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ABSTRACT Currently, with the rapid development and broad application of cloud computing technology,
companies tend to use cloud services to build their applications or business systems. Selecting a trustworthy
cloud service is a challenging multi-criteria decision-making (MCDM) problem. Moreover, decision makers
are more inclined to use linguistic descriptions to assess the quality of service (QoS) for cloud services due
to the limitation of the decision makers’ knowledge and the vagueness of criteria information. Therefore,
we propose a practical, integrated MCDM scheme for cloud service evaluation and selection of cloud
systems, allowing decision makers to compare cloud services based on QoS criteria. First, to more accurately
and effectively express the uncertainty of qualitative concepts, the cloud model is used as a conversion tool
for qualitative and quantitative information to quantify linguistic terms. Second, given the shortcomings of
traditional differentiating measures between cloud models, a more comprehensive distance measurement
algorithm using cloud droplet distribution is proposed for the cloud model. The new distance measurement
algorithm is applied to the calculation of cloud model similarity and the gray correlation coefficient. The
dynamic expertise weights are determined by calculating the similarity between the expert evaluation
cloud model and the arithmetic mean cloud model. Then, we propose a technique for order preference by
similarity to an ideal solution (TOPSIS) improved by the grey relational analysis (GRA) to calculate the
relative closeness of alternatives to the positive and negative ideal solutions and establish a multi-objective
optimization model that maximizes the relative closeness of all alternatives to determine the weights of the
criteria. Finally, we reconstructed the QoS evaluation criteria for cloud services from both application and
service perspectives, and the classical TOPSIS is applied to generate alternative rankings. The practicability
and robustness of the scheme were tested through the cloud service selection problem experienced by a real
mining company’s scheduling platform, which can provide practical references with the theoretical basis for
the selection and evaluation of cloud services.

INDEX TERMS Cloud services selection, quality of service (QoS), cloud model, multi-criteria
decision-making (MCDM), technique for order preference by similarity to an ideal solution (TOPSIS), grey
relational analysis (GRA).

I. INTRODUCTION
With the development and widening application of Inter-
net technology as well as the demands created by modern
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big data collection, the demand for more powerful Inter-
net data processing capabilities is increasing, and ‘‘cloud
computing’’ technology has gradually become the focus of
the computer technologies field [1], [2]. Cloud computing
integrates many computing resources, storage resources, and
software resources through information technologies such as
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distributed computing, utility computing, parallel computing,
grid computing, and virtualization, forming a colossal virtual
shared resource pool to provide users with the information
they need [3]–[5]. The services performed by cloud com-
puting are called cloud services, and the National Institute
of Standards and Technology (NIST) defines cloud services
as a ubiquitous, convenient, and on-demand mode of net-
work access to a configurable shared computing resource [6].
Cloud services can achieve rapid supply and release of
resources such as computing networks, servers, hardware,
and software through minimal management or interaction
with service providers [7]. Cloud services have the charac-
teristics of low initial investment, low technical requirements
for personnel, short deployment time, easy expansion, and
additionally, customers do not need to be aware of the inter-
nal structure of cloud services and actual service methods.
Relying on the advanced service concept of cloud computing,
enterprises or individual users tend to use cloud services
to build their business systems or personal applications and
establish new development models.

When users decide to adopt cloud services, a signifi-
cant problem they face is the selection of the best cloud
service technology [8]. Per the user’s requirements, cloud
computing architecture primarily provides three services:
Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS),
and Infrastructure-as-a-Service (IaaS) [9]. These three ser-
vices are usually referred to as SPI models. Cloud comput-
ing forms can be divided into private cloud, public cloud,
and hybrid cloud. References [10]. In recent years, with the
rapid growth in cloud computing, users have expanded their
demand for cloud service applications, and various cloud
services continue to emerge. Selecting the cloud service that
best suits the needs of users should consider multiple crite-
ria [11]. Thus, the selection of cloud services can be viewed
as a multi-criteria decision-making (MCDM) problem. Cur-
rently, scholars have put forward many evaluation criteria for
quality of service (QoS) [12]–[14]. However, these criteria
only focus on the real-time characteristics of cloud services
or simply treat the characteristics as an average value [15].
The former does not consider the historical characteristics of
QoS, resulting in excessive partiality and ignorance of holistic
performance, while the latter ignores the frequent updates of
QoS characteristics, which is not representative. The specific
QoS value cannot truly reflect the dynamic changes of cloud
services, nor does it consider the subjective factors of users,
and cannot fully reflect the value a user’ would get from the
service. To this end, we construct the QoS criteria for cloud
services from the perspectives of application and manage-
ment, and use vague language terms to evaluate the QoS of
cloud services, which can more truly reflect the user cloud
service experience.

Due to the differences in the industry background as well
as differences in the perception of the cloud QoS criteria
of among decision makers, their evaluation language con-
tains various uncertain information. Therefore, a systematic
method for dealing with the uncertainty in the quantitative

