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ABSTRACT With the rapid development of AI techniques, Computer-aided Diagnosis has attracted much
attention and has been successfully deployed in many applications of health care and medical diagnosis.
For some specific tasks, the learning-based system can compare with or even outperform human experts’
performance. The impressive performance owes to the excellent expressiveness and scalability of the neural
networks, although themodels’ intuition usually cannot be represented explicitly. Interpretability is, however,
very important, even the same as the diagnosis precision, for computer-aided diagnosis. To fill this gap, our
approach is intuitive to detect pneumonia interpretably. We first build a large dataset of community-acquired
pneumonia consisting of 35389 cases (distinguished from nosocomial pneumonia) based on actual medical
records. Second, we train a prediction model with the chest X-ray images in our dataset, capable of
precisely detecting pneumonia. Third, we propose an intuitive approach to combine neural networks with
an explainable model such as the Bayesian Network. The experiment result shows that our proposal further
improves the performance by using multi-source data and provides intuitive explanations for the diagnosis
results.

INDEX TERMS Pneumonia, computer-aided diagnosis, medical image analysis, interpretive
medical-assisted diagnosis, large-scale annotated X-ray image dataset.

I. INTRODUCTION
Pneumonia is a respiratory infection caused by bacteria,
viruses, or fungi, and it has been known as a quite common
and potentially fatal disease in the past two centuries. The
incidence rate of Pneumonia is quite high in the extreme-age
group. Around 450million people (or about 7% of the world’s
population) were diagnosed with pneumonia each year; and
about 4 million deaths were reported [1]. The diagnoses of
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pneumonia usually start with examinations of chest X-ray
images by well-trained specialists [2]. Preliminary results
are then written into examination reports and submitted to
clinicians. The final conclusions are given by the clini-
cians according to the analysis on the reports and some
clinical symptoms. This process is usually cumbersome and
sometimes leads to disagreements between clinicians [3].
Moreover, the signs and symptoms of pneumonia vary on
different causes, patients and other factors, and the condi-
tions of the disease usually change rapidly, which makes the
pneumonia detection complicated. Existing computer-aided
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FIGURE 1. An overview of the framework.

diagnosis systems for pneumonia usually take chest X-ray
images, Computed Tomographies (CT), or Magnetic Reso-
nance Images (MRI) as input [4]. But practically, in a real
diagnosis procedure, a human physician uses not merely
these images, but also some observable clinical features as
criteria. Symptoms such as fever, cough, and chest pain are
also very crucial to detect the disease. Motivated by the
diagnosis process of human experts, we combine the clinical
observation with the medical images. We propose a model
named MulNet in this paper, which uses 7 typical symptoms
and the chest X-ray images as input for pneumonia detection,
as shown in Figure 1. The results show that, the combination
of deep learning and Bayesian Network can improve the
performance, as well as the interpretability of the system.

Bayesian Network structure construction methods are
divided into a scoring-based method and a constraint-based
method [5]. The score-based method selects the structure
with the highest score as the best Bayesian Network structure
from the sampled structure according to the scoring criteria
(such as K2 [6], BIC [7]). However, this method ignores the
relationship between the result node and the factor nodes.
So we propose a constraint-based algorithm that combines
medical knowledge to build a reasonable Bayesian Network
structure.

To be specific, we first build a large dataset of
community-acquired pneumonia (distinguished from noso-
comial pneumonia) based on real medical records consisting
of 35389 cases. Second, we train a prediction model with
chest X-ray images and reports, which is capable of precisely
detect pneumonia. Third, we propose an intuitive approach
to combine neural networks with Bayesian Network, which

provides intuitive explanations for the diagnosis results. The
experiment result shows that our proposal not only further
improves the performance by using multi-source data, but
also provides intuitive explanations for the diagnosis results.

To summarize, the main contributions of this work are as
follows:

1) We establish a large data set for pneumonia detection,
which contains 35389 cases (section III).

2) We propose an intuitive method to integrate multi-
source data such as chest X-ray images and clini-
cal reports in natural language to predict pneumonia
(section V).

3) We propose an approach to combine medical knowl-
edge with a Bayesian Network, which constructs a
reasonable Bayesian Network structure and improves
pneumonia detection’s interpretability (section V).

We believe that our proposal is general enough to be used in
other predictionmodels by fine-tuning, and is straightforward
to be extended by using other explainable models such as
Situation Calculus, Nonmonotonic Logics, Latent Trees, etc.

II. RELATED WORK
A. THE DATASETS OF PNEUMONIA
Initially, [8]–[10] proposed the non-large-scale labeled
datasets (under 2000 samples). It is challenging to train a
meaningful model with deep learning by the initial dataset.
In recent works, [2] build a hospital-scale chest X-Ray
database called ChestX-ray8, which contains 32717 cases
with eight common thoracic diseases. Later in 2017, [11]
used DenseNet Image Encoder to classify pneumonia with
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AUC of 0.713. [12] developed CheXnet with 121 con-
volutional layers and yielded AUC 0.7680 in pneumonia
prediction. Significantly, CheXpert [13] is a large dataset
with 224316 samples chest radiographs from 65240 patients.
However, the number of pneumonia cases in CheXpert is
insufficient because its pneumonia cases are lower than
5000. Mendeley Dataset [14] with 5232 chest X-ray images
(3883 pneumonia and 1349 normal) was collected from a
Children’smedical center in Guangzhou, China. Chest X-Ray
Images Pneumonia [15] is a part of Mendeley and Cohen JP
Dataset [15], authority prepared the dataset by checking and
screening raw images to ensure quality. Our dataset contains
a total of 44327 chest X-ray images, far more than other
datasets. All other pneumonia datasets are from physical
examination records, and our dataset is from the actual med-
ical records in outpatient and inpatient. Therefore, there are
two types of chest X-ray images in other datasets: pneumonia
and normal, but our dataset includes pneumonia and other
diseases. The classification of pneumonia and other diseases
is more practical and more challenging clinically.

