFCC, and the
classifiers determined that these characteristics fell into three
categories. The included samples were representative of the
private database’s sustained vowel /a/. The spoken samples
were categorized as healthy, nodular, and diffuse in this
database, whichwas generated at theDepartment ofMedicine
in Lithuania. Accuracy was 67.31% for LPC and 73.08% for
MFCC in this study. In [41], a speech pathology detection
system was built in which several different tests were done on
a sample of speech data from the Massachusetts Eye & Ear
Infirmary (MEEI) database. Two distinct kinds of characteris-
tics,MDVP (multidimensional voice parameters) andMFCC,
which represented input into various modeling algorithms,
were derived from the MEEI database by employing the sus-
tained vowel /a/. Using only the prolonged vowel /a/ to learn

about dysphonic and normal voices, the researchers identi-
fied MFCC parameters. Different classifiers, such as HMMs,
GMMs, SVMs, and ANNs, were all used in this research
to identify abnormal voices. Recorded sounds for several
vocal illnesses were included in this database, including
polyps, palsy, laryngitis, glottis cancer, nodules, and cysts.
Using the GMM, the accuracy attained was 95.2%. Extracted
from the MEEI database, the LPC characteristics in [42]
included the sustained vowel /a/. These examples illustrated
several types of voice diseases and normal voices, such as
those mentioned above: (i) samples from vocal fold edema,
(ii) samples from vocal fold paralysis, and (iii) samples from
normal cases. This study tested two classifiers: the KNN and
the NN.

Some methodological concerns that surrounded the sys-
tem’s implementation are discussed in [43]. The relevance
of having a consistent database for comparing systems or
characteristics was noted in [44] by Campbell and Reynolds.
There was a significant improvement in voice recognition
because of the use of standard speech corpora for testing and
development. By comparing speech corpora, researchers can
identify which approaches are more accurate and efficient to
use. A study of the literature found that voice pathologies
are created to determine whether or not the patient is normal
or abnormal by the patient’s ongoing vowels, namely the
vowel /a/. This is usually the case, with most research using
a single set of characteristics, and just a few systems using a
wide range of characteristics.

Recently, many VPD systems that use deep learning have
been developed. Themain advantage of using deep learning is
that it does not require the extraction of hand-crafted features.
In [13], Pavol et al. suggested the use of a deep neural network
(DNN) to identify voice pathology. A bidirectional long and
short-term memory recurrent neural network (BLSTM) was
trained on the glottal pulse waveform features. To overcome
the challenges of dysarthria detection and speech recon-
struction, Daniel et al. [46] applied a multi-task learning
technology training model. While the annotation data that
is presently available is minimal, simulated data were used
together with actual data in order to increase the model’s
resilience.

The design of many state-of-the-art procedures is built
upon classifying sound signals, which are affected by things
like age, sex, and emotional state. Because dysarthria has a
harsh, low-pitched sound, it is particularly difficult to classify.
Instead of only mentioning speech phonological features,
a more precise explanation should be presented frommultiple
aspects. Cases where lesions arise on the vocal cords may
show two characteristics: the voice may become hoarse, and
the vocal cords may not vibrate regularly. The voice’s status
is reported via the sound signal. This is critical for locating
the vocal cord vibration information because the process of
EGG signal production represents the change in the contact
surface during vocal cord movement.

To arrive at their findings, the study by Wu et al. [47]
classified voice pathology identification as an image
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classification issue and used frequency domain transforma-
tions on time-domain sound data. This model was based on
a short-time Fourier transform (STFT) approach and a CNN
network, which consisted of ten convolutional layers with a
filter size of 8 × 8.

This does not mean that no data is available, but it does
mean that there are presently a limited number of data sets
available, and the adoption of ML algorithms may easily lead
to overfitting or underfitting. One group of academics is look-
ing at transfer learning mechanisms as a possible solution.
In addition, Mohammed et al. [48] used transfer learning
to create a ResNet34 network that analyzed various sound
waves that were processed using STFT and a band-pass filter
bank, and they used this data as the input to a CNN network.
The resulting accuracy is 95.41%. Using STFT and Mel
filters, Guedes et al. [49] produced Mel-spectrograms from
audio sources. Feature extraction was then done using a VGG
network, which was previously utilized for transfer learning.
The LSTM ultimately distinguished between pathological
and nonpathological vocals, whereas the one-dimensional
CNN recognized pathological vocals.