conversion of linguistic information is an essential factor that
affects the validity and accuracy of decision-making results.
Zadeh and Lotfi [16] proposed the fuzzy set theory and estab-
lished a membership function as the primary tool for process-
ing uncertain information. The application of fuzzy set theory
is constantly improving and expanding. Considering that
most natural and social phenomena obey or approximately
obey the law of normal distribution, Jean and Saade [17]
proposed the concept of normal fuzzy sets. Ma [18] proposed
using normal fuzzy numbers to express decision-making
information, whichmore objectively and accurately describes
and reflects the data in the real world. Intuitionistic Fuzzy
Set (IFS) proposed by Atanassov [19] is an attractive tool for
dealing with data ambiguity and inaccuracy. Yager [20] pro-
posed that the Pythagorean Fuzzy Set (PFS) can be consid-
ered a useful extension of IFS. Zeng et al. [21] supplemented
the powerful PFSwith confidence levels to represent informa-
tion in the decision-making process concerning low-carbon
supplier evaluation, considering the different confidence lev-
els decision makers use when addressing vagueness and
imprecision. However, uncertainty includes two components:
fuzziness and randomness. If uncertainty appears but is dif-
ficult to define accurately, it is called fuzziness. When an
event is clearly defined, but the uncertainty involved may
or may not appear, that uncertainty is called randomness.
Previous studies reflect only the uncertainty of qualitative
concepts from the perspective of fuzziness, failing to consider
the randomness of membership. Given this, Li et al. [22]
proposed the concept of the cloud model, unifying the prob-
lem of ambiguity and the randomness of membership, which
better portrays the uncertainty of concepts in natural lan-
guage. Li et al. [23] further demonstrated the universality of
the normal cloud model. Du et al. [24] researched the map-
ping method for qualitative and quantitative variables based
on the cloud model, which retained the inherent uncertainty
in the evaluation process to the greatest extent and improved
the credibility of the evaluation results.

A method for determining the weights of decision-makers
and criteria in ranking and selecting alternatives is the core
issue. In the process of traditional technology evaluation,
decision makers’ weights are often directly given values, and
criteria weights are usually directly given or assigned by
decision makers, and thus are highly subjective [25]–[27].
However, due to the ambiguity and limitations of the objec-
tive environment, decision-makers have limited information
processing capabilities [28], [29]. Decision-makers can only
provide a set of constrained or incomplete weight informa-
tion, and it is impossible to assign precise weights to each
indicator [30]. Therefore, considering the lack of given deci-
sion maker and criteria weights, it is necessary to determine
the weights more objectively by making calculations during
the decision-making process [31]–[33]. Liu [34] proposed a
new similarity function as weight support, which has good
reliability and accuracy. Zhang et al. [35] proposed a grey
relational analysis method and a maximum deviation method
to calculate both expert and criteria weight information.
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Zeng et al. [36] extends the improved induced weighted loga-
rithmic distance measurement algorithm to q-ROFS and pro-
poses a new method for processing entirely unknown criteria
weight information in a q-ROFS environment. Qin et al. [37]
used the similarity between the evaluation value and the
average to calculate the expert weight and index weight
from different angles, where the similarity was determined
based on the distance between the evaluation value and the
average. From the above research, it is not difficult to see that
measuring the similarity and difference in evaluation infor-
mation between decision-makers is the key to calculating
the weights for decision makers and for criteria. Therefore,
calculating the distance and similarity between cloud models
to express decision maker evaluation information is the crit-
ical problem, and the solution to this problem will provide
a solution for weight calculation [38], [39]. Zhao et al. [40]
defined the Hamming distance between two normal cloud
models and proposed a cloud distance measurement
algorithm.

Considering that the cloud model comprises a particular
random rule and many cloud drops, even the cloud models
with the same digital characteristics have different cloud
drops. Measuring the distance and similarity between cloud
models based on digital features, ignoring the essential char-
acteristics of cloud model fuzziness and randomness, pro-
duces calculation results that are not reliable or accurate.
Therefore, we propose a more comprehensive cloud model
distance and similarity measurement algorithm from the per-
spective of cloud droplet distribution. The dynamic expert
weights are determined by calculating the similarity between
the expert evaluation cloud model and the arithmetic mean
cloud model. In addition, we determine the weights of criteria
based on the principle of optimizing the comprehensive eval-
uation of all alternatives. The technique for order preference
by similarity to an ideal solution (TOPSIS) is a commonly
used method in MCDM. It positions alternatives close to the
positive ideal solution and at the same time, further from
the negative ideal solution [41]. The closeness calculation
in the TOPSIS method is a simple weighted average of the
score difference between the alternative and the ideal solu-
tion for each criterion. However, when solving the criteria
weights, the difference between the alternatives’ criterion
scores should be consistent with the ideal solution. Lessons
can also be drawn from grey relational analysis (GRA) [42],
as it can flexibly measure the similarity of curve shapes
and visually represent the nonlinear relationship between
data sequences. The closer the curve shapes are, the higher
the degree of correlation between the sequences. The GRA
method is used to solve the relative closeness to improve
TOPSIS so that the approximate distance and correlation
degree between the alternative and the ideal solution can
be considered simultaneously. Therefore, we established a
multi-objective optimization model that maximizes the rel-
ative closeness of all alternatives through TOPSIS improved
by GRA, to determine the optimal index weights more accu-
rately, objectively, and reasonably.

This article aims to propose a practical, integrated MCDM
scheme based on cloud systems to evaluate and select cloud
services within a linguistic environment based on the discus-
sions above. The main contributions of this research are sum-
marized as follows: first, the linguistic information given by
the decision maker is converted into the corresponding cloud
model, which can manage the ambiguity and randomness
of language expression; second, we propose an algorithm to
measure the distance and similarity of cloud models from
the perspective of cloud drop distribution and determine the
dynamic decision maker weights by calculating the distance
and similarity between the decision maker’s cloud model
and the arithmetic average cloud model; third, we propose
to use GRA to improve the TOPSIS method and establish a
multi-objective optimization model that maximizes the rela-
tive closeness of all alternatives to determine the optimal cri-
teria weights; fourth, we use the cloud distance measurement
algorithm and the TOPSIS method to calculate the relative
closeness of alternatives and rank the alternatives according
to the relative closeness; finally, the proposedMCDMscheme
is applied to the decision-making of truck dispatching cloud
service used by the Luanchuan Mining Group Corporation,
which illustrates the practicality and robustness of the pro-
posed MCDM scheme.