B. THE PNEUMONIA DIAGNOSIS MODELS
Few studies used multimodal medical datasets influenced
by [16]. Most models are based on a CNN-RNN framework
to achieve transforming image information into semantic
information. Obviously, [17]–[19] are dedicated to generat-
ing medical reports through medical imaging. As a result,
the transformed semantic information is a co-attention model
with image information [20]. On the other hand, integrating
reports with medical images is used to improve the abil-
ity of disease diagnosis [21], [22]. Likewise, [23] trained
a small-scale image dataset to diagnose diseases. Still, its
results compared using only reports and using only images
with increased accuracy of 4% and 7%. Nevertheless, it is not
efficient enough on large-scale datasets. Recently, a method
was proposed to screen features using CNN and machine
learning, which worked well for feature extraction but did
not use features to diagnose pneumonia [24]. [25] auto-
matic binary classification of pneumonia images based on
fined-tuned versions of CNN. [26] and [27] proposed using
CNN and transfer learning to diagnose pneumonia, but Ima-
geNet [28] is generally used to train pre-trainedmodels. How-
ever, these pneumonia classification models only use chest
X-ray images to diagnose pneumonia, ignoring the impact of
clinical symptoms.

C. THE EXPLAINABLE MODELS
Due to the successful application of deep learning on images
such as face recognition [29], the 3D face-alignment method
[30], which can run on a CPU in real-time, is used in human
life. CAD uses deep learning to improve the accuracy of
diagnosis. An effective CAD system for all cell identity
from microscopic blood images was recently proposed [31],
which first extracts all categories of cells and then extracts
each cell’s characteristics. But the current CAD system lacks
interpretability.

Gradient-weighted Class Activation Mappings (Grad
CAMs) is widely practiced in current medical interpreta-
tions [32]. To achieve an explanatory model for disease diag-
nosis, [2], [33] implemented Grad CAMs through images
that can display the concerning location. Besides, the latent
tree has obtained excellent results in the interpretability of
Chinese medicine, which deployed data-driven methods and
provided a theoretical foundation for the disease classifica-
tion [34]–[36]. The two explainable approaches mentioned
above differ from the explanatory nature of our proposal.
The formers utilized only images as a competent diagnosis of
multiple diseases, and the latter only classified the division of
diseases.

III. DATA PREPARATION
We propose a systematic method to create the pneumo-
nia dataset: first, pneumonia can be categorized into CAP
(community-acquired pneumonia) and HAP (nosocomial
pneumonia). In this work, we mainly focus on CAP, which
is acquired in the community; therefore, we merely selected
pneumonia cases from the respiratory medicine department
and pediatric department. Then, we select pneumonia cases
based on the ICD-10 [37] code in the records. In the elec-
tronic medical records collection process, the coding staff
codes the diseases according to the doctor’s reports and diag-
nosis results. Pneumonia is a broad concept. For example,
the ICD-10 code of Haemophilus influenzae pneumonia is
J14, and the ICD-10 code of streptococcal pneumonia is J13.
Finally, we select the codes J12 to J18 (including J12 and J18)
as the pneumonia codes. 35389 cases in the dataset were per-
formed both inpatient and outpatient between October 2017
and January 2020. Some cases of pneumonia also have other
diseases; similarly, most cases without pneumonia have other
diseases. To build a model that can be applied to more
patients, the dataset is created from patients with many age
groups, including cases of the elderly and children. Consider-
ing the difference in the diagnosis of patients with long-term
pneumonia, we only use the first record.

Community-acquired pneumonia (CAP) is a common dis-
ease with potential life risk, especially in the elderly and
patients with comorbidities [38]. The clinical diagnosis of
CAP includes three phases: 1) community onset; 2) Clinical
manifestations of pneumonia; 3) chest imaging examination.
Clinical diagnosis can be established after meeting only 1),
2) or 3) excluding other diseases, such as tuberculosis and
lung tumor. Therefore, in the process of diagnosing CAP,
clinical manifestations are significant. The potential rela-
tionship between various clinical manifestations can provide
a more reliable basis for Computer-Aided Diagnosis. The
7 indicators, 1) cough, 2) hemoptysis, 3) chest pain, 4) fever,
5) dyspnea, 6) wet rales, and 7) dry rales, are described by
the pneumonia diagnosis through the Internal Medicine as
Figure 2.

We extracted the required clinical manifestations from
the reports and made valid tags of each report resulting in
Training-BN, as shown in Figure 2. According to pneumonia
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TABLE 1. Summary statistics of training and test datasets.

FIGURE 2. The output of some basic textual processing when run on a
report sampled from our dataset. In this case, the labeler correctly
extracts all of the clinical manifestations in the report (bold) and
classifies the positive ones and negative ones.

diagnosis, it is acknowledged that cough, hemoptysis, chest
pain, fever, dyspnea, wet rales, and dry rales are essential
criteria. So, we extract clinical manifestations related to
cough, hemoptysis, chest pain, fever, dyspnea from the chief
complaint, and wet rales and dry rales from the physical
examination. We set the corresponding binary bit to ‘‘1’’ if
the patient developed any one of the symptoms. For example,
tag ‘‘1001001’’ identified that the patient developed a cough,
fever, dry rales, and no other symptoms. We designed some
basic textual processing to extract clinical manifestations
from the chief complaint and physical examination. Taking
‘‘fever’’ as an example: first, we observed that the doctors
generally use the words either ‘‘fever’’ or ‘‘no fever’’ to
record whether the patient catches a fever. Then, we split the
chief complaint by each Chinese punctuations like ‘‘, ’’ and
‘‘;.’’ Then, we extracted the sentences containing ‘‘heat.’’ If
the keyword in a sentence is ‘‘heat,’’; the bit is marked as
‘‘1’’ (the word ‘‘heat’’ is also means ‘‘fever’’ in Chinese.)
Moreover, considering that some doctors might have their
expression style, we manually reviewed each sentence con-
taining ‘‘heat’’ and corrected the tag if ‘‘heat’’ was found.