There are some recent deep learning-based pathology
detection methods in the literature. In [50] and [51], cloud
computing and 5G communications were used to detect
pathology. 1D and 2D convolutions were used to extract fea-
tures from electroencephalogram (EEG) signals for pathol-
ogy detection in [52].

IV. PROPOSED VPD SYSTEM
In this paper, we propose a VPD system within a smart
healthcare framework. The smart healthcare framework con-
sists of several elements: IoTs, deep learning, edge and
cloud computing, and 5G communications. Fig. 3 shows
such a smart healthcare framework, which is used for the
VPD. In the framework, IoTs such as microphones and EGG
devices are used to capture the intended signals from the
person. These signals are transferred to edge computing for
preprocessing, such as for extracting spectrograms. Then, the
spectrograms are transferred to cloud computing, where there
are AI/ML/deep learning servers and storage. The decision is
then conveyed to the stakeholders and the client via 5G.

A. VPD SYSTEM
Fig. 4 shows the proposed VPD system using two modal-
ities: voice signals and EGG signals. The signals are pro-
cessed separately and are fused at a later stage (after the
CNN). The microphone captures the voice signal, while
an EGG device captures the EGG signal. EGG device is
put around the vocal folds. Spectrograms are obtained from
these signals using the following consecutive modules: bias
removal, short-time framing (30 ms frames with 10 ms over-
lapping), hamming windowing, and STFT. For the investi-
gation, we also use a Mel-spectrogram, which is obtained
by applying Mel scale-spaced band-pass filtering (36 Mel
filters). High-order harmonic distortion in the spectrogram
is reduced by pre-processing the voice sample before STFT.

FIGURE 3. Smart healthcare framework for the VPD system.

Feature mapping data is reduced when sampling is performed
at a frequency of 16 kHz, as doing so decreases the quantity of
data for training, making the process faster. In order to boost
the high-frequency resolution of the speech, pre-emphasis is
applied to the frame.

The spectrograms are fed into a pre-trained CNN model.
In the experiments, we used ResNet50 [53], Xception [54],
and MobileNet [55]. The pre-trained models are used to train
the system quickly because we do not have a large number
of samples. Table 1 shows the general information for these
three CNN models. MobileNet has much fewer parameters
than ResNet50 and ResNet50, and can, therefore, be used in
real-time applications. However, due to the rapid increase in
processing speed, a CNN with a large number of parameters
can also be used for fast processing. ResNet50 andMobileNet
have an input size of 224 × 224, while Xception has an input
size of 299 × 299. Based on the input size, the spectrograms
and the Mel-spectrograms are resized accordingly.

Fig. 5 shows examples of (top row) a voice signal and
an EGG signal of a healthy person, (middle row) corre-
sponding spectrograms, and (bottom row) corresponding
Mel-spectrograms.

LSTM units [39] make up the LSTM model. Input, forget,
and output are the three gates that regulate the LSTM unit.
Current time data and concealed historical time data flow
through the LSTM gates. Three completely linked layers
using the sigmoid function compute the values of the input,
forget, and output gates. An LSTM layermay be created using
stacked LSTM units. Either bidirectional or unidirectional
LSTM may be formed from these LSTM layers.

Two layers operate in the forward and backward time
directions about each other in a bidirectional LSTM (BiL-
STM). Time-dependent relationships may be learned using
these successive layers. Each BiLSTM layer has 256 stacked
LSTM blocks. Softmax is used in the final BiLSTM layer to
classify the embedded patterns. We first train the CNNmodel
to extract the features, and then we freeze it to preserve the
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FIGURE 4. Proposed system architecture: a) a diagram of the proposed microphone and environment
classification system from audio; b) the deep neural network architecture using CRNN.

TABLE 1. Pre-trained CNN model information.

retrieved features and feed them to the BiLSTM model for
temporal feature extraction.

In the proposed system, a dropout of 50% is applied before
the fully connected layer. Cross-entropy is used as the loss
function.