The rest of this article is structured as outlined below:
Section 2 introduces some basic concepts related to cloud
model theory. Section 3 proposes an MCDM scheme for
Cloud Service Evaluation and Selection. Section 4 applies
the proposed method to engineering practice and conducts a
comparative study and sensitivity analysis. Finally, Section 5
discusses conclusions and directions for further research.

II. PRELIMINARIES
The cloud model is proposed by Li et al. [22] to transform
the linguistics of qualitative concepts into quantitative con-
version models. In this section, definitions 1-5 are the basic
concepts and operations related to cloud model theory, and
Definitions 6-7 are the conversion methods for transforming
Linguistic terms into cloud models.
Definition 1: Assuming a domain U = {X}, A is a qualita-

tive concept related toU , and the membership degreeµA(x) ∈
[0, 1] of the element X inU to the qualitative concept of T is a
stable tendency. The distribution of the membership degree x
on the universe U is called a cloud, and each random number
is called a cloud drop [23].
Definition 2: Three parameters depict the characteristics of

a cloud y: expected value Ex, entropy En, and hyper-entropy
He. Here, Ex is the expected value of the cloud drop, which
represents the central value of the universe, the entropy En
measures the fuzziness and randomness of the qualitative
concepts, and He reflects the dispersion degree of the cloud
drops and the uncertainty of the membership function. Gen-
erally, a cloud y can be expressed as y = (Ex, En, He) [23].

When the number of cloud drops n = 1000, the cloud
model C1 = (0.3, 0.1, 0.01), C2 = (0.5, 0.1, 0.01),
C3 = (0.5, 0.05, 0.005) and C4 = (0.7, 0.05, 0.005) can be
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FIGURE 1. Comparison diagram of different cloud models.

represented as a cloud diagram comparison chart, as shown
in Figure 1. The expected value Ex of C2 and C3 is the same,
so the cloud image’s position center is the same. The entropy
En and hyper-entropy He of C2 are larger than that of C3,
so the cloud image of C2 has a larger span and thickness. The
entropy En and hyper-entropy He of C1 and C2 are the same,
and the entropy En and the hyper-entropy He of C3 and C4
are the same. The expected value Ex of C1 is the smallest,
which means that the expected value of its qualitative concept
is the smallest, and therefore its position is more to the left in
the figure. The expected value Ex of C4 is the largest, which
means that the expected value of its qualitative concept is the
largest, and therefore it is more to the right in the figure.
Definition 3: Assuming any two clouds ỹ1 =

(Ex1,En1,He1) and ỹ2 = (Ex2,En2,He2) in a given uni-
verse U , the algebraic operations between the two clouds is
expressed as Equation (1-4).

ỹ1 + ỹ2 =
(
Ex1 + Ex2,

√
En21 + En

2
2,

√
He21 + He

2
2

)
(1)

ỹ1 × ỹ2 =
(
Ex1Ex2,

√
(En1Ex2)2 + (En2Ex1)2,√

(He1Ex2)2 + (He2Ex1)2
)

(2)

λỹ1 =
(
λEx1,

√
λEn1,

√
λHe1

)
, λ > 0 (3)

ỹλ1 =
(
Exλ1 ,
√
λ(Ex1)λ−1En1,

√
λ(Ex1)λ−1He1

)
,

λ > 0 (4)

Definition 4: Assuming that ỹ1 = (Ex1,En1,He1) and
ỹ2 = (Ex2,En2,He2) are any two clouds in a given universe
U , then the pseudo-code of the distance measurement algo-
rithm between the cloud models is as follows.

If the number of cloud drops that are filtered out is incon-
sistent, fewer cloud drops are included in the unified number

Algorithm 1 The Algorithm of Cloud Model Distance Mea-
surement
Input: Two cloud models ỹ1 = (Ex1,En1,He1) and
ỹ2 = (Ex2,En2,He2) and the number of cloud drops n.
Output: The distance between two cloud models
d(ỹ1, ỹ2)
1: Generate n cloud drops using a forward cloud generator.
ỹ1 and ỹ2 each generate n cloud drops, which are denoted
as: (x1i, u (x1i)) ; (x2i, u (x2i)) , i = 1, 2, . . . , n

2: Sort the two groups of cloud drops in ascending order
according to the value of x1i and x2i

3: Select x1i and x2i to meet the
cloud drop in the following interval:
[max {Xmin,Ex1 − 3En1} ,min {Xmax ,Ex1 + 3En1}],
[max {Xmin,Ex1 − 3En1} ,min {Xmax ,Ex1 + 3En1}].
The number of cloud drops are denoted as n1 and n2

4: if n1 ≥ n2
5: thenRandomly select n2 cloud drops from n1 and store

them in set Drop1
6: else Randomly select n1 cloud drops from n2 and store

them in set Drop2
7: end if
8: K ← min{n1, n2}
9: for j← 1 to k do

10: Calculate the distance between
each cloud drop D

(
drop1j, drop2j

)
=√(

x1j − x2j
)2
+
(
µ(x)1j − µ(x)2j

)2
11: Calculate the distance between each cloud model =

k∑
j=1

D
(
drop1j, drop2j

)
/k

12: end for
13: return: d(ỹ1, ỹ2)

of cloud drops (line 4-7). That is because according to the
‘‘3σ ’’ rule, the number of cloud drops with the abscissa in
the range of [Ex-3En, Ex+3En] accounts for most of the total
number of cloud drops. The difference between the number
of filtered clouds drops n1 and n2 can be ignored so that
the excess cloud drop can be discarded directly [43], [44].
The distance between the two cloud models is equal to the
average distance between the cloud drops filtered by the two
cloudmodels (line 8-12). Additionally, due to the randomness
of cloud droplet distribution, the distance calculation result
also has a certain degree of randomness [45]. The cloud
model distance measurement algorithm fully measures the
distribution difference of each cloud drop in different cloud
models. This algorithm is more global than calculating the
distance between cloud models through the three numerical
features Ex, En, and He.
Definition 5: Suppose there are n clouds ỹi =