IV. DATA SPLITTING
We divide the dataset with X-ray images and electronic med-
ical records into three parts: 1) CNN training set (Training-
CNN), 2) Bayesian Network training set (Training-BN), and
3) test sets. Examples of chest X-ray images are shown
in Figure 3, the left side of the figure is a chest X-ray image

FIGURE 3. Examples of chest X-ray images.

of a patient suffering from pneumonia, with patchy shadows
in the red box, and the right side of the figure is a normal
person’s chest X-ray image.

Similar to CheXpert, the CNN Training set consists
of chest X-ray images and their corresponding tags.
In CheXpert, an image owns not only the tag of pneumonia,
but also the tags of other 13 lung diseases, otherwise than,
the images in CNN Training Set correspond to tags merely
of pneumonia. The CNN training set is further divided into
three for multiple training rounds. After training, the CNN
model takes X-ray images as input and gives diagnosis result,
which is either positive or negative. The result can be further
associated with the data as a label for Bayesian Network
training. Here are two types of test sets: 1) Test-CNN and
2) Test-BN. Test-CNN and Test-BN had the same chest X-ray
images, but Test-BN contained not only the chest X-ray
images but also the corresponding reports adding each chest
X-ray image. Inevitably, Training-CNN and Training-BN
have non-overlapping data. See Table 1 for the descrip-
tion details of Training-CNN, Training-BN, Test-CNN, and
Test-BN.

Our test set are annotated by two respiratory special-
ists, in order to accurately label data within a limited time,
200 cases are randomly selected as the test set, and the propor-
tion of pneumonia in the test set is 50%.We created a website
showing the chest X-ray images and the admission record of
each case to assist physicians in annotating. In each case may
have frontal or lateral radiographs or both. We took the notes
from two physicians and the final diagnosis corresponding
to each case as the ground truth. If two physicians annotated
a case positive, it would be marked as positive; otherwise,
it would be negative.
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FIGURE 4. DenseNet with 3 layers.

V. THE PROPOSED APPROACH
A. IMAGE MODEL WITH CNN
The training process is divided into two steps. Firstly using
CheXpert dataset to train DenseNet121 as a pre-training
model, and secondly continue to train the pre-training
model on Train-CNN dataset, converting the probability into
0 or 1 as the output. The details are as follows:

CheXpert is a large chest X-ray image dataset, which
also contains pneumonia data. By CheXpert, we have
trained a well-performed pre-training model. We imple-
mented DenseNet121 [39] as our model. DenseNet proposes
a more radical dense connection mechanism than traditional
networks. All layers are connected; specifically, each layer
accepts all the layers ahead as its additional input. This con-
nection enhances the reuse of features and allows the final
classifier to make decisions based on all the characteristics of
the entire network, see Figure 4. The model input x0 is the
chest X-ray image owned by the case, and the model has a
total of l layers. Hl() is the non-linear transformation. [x0,
x1,.., xl−1] indicates the concatenation of the feature-maps
produced in each layer. xl represents the output of the model,
and Equation 1 shows the reuse of features for calculation xl.

xl = Hl([x0, x1, . . . , xl−1]) (1)

Chest X-ray images of pneumonia were fed into the net-
work with the size of 320× 320 pixels. The β-parameters of
Adam optimizer were set to default at β1 = 0.9, β2 = 0.999,
and the learning rate was 1× 104.
We trained a new model of pneumonia diagnosis from

the CheXpert data and our dataset. The AUC score on the
CheXpert’s validation set was 0.74. Then, we trained our
three batches to get the best CNN model.

We built a Training-CNN dataset to train the pre-training
model. In addition, we have adopted some data augmentation
technologies, in which each example was rotated randomly
between −25 and 25 degrees, shifted randomly between
−25 and 25 pixels, and flipped horizontally with 50% proba-
bility while in training. To took the CNNoutput as the input of
the Bayesian Network, we calculated the Youden’s index [40]

as the threshold to convert the probability value of the CNN
model output into 0 or 1.

B. MULNET
A pure connectionist approach can provide diagnostic results,
but it lacks interpretability and transparency. Therefore,
the model needs to be able to diagnose pneumonia and have
interpretability. We trained a Bayesian Network to diagnose
pneumonia, which was calledMulNet . As shown in Figure 6,
the training dataset we used is Training-BN, in which the
chest X-ray image is the input from the trained CNN model,
and the output of the model is 0 or 1. The clinical mani-
festations in the reports in Training-BN were extracted into
a 7-dimensional vector through the specific textual process-
ing. As a final input of MulNet , the 7-dimensional vector
and the CNN model’s binary output were contacted into an
8-dimensional vector.

In the construction of the Bayesian Network, we hope to
be able to combine medical knowledge. Cough, hemoptysis,
chest pain, fever, dyspnea, wet rales, and dry rales are essen-
tial factors in the diagnosis of pneumonia, and chest X-ray
image is also an essential part of the diagnosis of pneumonia,
so the classification model should be able to combine all
features to diagnose pneumonia.

So the Bayesian Network should be able to take
into account the following requirements: 1) a total of 9
nodes ‘‘cough’’, ‘‘hemoptysis’’, ‘‘chest_pain’’, ‘‘fever’’,
‘‘dyspnea’’, ‘‘wet_rales’’, ‘‘dry_rales’’, ‘‘pictures’’ and
‘‘pneumonia_or_not’’; 2) automatically extract the
dependencies between from the factor nodes ‘‘cough’’,
‘‘hemoptysis’’, ‘‘chest_pain’’, ‘‘fever’’, ‘‘dyspnea’’,
‘‘wet_rales’’, ‘‘dry_rales’’, ‘‘pictures’’ from data; 3) the
factor nodes are in the sameMarkov blanket as the result node
‘‘pneumonia_or_not’’, whichmeans that the factor nodes and
the result node are not independent; 4) the factor nodes all
point to the result node.