B. DATABASE
The SVD database [16] is extensively used in speech pathol-
ogy detection research, which comprises voice recordings of
more than 2000 persons and 71 different voice pathologies.
To train, test, and validate the system, the sustained vowel
/a/ voice signal and EGG signals were employed. For each
training sample, there were 842 groups; there were 791 patho-
logical groups, which is comparable to 60% of the overall
sample; for each verification sample, there were 281 healthy
groups, which was equal to 20% of the whole sample. In the
experiments, we used samples of speakers in the age group
from 15 years to 60 years.

V. EXPERIMENTS
Several experiments were carried out to validate the pro-
posed VPD system. The proposed system was com-
pared with other related systems in the literature. The
four performance metrics accuracy, recall, precision, and
F1-score were used to measure the effectiveness of various
systems.

Accuracy is the percentage of all samples that were cor-
rectly predicted to have been included in the set. Precision
rate is a measurement that reflects the ability of the model to
accurately detect negative samples. Recall rate is the percent-

age of positive test results that are expected to be positive.
What this means is that greater recall shows that the model
is better at recognizing positive samples, which is extremely
important when conducting an experiment. A higher F1 score
suggests stronger categorization abilities.

To optimize the parameters of the model, an Adam opti-
mizer was used. The learning rate was 10−4, the batch size
was 32, and the number of training epochs was 200. The
optimization method used an Adam optimizer, where the
learning rate was 10−4, the batch size was 32, and the number
of training epochs was 100.

A. ACCURACY AND LOSS CURVES OF THE MODEL
Fig. 6 and Fig. 7 show the accuracy curve and the loss curve,
respectively, of themodel in the proposed system. In this case,
Xception was used as the CNN model.

B. AREA UNDER THE RECEIVER OPERATING
CHARACTERISTIC (ROC) CURVE (AUC)
Fig. 8 shows the ROC curve of the proposed system using
the Xception and BiLSTM models. The AUC was 0.998.
The 95% confidence interval was [0.987 0.998], showing
the implications of the data in the two classes (normal and
pathological).

C. PERFORMANCE OF THE PROPOSED SYSTEM
Table 2 shows the values of the performance metrics for the
proposed system. We compared performance between the
single modality with voice, the single modality with EGG,
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FIGURE 5. Examples of voice signal and EGG signal, and their corresponding spectrograms and Mel-spectrograms.

and the bi-modality (the proposed system). From the table,
we see that the proposed system performed better than the
single modality. Therefore, the fusion of voice and EGG

signals improved the performance of the VPD system. The
performance reported in Table 2was obtained using theXcep-
tion model.
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TABLE 2. Performance of the proposed system. The numbers are
percentages.

FIGURE 6. Accuracy curve of the model in the proposed system.

FIGURE 7. Loss curve of the model in the proposed system.

We investigated three different pre-trained CNN models
in the proposed system. Fig. 9 shows the accuracy of the
system using these CNNmodels. From the figure, we see that
Xception performed better than the other two. It can be noted
that though MobileNet used fewer parameters than the other
two, it did not perform poorly.

We compared the proposed system with other related sys-
tems using the same database. It can be noted that we seldom
found the fusion of voice and EGG signals in the literature.
Table 3 shows the accuracy comparison of various systems.
From the table, we see that the proposed system outperformed
all other compared systems.

There are many other AI and IoT-based smart healthcare
systems [57]; however, the application of VPD in smart
healthcare is limited in the literature. As teachers are greatly

FIGURE 8. ROC curve of the proposed system.

FIGURE 9. Accuracy of the system using three different pre-trained CNN
models.

TABLE 3. Comparison of accuracies (%) of different systems.

affected by voice pathology, a smart class environment could
integrate a VPD system for sustainable teaching [58].

VI. CONCLUSION
This work proposed a pathological voice detection method
based on bimodal input. The method takes the voice signal
and EGG signal as inputs. The proposed VPD system extracts
spectrograms from the signals and feeds them to a CNN
model. Later, the extracted features from the two modalities
are fused and fed to the BiLSTM model. The experimental
results showed that the proposed system achieved greater
than 95% accuracy, precision, and recall. The system also
outperformed other related systems. It was demonstrated that
bimodal inputs were better than single inputs.

As future work, we will investigate the effect of signal
transmission over a network in the VPD system. In addition,
we may use attention mechanism in deep learning to improve
the performance of the system.
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