(Ex i,Eni,Hei) (i = 1, 2, . . . , n) in the universe U , and w =
(w1,w2, . . . ,wn) is the corresponding weight. Calculate the
weighted cloud Y (Ex,En,He) using the integrated function
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as shown as Equation (5) [46].
Ex = ω1Ex1 + ω2Ex2 + · · · + ωxExn,

En =
√
(ω1En1)2 + (ω2En2)2 + · · · + (ωxEnn)2,

He =
√
(ω1He1)2 + (ω2He2)2 + · · · + (ωnHen)2.

(5)

In particular, when the weight of each cloud model is
equal wi = 1

n(i=1,2,...,n) , the weighted cloud after n cloud
models is superimposed and called the arithmeticmean cloud,
denoted as Y

(
Ex,En,He

)
, The integration method is shown

in Equation (6).
Ex = (Ex1 + Ex2 + · · · + Exn) /n,

En =
√
En21 + En

2
2 + · · · + En

2
n/n,

He =
√
He21 + He

2
2 + · · · + He

2
n/n.

(6)

Definition 6:Assuming that [Xmin, Xmax] is a valid domain,
S = {s−g, . . . , s0, . . . , sg, g ∈ N } is an ordered discrete
term set, where N represents a non-negative integer and
si represents a linguistic term, that can generate 2g + 1
clouds, denoted as ỹg = (Ex−g,En−g,He−g), . . . , ỹ0 =
(Ex0,En0,He0), . . . , ỹg = (Exg,Eng,Heg) [47].
Definition 7: Given the linguistic terms set S =

{s−g, . . . , s0, . . . , sg, g ∈ N }, the transformation function
from Si to cloud Yi [48], is given by

Yi =


ag − a−i

2ag − 2
, −g 6 i 6 0

ag + ai − 2
2ag − 2

, 0 6 i 6 g
(7)

where the interval of a is in [1.36, 1.40].

III. THE PROPOSED MCDM SCHEME FOR CLOUD
SERVICE EVALUATION AND SELECTION
This section combines the cloud model with the improved
TOPSISmethod and introduces a practical integratedMCDM
scheme to solve for uncertain criterion information and
unknown weight information in cloud service evaluation
and selection. The MCDM scheme proposed in this paper
includes three stages: phase 1, evaluation of the cloud service
QoS, and translation of linguistic terms into cloud models;
phase 2, use of cloud similarity to determine dynamic expert
weights and use of multi-objective optimization models to
determine the weights of the QoS criteria for cloud services;
phase 3, determination of the alternative cloud service rank-
ing order. The procedure of the proposed MCDM scheme is
shown in Figure 2.

A. ASSESS THE CLOUD SERVICE QoS
Suppose that the alternative cloud service is Ai(1 6 i 6 m),
and the criterion is Cj(1 6 j 6 n) in the cloud service QoS
evaluation problem. A decision-making group consisting of k
experts Et (1 6 t 6 k) uses linguistic terms to evaluate the
QoS for alternative cloud services.
Step 1 (Obtain the CloudModel DecisionMatrix):Accord-

ing to the method for converting linguistic terms into cloud

FIGURE 2. Flowchart of the proposed MCDM scheme.

models, the expert’s linguistic term evaluation matrix for the
cloud services’ QoS Ek = [Eijk ]m×n is transformed into
cloud model decision matrix Yk = [yijk ]m×n where yijk =
(Exijk ,Enijk ,Heijk ).

B. CALCULATE THE WEIGHTS OF EXPERTS AND CRITERIA
1) CALCULATE THE DYNAMIC EXPERT WEIGHTS
Different cloud services or different criteria for QoS often
correspond to different expert weights, called dynamic expert
weights and recorded as vtij. This section determines the
dynamic expert weights based on the similarity between
the cloud models given by the expert Et and the arithmetic
mean cloud of the expert group. The smaller the similarity,
the smaller the weight of the corresponding expert Et , and
vice versa. The calculation steps are as follows.
Step 2 (Calculate the Arithmetic Mean Cloud Model):

Using Equation (6) to calculate the criterion Cj for cloud
service Ai, the arithmetic mean cloud model yij =(
Exij,Enij,Heij

)
is given by k experts after cloud model

integration.


Exij =

(
Ex1ij + Ex

2
ij + · · · + Ex

k
ij

)
/k,

Enij =
√
En1ij + En

2
ij + · · · + En

k
j /k,

Heij =
√
He1ij + He

2
ij + · · · + He

k
ij/k.

(8)

Step 3 (Determine the Dynamic Expert Weights):Calculate
the similarity between the evaluation cloud model ytij and the
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arithmetic mean cloud model ỹij by Equation (9).

sim
(
ytij, y

t
ij

)
= 1−

d
(
ytij, y

t
ij

)
∑k

i=1 d
(
ytij, y

t
ij

) (9)

where d(ytij, y
t
ij) is the distance between the evaluation cloud

model ytij and the arithmetic mean cloud model ytij calculated
by Algorithm 1.