We propose an algorithm called MGS to construct the
Bayesian Network structure by improving the constraint-
based GS algorithm [5] shown in Algorithm 1.
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Algorithm 1 Grow-Shrink Algorithm With Medical Knowl-
edge (MGS)
Input: D: the training set.
Output: G: partially oriented DAG

/* Compute Markov Blankets */
1: For all X ∈ {V − V 0}, compute the Markov blanket

Mb(X )
2: Mb(V0) = {V − V 0}

/* Compute graph structure */
3: G← moral graph according toMb(·)
4: for each X ∈ V and Y ∈Mb(X ) do
5: B← smallest set of {Bd(X ) \ {Y } ,Bd(Y ) \ {X}}
6: for each S ⊆ B do
7: if CONDINDEP(X,Y,S) then

remove link X-Y from G;
8: break
9: end if
10: end for
11: end for

/* Orient edges */
12: for each X ∈ {V } and Y ∈ Bd(X ) do
13: for each Z ∈ Bd(X ) \ Bd(Y ) \ {Y } do
14: orient Y → X

/* to be corrected if a test yields independence */
15: B← smallest set of {Mb(Y ) \ {Z } ,Mb(Z ) \ {Y }}
16: for each S ⊆ B do
17: if CONDINDEP(Y,Z,B) and X ! = V0 then

remove orientation Y → Z;
18: break
19: end if
20: end for
21: if Y → X then

break
22: end if
23: end for
24: end for
25: return G

In this code, V0 stands for the result node, Mb(X ) stands
for the boundary of X , we note a conditional indepen-
dence test with a subroutine call CONDINDEP(X ,Y ,Z ):
ideally, this function returns true when (X⊥Y | Z )
holds, and false otherwise. The algorithm first computes the
Markov blanket for each factor nodes from data and then
defines the Markov blanket for the result node as all fac-
tor nodes (‘‘cough’’, ‘‘hemoptysis’’, ‘‘chest_pain’’, ‘‘fever’’,
‘‘dyspnea’’, ‘‘wet_rales’’, ‘‘dry_rales’’, ‘‘pictures’’). This
solves the problem that the result node and the factor nodes
are not in the same Markov blanket. Step 2 selects the
smallest base search set for each phase and performs further
conditional-independence tests around each variable to infer
the structure locally. Step 3 of the algorithm orients the
arcs whenever it finds that conditioning on a middle node
creates a dependencywithoutV0 (‘‘pneumonia_or_not’’) and
all nodes connected to V0 point to V0. According to this

FIGURE 5. Bayesian network structure.

algorithm, the Bayesian Network is constructed as shown
in Figure 5.

VI. IMPLEMENTATION & EVALUATION
A. MATRIC
In order to test the effectiveness and robustness of the binary
classification pneumonia model, the commonly medical stan-
dards are used to measure the performance of the model, that
is, recall, precision, F1-score and AUC (Area Under the ROC
Curve) [41].

The recall is defined as (2):

recall =
TP

TP+ FN
(2)

The precision is defined as (3):

precision =
TP

TP+ FP
(3)

The higher the recall, the lower the accuracy and vice versa
in most cases. F1-score is defined to take both recall and
precision into consideration (4):

F1 =
2 ∗ precision ∗ recall
precision+ recall

(4)

AUC is defined as the area under the ROC curve. Obvi-
ously, the value of this area will not be greater than 1. Because
the ROC curve is usually above the y = x line, the value
ranges of AUC are from 0.5 to 1. If the AUC is larger,
the classifier is better.

Two types of 95% confidence intervals are generally con-
structed around proportions: exact 95% confidence interval
and asymptotic. Because the sample proportion is a good
approximation of normal distribution, asymptotic confidence
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FIGURE 6. Training process.

interval is used to calculated by assuming a normal approxi-
mation of the sampling distribution.

B. TRAINING
The experimental environment was an Ubuntu Linux server
with Kaby Lake GT2 GPU. The CNN model was imple-
mented with PyTorch [42] (GPU and Ubuntu versions)
framework, and BN and DT had been implemented with
Scikit-learn [43] framework. The entire experimental process
was divided into six steps.
StepOne:we trained a pre-trainedmodel on CheXpert with

DenseNet, and the AUC of CheXpert’s validation was 0.74.
Step Two: we continued to train the pre-training model

with our X-ray image dataset, i.e., Training-CNN. To improve
the reliability of the experiment and to reduce the acciden-
tal error, we trained three times to obtain 3 CNN models,
which had an average AUC of 0.90. It increased by 0.16 per-
cent comparing to the previous test on the validation set of
CheXpert.
Step Three: we predicted our chest X-ray dataset of

Training-BN and Test-BN. We transformed the output of
trained CNN models from probability values to 0 or 1.
Step Four: a 7-dimensional vector is extracted from the

report dataset corresponding to the chest X-ray dataset,
i.e., the clinical manifestations in each report of the
Training-BN and Test-BN.
Step Five: label outputs from CNN was contacted with

each 7-dimensional vector extracted from the report. As a
result, there were 8-dimensional vectors.
Step Six: construct a Bayesian Network structure called

MulNet , then train and test MulNet . See Figure 6 for the
complete training process.

When training Bayesian Network, a 10-fold cross-
validation method is used to select the best parameters and
avoid over-fitting with the partitioning. First, the training set
is divided into ten parts, nine parts are used as the training
set, and the rest is used as the validation set. Then the training
was repeated ten times, and the AUC average was used as the
evaluation criterion to select the best model.

C. COMPARISON AND DISCUSSION OF STATISTICAL
MANIFESTATIONS
The Figure 7 shows the calibration curve of MulNet and
the estimated probabilities obtained with MulNet by both
Isotonic calibration [44] and Sigmoid calibration [45]. The
calibration performance is evaluated with Brier score [46],
reported in the legend (the smaller the better). Isotonic cali-
bration and Sigmoid calibration also improves the Brier score
slightly.

We selected three models for comparison, and they were
Support Vector Machine (SVM) with linear kernel, Random
Forest, Decision Tree (DT) respectively. Then use the 10-fold
cross-validation to select the best parameters and calculate the
averageAUC value for ten training sessions [47]. The average
AUC of MulNet is 0.86, the average of AUC of DT is 0.87,
the average of AUCof RandomForest is 0.86, and the average
of SVM is 0.77(we calculate the functional distance from the
sample point to the segmented hyperplane and then convert
the distance into a probability value).

As shown in Table 2, except that the precision of MulNet
is slightly lower than DT, the other are the highest. MulNet
achieves an AUC of 0.87(95% CI 0.82, 0.92), a precision
of 0.73(95% CI 0.65, 0.80), a recall of 0.94(95% CI 0.85,
0.98), and an F1-score of 0.82(95% CI 0.74, 0.88). Since the
features extracted from reports and chest X-ray images are
low-dimensional vectors, the AUC value of SVM can also
reach 0.79(95% CI 0.74, 0.84). Meanwhile, to evaluate the
statistical significance of the clinical information, we imple-
ment the paired t-tests (95% significance level) on regres-
sion performances of our model and the competing models.
In terms of classification capabilities, the performance gap
between Random Forest, DT, and MulNet is not obvious, but
MulNet has a greater advantage in interpretability.

D. INTERPRETATIVE VARIABLES OF MULNET
In addition to the ability to classify pneumonia accurately,
MulNet is more importantly explainable. Compared with
SVM, Random Forest and DT,MulNet shows the relationship
between different factor nodes. For any result of diagnosis,
the probability from root (result node) to leaf (factor nodes)
can be analyzed.

As shown in Figure 8, when fever symptoms occur, that
is, the probability of fever is 1, the Bayesian Network can
be used to predict the probability of ‘‘cough’’, ‘‘hemoptysis’’,
‘‘chest_pain’’, ‘‘fever’’, ‘‘dyspnea’’, ‘‘wet_rales’’,
‘‘dry_rales’’, ‘‘pictures’’, and ‘‘pneumonia_or_not’’ is 0.79,
0.01, 0.02, 0.01, 0.10, 0.15, 0.68, 0.55. By analyzing this
probability value, a fever patient is usually accompanied by
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TABLE 2. Classification performance of various methods, boldface denotes best performance.

FIGURE 7. Calibrate MulNet by isotonic and sigmoid, the value in brackets is brier score.

TABLE 3. The conditional probability table of the node ‘‘pictures’’,
t stands for true, f stands for false.

cough, and there is a high probability of abnormalities in the
chest X-ray images. More than half of the probability will be
pneumonia infection.

The Bayesian Network assigns a conditional probabil-
ity table (CPT) to each variable, and CPT is used to
explain the causality between nodes. We will display
and analyze the conditional probability table of some
nodes.

Table 3 shows the conditional probability table of the node
‘‘pictures’’. When fever symptoms occur, the possibility of
abnormalities in the chest X-ray images is the greatest, with
a probability of 0.69. However, the occurrence of chest pain,
on the contrary, reduces the possibility of abnormalities in
the chest X-ray images. When chest pain occurs, regardless
of whether fever symptoms occur, the possibility of abnor-
malities in the chest X-ray images is below 0.35, and the
probability that both symptoms do not occur similar. Med-
ically speaking, patients with pneumonia may be accompa-
nied by chest pain, but chest pain is more common in other

TABLE 4. Part of the conditional probability table of the node
‘‘pneumonia_or_not ’’.

diseases, and fever is a common symptom in patients with
pneumonia. The conditional probability table explains this
phenomenon.

Table 4 shows part of the conditional probability table of
the ‘‘pneumonia_or_not’’ node.When the patient has a fever,
the probability of suffering from pneumonia is 0.15. The
probability of pneumonia when the patient has a fever and
abnormalities in the chest X-ray images is 0.60. When the
patient not only has fever and abnormalities in the chest X-ray
images but also has chest pain, the probability of pneumonia
is 0.92. According to the conditional probability table, it can
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FIGURE 8. The model predicts the probability value of other nodes when
fever occurs.

FIGURE 9. Performance comparison of CNN models.

be inferred that when the patient has fever and abnormalities
in the chest X-ray images, there is more than half of the
probability of suffering from pneumonia. When the patient
has a fever, abnormalities in the chest X-ray images, and wet
rales, it is almost certain that the patient suffered pneumonia.

VII. DISCUSSION
A. PERFORMANCE COMPARISON OF CNN MODELS
In MulNet , the CNN model is an essential part used to learn
and analyze chest X-ray images. The CNN model chosen
in this paper is DenseNet121. Before choosing this model,
a variety of models were trained and tested on Test-CNN.
The comparison models we select are Inception-V4, ResNet,
Xception, and AlexNet. As shown in Figure 9, using AUC
and F1-score as indicators to evaluate the performance of the
model, DenseNet’s AUC and F1-score values are 0.829 and
0.759, respectively, which are the best in both indicators.
The experimental results demonstrate that the feature reuse

FIGURE 10. The AUC on the different types of data input.

FIGURE 11. Weight of each node in the DT.

technique, DenseNet121, is more suitable for learning chest
X-ray images.

B. THE IMPACT ON THE DIFFERENT TYPES OF DATA
INPUT
We trained DenseNet model to estimate the ‘‘pictures’’ node
values of the Bayesian Network by creating Training-BN and
Testing-BN.We respectively compared the AUC values of the
three different input models as shown in Figure 10: 1) The
AUC was 0.865 when MulNet integrates chest X-ray images
and the clinical the reports; 2) The AUC was 0.829 when
we took only chest X-ray images to diagnose via DenseNet;
3) When we took only the reports to diagnose pneumonia by
MulNet, the AUC is 0.801. It confirms that combining the two
different types of information to diagnose pneumonia has the
most substantial AUC value. Furthermore, the AUC of chest
X-ray images result is better than the report.

C. THE WEIGHTS OF DIFFERENT NODES IN THE DECISION
TREE
After the DT training, we could calculate the weight distribu-
tion of the different nodes in the DT. The results are presented
in Figure 11, which indicates that the ‘‘pictures’’ node takes
up the highest weight, exceeding 0.6. ‘‘cough,’’ ‘‘fever ,’’
‘‘wet_rales,’’ and ‘‘dry_rales’’ also had a large proportion
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of weight, but the weight of ‘‘hemoptysis,’’ ‘‘chest_pain,’’
and ‘‘dyspnea’’ were low. The medical manifestation and
the X-rays image are the most important for clinical diagno-
sis. Similarly, analyzing the condition from the chest X-ray
images or CT and then looking at essential symptoms such as
cough, fever, wet rales, and dry rales. Note that hemoptysis,
chest pain, and dyspnea are not typical symptoms in pneumo-
nia patients.