Using Equation (10), calculate the dynamic expert weights
corresponding to the QoS criterion Cj of cloud service Ai

vtij =
sim

(
ytij, y

t
ij

)
∑k

t=1 sim
(
ytij, y

t
ij

) , t = 1, 2, . . . , k (10)

2) CALCULATE THE CRITERIA WEIGHTS
Drawing lessons from GRA, we use it to solve for the relative
closeness of alternatives to improve TOPSIS. In addition,
we establish a multi-objective optimization model to maxi-
mize the relative closeness of alternatives and then determine
the optimal criteria weights by finding a solution to the
model. Figure 3 shows the calculation used to find the criteria
weights.
Step 4 (Obtain the Weighted Cloud Model Decision

Matrix): Using Equation (5) to gather the evaluation cloud
model ytij of the cloud services’ QoS by multiple experts,
and obtain the weighted cloud model ŷij, where ŷij =(
Êxij, Ênij, Ĥeij

)
, and its constituents are given by

Êxij = v1ijEx
1
ij + v

2
ijEx

2
ij + · · · + v

k
ijEx

k
ij

Ênij =

√(
v1ijEn

1
ij

)2
+

(
v2ijEn

2
ij

)2
+ · · · +

(
vkijEn

k
ij

)2
Ĥeij =

√(
v1ijHe

1
ij

)2
+

(
v2ijHe

2
ij

)2
+ · · · +

(
vkijHe

k
ij

)2
(11)

where vtij (i = 1, 2, . . . ,m; j = 1, 2, . . . , n; t = 1, 2, . . . , k)
are the dynamic expert weights.

All weighted cloud models yij constitute a weighted cloud
model decision matrix Ŷk = (ŷij)m×n, namely

Ŷk =


ŷ11 ŷ12 · · · ŷ1n
ŷ21 ŷ22 · · · ŷ2n
...

...
. . .

...

ŷm1 ŷm2 · · · ŷmn

 (12)

Step 5 (Determine the Relative Closeness of Alternatives):
The positive-ideal cloud model ŷ+j and the negative-ideal
cloud model ŷj− used to determine cloud service QoS is
shown in Equation (13).{

ŷ+j =
{
maxŷij | i = 1, 2, · · · ,m

}
ŷ−j =

{
minŷij | i = 1, 2, · · · ,m

} (13)

ŷ+j and ŷ−j are the gray relational coefficients of the alterna-
tives with respect to the positive and negative ideal solutions,

FIGURE 3. Calculation steps for finding criteria weights.

given by

r+ij =
min
i
min
j
d
(
ŷij, ŷ

+

j

)
+ ς max

i
max
j
d
(
ŷij, ŷ

+

j

)
d
(
ŷij, ŷ

+

j

)
+ ς max

i
max
j
d
(
ŷij, ŷ

+

j

) (14)

r−ij =
min
i
min
j
d
(
ŷij, ŷ

−

j

)
+ ς max

i
max
j
d
(
ŷij, ŷ

−

j

)
d
(
ŷij, ŷ

−

j

)
+ ς max

i
max
j
d
(
ŷij, ŷ

−

j

) (15)

where i = 1, 2, . . . ,m; j = 1, 2, · · · , n; d(ŷij, ŷ
+

j ) and
d(ŷij, ŷ

−

j ) represent the gray relational coefficients from ŷij
to ŷ+j and ŷ−j , respectively. ς is the resolution coefficient,
usually ς = 0.5.

We then calculate the weighted grey relational coefficients
for the alternatives using the following equations.

r+i = r
(
ŷi, ŷ+

)
=

n∑
j=1

wjr
+

ij , i = 1, 2, · · · ,m (16)

88396 VOLUME 9, 2021



L. Liu et al.: Practical, Integrated MCDM Scheme for Choosing Cloud Services in Cloud Systems

r−i = r
(
ŷi, ŷ−

)
=

n∑
j=1

wjr
−

ij , i = 1, 2, · · · ,m (17)

Then, we calculate the relative closeness of alternative Ai
using Equation (18):

∂i =
r+i

r+i + r
−

i

=

∑n
j=1 wjr

+

ij∑n
j=1 wjr

+

ij +
∑n

j=1 wjr
−

ij

=

n∑
j=1

wj
r+ij

r+ij + r
−

ij

, i = 1, 2, · · · ,m (18)

Step 6 (Establish a Multi-Objective Optimization Model
for Determining Optimal Criteria Weights): Set w =

(w1,w2, . . . ,wj, . . . ,wn) to be the vector of necessary
weights and solve the following linear programming problem
to obtain the optimal weights.

max∂(w) = max (∂1, ∂2, · · · , ∂m)

s.t.
n∑
j=1

wj = 1

wj > 0, j = 1, 2, · · · , n (19)

If the experts give information about the criteria weights,
add corresponding conditions to the constraints. Assuming
that T is a collection of weight information given by the
experts, it can include the following forms:

1. Weak order: {wi ≥ wj};
2. Strict order: {wi − wj} ≥ δi|δj > 0};
3. Order of multiples: {wi ≥ δiwj};
4. Interval order: {δi ≤ wi ≤ δi+εi|0 ≤ δi ≤ δi+εi ≤ 1};
5. Difference order: {wi − wj > wk − wl |j 6= k 6= l}.
Then the followingmulti-objective optimizationmodel can

be established.

max∂(w) = max (∂1, ∂2, · · · , ∂m)

s.t. w ∈ T
n∑
j=1

wj = 1

wj > 0, j = 1, 2, · · · , n (20)

Step 7 (Obtain theOptimal CriteriaWeights):By executing
the multi-objective optimization model, the optimal criteria
weights can be obtained as w∗ = (w∗1,w

∗
2, . . . ,w

∗
n).

C. DETERMINE THE RANKING OF ALTERNATIVES
The distance measurement algorithm for the cloud model
is applied to the TOPSIS method, and the closeness of the
alternative cloud service’s QoS is calculated according to
the optimal weighted cloud decision matrix Ẑk , and then the
alternative cloud service’s QoS is ranked according to the
closeness. Specific steps are as follows.
Step 8 (Calculate the Optimally Weighted Cloud Decision

Matrix): The expert’s dynamic weight vkij and criteria’s opti-
mal weight w∗j are respectively multiplied with each element
yij in the jth column of the cloud model decision matrix Yk

to obtain the optimally weighted cloud decision matrix Ẑk as
Equation (21).

Ẑk =
[
ẑij
]
k
m×n
=

t∑
k=1

vkij ·
[
w∗j · yij

]
k

m×n
(21)

Step 9 (Determine the Positive-Ideal and the Negative-
Ideal Solutions):Within the optimally weighted cloud model
decision matrix Ẑk , the positive-ideal solution and the
negative-ideal solution denoted as Ẑ+k and Ẑ−k , can be respec-
tively calculated by

Ẑ+k =
{
ẑ+j | max16i6m

ẑij

}
(22)

Ẑ−k =
{
ẑ−j | min16i6m

ẑij

}
(23)

where maxẑij represents the expectation that Ex ij(i = 1,
2, . . . ,m) is the largest and minẑij means that the expectation
Ex ij(i = 1, 2, . . . ,m) is the smallest. When the ideal solution
has the same expectation, then Enij and Heij are the smallest.
Step 10 (Calculate the Distance Between the Alternatives

and the Ideal Solution): Calculate the distance between the
alternative Ai and the ideal solution through algorithm 1 and
the following equations.

D+i =
n∑
j=1

d
(
ẑij, ẑ

+

j

)
(24)

D−i =
n∑
j=1

d
(
ẑij, ẑ

−

j

)
(25)

Step 11 (Calculate the Relative Closeness of the Alterna-
tives and Rank the Alternatives): Calculate the relative close-
ness Gi of the QoS of cloud service Ai using Equation (26):

Gi =
D−i

D+i + D
−

i

(26)

The cloud services’ QoS is ranked according to the value
of Gi. The larger the Gi value is, the higher the QoS of the
corresponding cloud service.

IV. PERFORMANCE ANALYSIS AND ENGINEERING
APPLICATIONS
We apply the proposed method to the cloud service selection
of a real mining company’s truck dispatch platform. The
applicability and efficacy of the proposed MCDM scheme
for cloud service evaluation and selection are demonstrated
in this section.

A. BACKGROUND DESCRIPTION
With the continuous development of industrialization and
informatization, the current development direction of the
mining industry is focused on green development, intelligent
mining, driving the development of information technology,
and accelerating the development of modern mining. The
high degree of mechanization of open-pit mining facilitates
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the adoption of new technologies in the information age to
realize automated mining, so its development of industri-
alization and informatization has become a trend. As the
primary information age management method, cloud services
have become the best solution for enterprise information
integration, information resource development and decision
support systems. In addition, a new model for integrating
mined resources has been developed.

In this study, we considered the Luanchuan Molybdenum
Group Company, located in Luoyang, China. In order to
rationally deploy open-pit mine transportation operations,
intelligently dispatch and manage vehicles, and realize big
data-driven, intelligent decision-making analysis, the com-
pany is supported by big data technology and uses
cutting-edge technologies such as GPS, Google Maps and 5G
networks to realize the transmission and display of various
production information. The company uses JavaWeb as a
development method for designing an intelligent dispatching
system for open-pit mines under a cloud service model, and
uses cloud services to gather information resources such as
open-pit mine production and transportation data to form a
resource pool.

The selection of evaluation criteria is an important basis for
evaluating the cloud service QoS. In 2012, the International
Cloud Service Measurement Alliance (ICSMA) designed
and released the cloud service evaluation criteria to evaluate
cloud services from seven aspects: performance, security and
privacy, price, availability, responsibility, agility and insur-
ance [49]. MCDM methods based on these criteria have
gradually become the mainstream for cloud computing eval-
uation [50], [51]. Although the above studies provide cloud
service evaluation criteria and methods from an application
perspective, different vendors can provide similar or iden-
tical cloud services, and the choice of vendors is inher-
ently related to the application’s industry. Therefore, when
choosing cloud services, the evaluation criteria for cloud
services should be constructed from both the application
and management perspectives. According to literature sur-
veys [11], [52], the opinions of decision makers, and based
on the characteristics of the vehicle scheduling platform,
adherence to the principles of comprehensiveness, simplicity,
scientificity, flexibility, and operability, as well as a com-
bination of subjective and objective perspectives, regarding
application and management are combined to determines C1
(function and technology), C2 (system strategy adaptability),
C3 (product supplier’s ability) and C4 (product after-sales
service reputation) as the evaluation criteria for cloud service
QoS. C1 and C2 reflect the application horizon, including the
core content in the cloud service evaluation criteria designed
and published by the ICSMA [49]. C3 and C4 reflect the
management horizon. In order to select high-quality cloud
services, an expert group consisting of eight direct managers
(denoted as E1,E2, . . . ,E8) was established. The alternative
cloud service technologies A1, A2, A3, and A4 are given
scores by the four suppliers. Figure 4 is a schematic of the
evaluation criteria framework.

FIGURE 4. The framework of cloud service evaluation criteria.

TABLE 1. The expert’s linguistic terms evaluation matrix.