VIII. CONCLUSION
In this paper, we propose a multi-data and interpretive
medical-assisted diagnosis model for pneumonia, and we
have created a large-scale dataset of pneumonia diagnosis
annotated by respiratory specialists. Our model consists of
CNN and the Bayesian Network (BN) combined with two
types of data: 1) chest X-ray images and 2) medical reports.
Moreover, the model provides diagnostic explanatory infor-
mation giving that physicians can have a better understanding
of the diagnosis result. The results showed that our model
was better than just using only images or only reports. The
model works best when compared to a variety of baselines.
Next, we are working on to classify pneumonia deeper, such
as to determine whether it is bacteria, viruses, or fungi. In the
future, we may add a knowledge map as the input of the
model. We are constructing a large-scale knowledge graph
related to pneumonia, so that the classification ability of the
model will be further improved.

ACKNOWLEDGMENT
(Hao Ren, Aslan B. Wong, and Wanmin Lian contributed
equally to this work.)

REFERENCES
[1] O. Ruuskanen, E. Lahti, L. C. Jennings, and D. R. Murdoch, ‘‘Viral

pneumonia,’’ Lancet, vol. 377, no. 9773, pp. 1264–1275, 2011.
[2] X.Wang, Y. Peng, L. Lu, Z. Lu,M. Bagheri, and R.M. Summers, ‘‘ChestX-

ray8: Hospital-scale chest X-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017,
pp. 2097–2106.

[3] M. I. Neuman, E. Y. Lee, S. Bixby, S. Diperna, J. Hellinger, R. Markowitz,
S. Servaes, M. C. Monuteaux, and S. S. Shah, ‘‘Variability in the interpre-
tation of chest radiographs for the diagnosis of pneumonia in children,’’
J. Hospital Med., vol. 7, no. 4, pp. 294–298, Apr. 2012.

[4] G. Liang and L. Zheng, ‘‘A transfer learning method with deep residual
network for pediatric pneumonia diagnosis,’’ Comput. Methods Programs
Biomed., vol. 187, Apr. 2020, Art. no. 104964.

[5] D. Margaritis, ‘‘Learning Bayesian network model structure from data,’’
School Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA,
Tech. Rep., 2003.

[6] X.-W. Chen, G. Anantha, and X. Lin, ‘‘Improving Bayesian network
structure learning with mutual information-based node ordering in the K2
algorithm,’’ IEEE Trans. Knowl. Data Eng., vol. 20, no. 5, pp. 628–640,
May 2008.

[7] S. Watanabe, ‘‘A widely applicable Bayesian information criterion,’’
J. Mach. Learn. Res., vol. 14, pp. 867–897, Mar. 2013.

[8] J. Yao, J. E. Burns, D. Forsberg, A. Seitel, A. Rasoulian, P. Abolmaesumi,
K. Hammernik, M. Urschler, B. Ibragimov, R. Korez, T. Vrtovec,
I. Castro-Mateos, J. M. Pozo, A. F. Frangi, R. M. Summers, and
S. Li, ‘‘A multi-center milestone study of clinical vertebral CT
segmentation,’’ Comput. Med. Imag. Graph., vol. 49, pp. 16–28,
Apr. 2016.

[9] H. R. Roth, L. Lu, A. Seff, K. M. Cherry, J. Hoffman, S. Wang,
J. Liu, E. Turkbey, and R. M. Summers, ‘‘A new 2.5 D
representation for lymph node detection using random sets of deep
convolutional neural network observations,’’ in Proc. Int. Conf.
Med. Image Comput. Comput.-Assist. Intervent. Springer, 2014,
pp. 520–527.

[10] H. R. Roth, L. Lu, A. Farag, H.-C. Shin, J. Liu, E. B. Turkbey,
and R. M. Summers, ‘‘DeepOrgan: Multi-level deep convolutional
networks for automated pancreas segmentation,’’ in Proc. Int. Conf.
Med. Image Comput. Comput.-Assist. Intervent. Springer, 2015,
pp. 556–564.

[11] L. Yao, E. Poblenz, D. Dagunts, B. Covington, D. Bernard, and K. Lyman,
‘‘Learning to diagnose from scratch by exploiting dependencies among
labels,’’ CoRR, vol. abs/1710.10501, pp. 1–12, Oct. 2017. [Online]. Avail-
able: http://arxiv.org/abs/1710.10501

[12] L. Yao, E. Poblenz, D. Dagunts, B. Covington, D. Bernard, and
K. Lyman, ‘‘Learning to diagnose from scratch by exploiting dependen-
cies among labels,’’ 2017, arXiv:1710.10501. [Online]. Available: http://
arxiv.org/abs/1710.10501

[13] J. Irvin, P. Rajpurkar,M.Ko,Y.Yu, S. Ciurea-Ilcus, C. Chute, H. Marklund,
B. Haghgoo, R. Ball, K. Shpanskaya, J. Seekins, D. A. Mong, S. S. Halabi,
J. K. Sandberg, R. Jones, D. B. Larson, C. P. Langlotz, B. N. Patel,
M. P. Lungren, and A. Y. Ng, ‘‘CheXpert: A large chest radiograph dataset
with uncertainty labels and expert comparison,’’ in Proc. AAAI Conf. Artif.
Intell., vol. 33, 2019, pp. 590–597.

[14] D. S. Kermany, M. Goldbaum, W. Cai, C. C. S. Valentim, H. Liang,
S. L. Baxter, A. McKeown, G. Yang, X. Wu, F. Yan, and J. Dong,
‘‘Identifying medical diagnoses and treatable diseases by image-
based deep learning,’’ Cell, vol. 172, no. 5, pp. 1122–1131,
2018.

[15] M. F. Sohan, ‘‘So you need datasets for your COVID-19 detection research
using machine learning?’’ 2020, arXiv:2008.05906. [Online]. Available:
http://arxiv.org/abs/2008.05906

[16] A. Karpathy and L. Fei-Fei, ‘‘Deep visual-semantic alignments for gen-
erating image descriptions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2015, pp. 3128–3137.