Then, the eight decision makers are asked to assess each
cloud service according to the above criteria using the lin-
guistic assessment terms. The preset linguistic assessment
terms set is {very poor, poor, medium poor, medium, medium
good, good, very good} = {S0, S1, S2, S3, S4, S5, S6}.
The linguistic terms evaluation matrix provided by the expert
group is presented in Table 1.

B. APPLICATION AND RESULTS
The application of the proposed scheme solves the problem
of cloud service technology QoS evaluation, and the process
is as follows.
Step 1 (Obtain the Cloud Model Decision Matrix): Using

definition 6 and Equation (7), seven language scales can
be converted into seven normal cloud model. Assuming
U = [0, 10], the seven clouds are: y0 = (0, 2.959, 0.125);
y1 = (2.25, 2.655, 0.266); y2 = (3.85, 2.100, 0.411);
y3 = (5.00, 1.922, 0.477); y4 = (6.15, 2.100, 0.411); y5 =
(7.75, 2.655, 0.266); y6 = (10.00, 2.959, 0.125). According
to the numerical characteristics of the seven normal clouds
mentioned above, the linguistic terms can be transformed into
the cloud model. Among them, the cloud model matrix from
the first expert is shown in Table 2.
Step 2 (Calculate the Arithmetic Mean Cloud): Using

Equation (8) to gather the cloud model decision matrix for
all the cloud services as given by the eight experts, obtain the
arithmetic mean cloud model yij =

(
Exij,Enij,Heij

)
for the
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TABLE 2. Cloud model decision matrix of the first decision-maker.

TABLE 3. The arithmetic mean cloud model matrix.

FIGURE 5. The dynamic expert weights for C1.

cloud service Ai QoS criteria Cj. The arithmetic mean cloud
matrix (ỹij)4×4 is shown in Table 3.
Step 3 (Determine the Dynamic Expert Weights): Accord-

ing to Equation (9), we calculate the similarity sim(ytij, y
t
ij)

between the ytij and y
t
ij. Using Equation (10), we calculate

the dynamic expert weights for different cloud services and
different criteria. Figure 5 shows the dynamic expert weights
in the alternative cloud service for C1.
Step 4 (Obtain the Weighted Cloud Model Decision

Matrix): Using Equation (11) to gather the cloud model
decision matrix for the eight experts, obtain a weighted cloud
model decision matrix composed of weighted clouds for
different criteria for all cloud services, Ŷk = (Ŷij)4×4 shown
in Table 4.

TABLE 4. Weighted cloud model decision matrix.

TABLE 5. The positive-ideal solution and negative-ideal solution for the
criteria.

TABLE 6. The grey relationship coefficient of alternatives under each
criterion.

Step 5 (Determine the Relative Closeness of Alternatives):
Using Equation (12) to calculate the positive-ideal solution
ŷ+j and negative-ideal solution ŷ−j in Table 4. Table 5 shows
the calculation results.

We then calculate the grey relationship coefficient using
Equations (14) and Equations (15). The results are shown
in Table 6.

Let w = (w1,w2,w3,w4) be the weight vector of criteria
to be sought. Using Equation (18) to calculate the relative
closeness of cloud services, the results are as follows.

∂1 = 0.399w1 + 0.413w2 + 0.601w3 + 0.522w4

∂2 = 0.431w1 + 0.310w2 + 0.541w3 + 0.517w4

∂3 = 0.347w1 + 0.310w2 + 0.274w3 + 0.433w4

∂4 = 0.750w1 + 0.446w2 + 0.522w3 + 0.519w4

Step 6 (Establish a Multi-Objective Optimization Model
for Determining Optimal Criteria Weights): The set of cri-
terion’s weight information T given by the eight experts are
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TABLE 7. The optimal weighted cloud decision matrix.

as follows:

T =


wi > 0.10, i = 1, 2, 3, 4
0.08 < w1 − w2 < 0.12
w2 − w4 > 0.05
w3 − w1 < 0.02

Therefore, establish the optimization model according to
Equation (20).

Max ∂(w)
such that ∂1 = 0.399w1 + 0.413w2 + 0.601w3 + 0.522w4

≥ ∂(w)

∂2 = 0.431w1 + 0.310w2 + 0.541w3 + 0.517w4

≥ ∂(w)

∂3 = 0.347w1 + 0.310w2 + 0.274w3 + 0.433w4

≥ ∂(w)

∂4 = 0.750w1 + 0.446w2 + 0.522w3 + 0.519w4

≥ ∂(w)

0.08 < w1 − w2 < 0.12

w2 − w4 > 0.05

w3 − w1 < 0.02

w1 + w2 + w3 + w4 = 1

wi > 0.10, i = 1, 2, 3, 4

Step 7 (Obtain the Optimal Criteria Weights): Determine
the optimal weight of the QoS’s criteria. By solving the above
model, the optimal weights of the QoS indicators are: w∗1 =
0.322, w∗2 = 0.221, w∗3 = 0.324, w∗4 = 0.133.
Step 8 (Calculate the Optimally Weighted Cloud Decision

Matrix): Using Equation (21) to determine the optimally
weighted cloud decision matrix.
Step 9 (Determine the Positive-Ideal and the Negative-

Ideal Solutions): The positive-ideal and negative-ideal solu-
tions are calculated by Equation (22) and Equation (23),
as shown in Table 8.

The results of the optimal weighted cloud model for each
criterion of cloud services A1, A2, A3 and A4 are shown
in Figure 6(a), Figure 6(b), Figure 6(c), and Figure 6(d).
The corresponding positive-ideal and negative-ideal solution
cloud model are shown in Figure 6(e) and Figure 6(f). The

TABLE 8. Positive-ideal and negative-ideal solution of the decision
criteria.

FIGURE 6. The optimal weighted cloud model for criteria.