[17] J. Krause, J. Johnson, R. Krishna, and L. Fei-Fei, ‘‘A hierarchical approach
for generating descriptive image paragraphs,’’ in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 317–325.

[18] Q. You, H. Jin, Z. Wang, C. Fang, and J. Luo, ‘‘Image captioning with
semantic attention,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 4651–4659.

[19] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, ‘‘Show, attend and tell: Neural image caption gener-
ation with visual attention,’’ in Proc. Int. Conf. Mach. Learn., 2015,
pp. 2048–2057.

[20] B. Jing, P. Xie, and E. Xing, ‘‘On the automatic generation of med-
ical imaging reports,’’ 2017, arXiv:1711.08195. [Online]. Available:
http://arxiv.org/abs/1711.08195

[21] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi,
M. Ghafoorian, J. A. W. M. van der Laak, B. van Ginneken, and
C. I. Sánchez, ‘‘A survey on deep learning in medical image analysis,’’
Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.

[22] T. Schlegl, S.M.Waldstein,W.-D. Vogl, U. Schmidt-Erfurth, andG. Langs,
‘‘Predicting semantic descriptions frommedical images with convolutional
neural networks,’’ in Proc. Int. Conf. Inf. Process. Med. Imag. Springer,
2015, pp. 437–448.

[23] F. Yan, X. Huang, Y. Yao, M. Lu, and M. Li, ‘‘Combining
LSTM and DenseNet for automatic annotation and classification
of chest X-ray images,’’ IEEE Access, vol. 7, pp. 74181–74189,
2019.

[24] M. Toğaçar, B. Ergen, Z. Cömert, and F. Özyurt, ‘‘A deep feature learn-
ing model for pneumonia detection applying a combination of mRMR
feature selection and machine learning models,’’ IRBM, vol. 41, no. 4,
pp. 212–222, Aug. 2020.

[25] K. El Asnaoui, Y. Chawki, and A. Idri, ‘‘Automated methods for
detection and classification pneumonia based on X-ray images using
deep learning,’’ 2020, arXiv:2003.14363. [Online]. Available: http://arxiv.
org/abs/2003.14363

[26] R. Jain, P. Nagrath, G. Kataria, V. S. Kaushik, and D. J. Hemanth,
‘‘Pneumonia detection in chest X-ray images using convolutional neu-
ral networks and transfer learning,’’ Measurement, vol. 165, Dec. 2020,
Art. no. 108046.

VOLUME 9, 2021 95881



H. Ren et al.: Interpretable Pneumonia Detection by Combining Deep Learning and Explainable Models

[27] V. Chouhan, S. K. Singh, A. Khamparia, D. Gupta, P. Tiwari,
C. Moreira, R. Damaševičius, and V. H. C. de Albuquerque,
‘‘A novel transfer learning based approach for pneumonia detection
in chest X-ray images,’’ Appl. Sci., vol. 10, no. 2, p. 559,
Jan. 2020.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst. (NIPS), vol. 25, Dec. 2012, pp. 1097–1105.

[29] X. Ning, W. Li, B. Tang, and H. He, ‘‘BULDP: Biomimetic uncorre-
lated locality discriminant projection for feature extraction in face recog-
nition,’’ IEEE Trans. Image Process., vol. 27, no. 5, pp. 2575–2586,
May 2018.

[30] X. Ning, P. Duan, W. Li, and S. Zhang, ‘‘Real-time 3D face align-
ment using an encoder-decoder network with an efficient deconvo-
lution layer,’’ IEEE Signal Process. Lett., vol. 27, pp. 1944–1948,
2020.

[31] Z. F. Mohammed and A. A. Abdulla, ‘‘An efficient CAD system for ALL
cell identification from microscopic blood images,’’ Multimedia Tools
Appl., vol. 80, no. 4, pp. 6355–6368, Feb. 2021.

[32] R. R Selvaraju, A. Das, R. Vedantam, M. Cogswell, D. Parikh, and
D. Batra, ‘‘Grad-CAM: Why did you say that?’’ 2016, arXiv:1611.07450.
[Online]. Available: http://arxiv.org/abs/1611.07450

[33] N. Bien, P. Rajpurkar, R. L. Ball, J. Irvin, A. Park, E. Jones, M. Bereket,
B. N. Patel, K. W. Yeom, K. Shpanskaya, and S. Halabi, ‘‘Deep-learning-
assisted diagnosis for knee magnetic resonance imaging: Development
and retrospective validation of MRNet,’’ PLOS Med., vol. 15, no. 11,
Nov. 2018, Art. no. e1002699.

[34] N. L. Zhang, C. Fu, T. F. Liu, B.-X. Chen, K. M. Poon, P. X. Chen, and
Y.-L. Zhang, ‘‘A data-driven method for syndrome type identification and
classification in traditional chinese medicine,’’ J. Integrative Med., vol. 15,
no. 2, pp. 110–123, Mar. 2017.

[35] C. Fu, N. L. Zhang, B.-X. Chen, Z. R. Chen, X. L. Jin, R.-J. Guo,
Z.-G. Chen, and Y.-L. Zhang, ‘‘Identification and classification of tradi-
tional Chinese medicine syndrome types among senior patients with vas-
cular mild cognitive impairment using latent tree analysis,’’ J. Integrative
Med., vol. 15, no. 3, pp. 186–200, May 2017.

[36] A. H. Liu, L. K. M. Poon, T.-F. Liu, and N. L. Zhang, ‘‘Latent tree
models for rounding in spectral clustering,’’ Neurocomputing, vol. 144,
pp. 448–462, Nov. 2014.

[37] W. H. Organization, The ICD-10 Classification of Mental and Behavioural
Disorders: Clinical Descriptions and Diagnostic Guidelines. Geneva,
Switzerland: World Health Organization, 1992.

[38] T. M. File, Jr., ‘‘Community-acquired pneumonia,’’ Lancet, vol. 362,
no. 9400, pp. 1991–2001, 2003.

[39] F. Iandola, M. Moskewicz, S. Karayev, R. Girshick, T. Darrell, and
K. Keutzer, ‘‘DenseNet: Implementing efficient ConvNet descriptor pyra-
mids,’’ 2014, arXiv:1404.1869. [Online]. Available: http://arxiv.org/
abs/1404.1869

[40] J. Hilden and P. Glasziou, ‘‘Regret graphs, diagnostic uncertainty
and Youden’s Index,’’ Statist. Med., vol. 15, no. 10, pp. 969–986,
May 1996.

[41] S.-J. Yen and Y.-S. Lee, ‘‘Cluster-based under-sampling approaches
for imbalanced data distributions,’’ Expert Syst. Appl., vol. 36, no. 3,
pp. 5718–5727, Apr. 2009.

[42] N. Ketkar, ‘‘Introduction to pytorch,’’ in Deep Learning With Python.
Springer, 2017, pp. 195–208.

[43] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[44] B. Zadrozny and C. Elkan, ‘‘Transforming classifier scores into
accurate multiclass probability estimates,’’ in Proc. 8th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining (KDD), 2002,
pp. 694–699.

[45] T. Malisiewicz, A. Gupta, and A. A. Efros, ‘‘Ensemble of exemplar-
SVMs for object detection and beyond,’’ in Proc. Int. Conf. Comput. Vis.,
Nov. 2011, pp. 89–96.

[46] G. W. Brier, ‘‘Verification of forecasts expressed in terms of
probability,’’ Monthly Weather Rev., vol. 78, no. 1, pp. 1–3,
Jan. 1950.

[47] F. E. Harrell, Jr., Regression Modeling Strategies: With Applications to
Linear Models, Logistic and Ordinal Regression, and Survival Analysis.
Springer, 2015.

HAO REN received the bachelor’s degree from
Jiangxi Agricultural University, in 2017. He is
currently pursuing the master’s degree with the
Guangdong Laboratory of Artificial Intelligence
and Digital Economy, College of Computer Sci-
ence and Software Engineering, Shenzhen Uni-
versity (SZ), China. His current research interest
includes AI in medicine.

ASLAN B. WONG (Member, IEEE) is cur-
rently pursuing the Ph.D. degree with the College
of Computer Science and Software Engineering,
Shenzhen University. He is supervised by the Dis-
tinguished Professor Kaishun Wu. His research
interests include human–computer interaction and
cognitive science. He is a member of ACM,
the Society of Petroleum Engineers, and the Engi-
neer Australia.

WANMIN LIAN received the master’s degree
in software engineering from the South China
University of Technology. Since 2003, he has
been engaged in the application and research of
information technology in the medical field with
Guangdong Second Provincial General Hospital.
He is a Senior Engineer at the South China Uni-
versity of Technology.

WEIBIN CHENG received the master’s degree in
medicine from Guangdong Pharmaceutical Uni-
versity. He is currently working with the Institute
for Healthcare Artificial Intelligence Application,
Guangdong Second Provincial General Hospital.
His research interests include artificial intelligence
in health care and data science.

YING ZHANG received the B.E. degree from
Shenzhen University, China, in 2020, where she is
currently pursuing the M.S. degree. Her research
interests include machine learning, deep learning,
and particularly medical image analysis.

JIANWEI HE is currently pursuing the B.Eng.
degree with Shenzhen University, China. His
research interests include deep learning and medi-
cal image analysis.

95882 VOLUME 9, 2021



H. Ren et al.: Interpretable Pneumonia Detection by Combining Deep Learning and Explainable Models

QINGFENG LIU received the degree from the
University of South China. He is the Deputy Chief
Physician and concurrently a member of the Inter-
ventional Therapy Group of the Guangdong Med-
ical Doctor Association, the Guangdong Sleep
Respiratory Society, and the Lung Cancer Profes-
sional Committee of the Guangdong Association
of Thoracic Diseases. He specializes in the diag-
nosis and treatment of respiratory diseases, such
as bronchiectasis, pneumonia, lung cancer, sleep

apnea syndrome, and asthma. He has published many related academic
articles.

JIASHENG YANG received the master’s degree
in medicine from Guangzhou Medical University.
Since 2015, he has been engaged in clinical work
with the Department of Respiratory Medicine,
Guangdong Second Provincial General Hospital.
He is the Deputy Chief Physician.

CHEN JASON ZHANG (Member, IEEE) received
the Ph.D. degree from the Department of Com-
puter Science and Engineering, The Hong Kong
University of Science and Technology, in 2015.
He is currently a Postdoctoral Research Fellow
with The Hong Kong University of Science and
Technology and an Associate Professor at the
Shandong University of Finance and Economics.
His research interests include crowdsourcing and
data integration.

KAISHUN WU (Member, IEEE) received the
Ph.D. degree in computer science and engineering
from HKUST, in 2011. He was a Research Assis-
tant Professor with HKUST. In 2013, he joined
Shenzhen University as a Distinguished Profes-
sor. He has coauthored two books and pub-
lished over 90 high-quality research articles in
international leading journals and primer confer-
ences, such as the IEEE TRANSACTIONS ON MOBILE

COMPUTING, the IEEE TRANSACTIONS ON PARALLEL

AND DISTRIBUTED SYSTEMS, ACM MobiCom, and IEEE INFOCOM. He has
invented six U.S. and over 80 Chinese pending patents. He was a recipient
of the 2012 Hong Kong Young Scientist Award and the 2014 Hong Kong
ICT Awards: Best Innovation and the 2014 IEEE ComSoc Asia-Pacific
Outstanding Young Researcher Award. He is an IET Fellow.

HAODI ZHANG received the Ph.D. degree from
the Department of Computer Science and Engi-
neering, TheHongKongUniversity of Science and
Technology, in 2016. He is currently an Assistant
Professor with the Guangdong Laboratory of Arti-
ficial Intelligence and Digital Economy, College
of Computer Science and Software Engineering,
Shenzhen University, Shenzhen, China. His cur-
rent research interests include deep reinforcement
learning, knowledge representation and reasoning,

explainable artificial intelligence, artificial intelligence in communication,
buffer-aided relaying, and wireless information.

VOLUME 9, 2021 95883