TABLE 9. The distance between the alternatives and the ideal solution.

QoS of the corresponding cloud service can be seen intu-
itively by the point cloud distribution for each criterion.
Step 10 (Calculate the Distance Between the Alternatives

and the Ideal Solution): Equation (24) and Equation (25) are
used to determine the distance between a cloud service’s QoS
and the ideal solution. The results are shown in Table 9.
Step 11 (Calculate the Relative Closeness of the Alter-

natives and Rank the Alternatives): We now calculate the
relative closeness Gi of cloud service Ai, and the results are
as follows: G1 = 0.528, G2 = 0.767, G3 = 0.331, G4 =
0.547. Therefore, the optimal ranking for the alternative cloud
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TABLE 10. Ranking results of alternatives using different methods.

services is A2 > A4 > A1 > A3, and the greatest QoS for
enterprises is cloud service A2.

C. COMPARATIVE STUDY
To verify the effectiveness and superiority of the evaluation
method we propose, we performed an analysis based on
the same case example and choose the fuzzy TOPSIS [53],
the improved GRA [54], and the improved VIKOR [55] to
facilitate comparative analysis. The ranking results of the four
alternative cloud services determined by these methods are
listed in Table 10.

From the results in Table 9, it is easy to see that the most
suitable cloud service for the considered application is still
A2, according to both the proposed method and the listed
methods. The cloud service ranking results of our proposed
MCDM scheme are completely consistent with the ranking
results obtained through the improved VIKOR method and
the improved GRA method. That proves the effectiveness
of the proposed method. However, compared with the listed
methods, the apparent advantages of the method proposed in
this study are as follows:

(1) Using the cloud model theory, the model can reflect
both the vagueness of linguistic evaluation informa-
tion and the randomness of criteria. Our method pre-
serves the integrity of linguistic information to achieve
conversion of qualitative information into quantitative
information.

(2) The proposed method considers that decision mak-
ers adopt psychological behaviors such as reference
dependence and loss aversion. Using the cloud distance
measurement algorithm to calculate the distance and
similarity between each expert evaluation cloud and
the arithmetic average cloud to determine the dynamic
experts weights can avoid the subjective negative influ-
ence of the decision maker.

(3) TOPSIS improved by the GRA is used to define the
relative closeness of alternatives. By establishing a
multi-objective optimization model that maximizes the
relative closeness of all alternatives, the optimal criteria
weights can be determinedmore accurately, objectively
and reasonably.

D. SENSITIVITY ANALYSIS
Taking into account that because experts will always lack
knowledge to a certain extent, and that knowledge itself has
limitations, there is an inherent uncertainty in the evaluation

FIGURE 7. Sensitivity analysis of our proposed MCDM scheme.

of some program criteria; therefore, we use the perturbation
method to conduct a sensitivity analysis of expert evalua-
tion, that is, after the expert evaluation in decision-making
is slightly disturbed, each potential cloud corresponds to
changes in service priorities. Disturbance expert Ek evaluates
Sn on the linguistic term of criterion Cj, and records the distur-
bance as Sm, and m is not equal to n. E3 and E7 are randomly
selected, and the evaluations of these two experts on different
criteria are disturbed, respectively. m takes all the numbers
from 0 to 6 except n in turn, for 48 trials. We then calculate
the final relative closeness of different cloud services, and
produce the result shown in Figure 7.

It can be seen from Figure 7 that the evaluation changes
made by the experts on the criteria have a significant impact
on the relative closeness of the alternatives because the
multi-criteria decision-making framework we propose uses
the same group of experts to evaluate the weights and indi-
cators, and the individual experts’ determinations will have a
more significant impact on the results. However, the stability
of the optimal scheme obtained in the 48 test results is rel-
atively good (the optimal scheme has only changed 2 times,
accounting for 4.2% of the total test). In the actual evaluation,
the expert group can participate in evaluating the criteria and
analyzing the impact of the relationship between the criteria
at the same time, which is more suitable for management
and decision-making regarding cloud service choice for the
vehicle dispatching platform. The proposed method height-
ens the already dominant position of cloud service purchasers
in cloud service management and supervision.

V. CONCLUSION AND FUTURE WORK
In this study, we present a practical integrated MCDM
scheme for cloud systems that assesses and selects the most
appropriate cloud service considering QoS criteria. From the

VOLUME 9, 2021 88401



L. Liu et al.: Practical, Integrated MCDM Scheme for Choosing Cloud Services in Cloud Systems

perspective of cloud drop distribution, we propose a more
comprehensive and accurate cloud model distance measure-
ment algorithm, and apply it to the calculation of cloud model
similarity and the gray correlation coefficient. The dynamic
expert weights are determined by calculating the similarity
between the expert evaluation cloud model and the arithmetic
mean cloud model. By establishing a multi-objective opti-
mization model, the proposed method maximizes the relative
closeness of all alternatives to determine the weights of the
criteria. In addition, we propose an improved TOPSIS based
on GRA, using the cloud mode’s grey relational coefficient
to replace the direct weighted average method in the classic
TOPSIS method to analyze the similarities and differences
between the alternatives, and calculate the relative closeness
between the alternatives and the ideal solution. The cloud
model is used to represent decision-makers linguistic eval-
uation of alternative cloud services and an extension of the
classical TOPSIS is applied to generate alternative rankings.

Finally, as an illustrative example of introducing cloud
services into the scheduling platform of a mining company,
we reconstructed the QoS evaluation criteria for cloud ser-
vices from both application and service perspectives and
verified the effectiveness and robustness of the proposed
MCDM scheme. It is shown that the proposed cloud distance
measurement algorithm, from the perspective of cloud droplet
distribution, can effectively reflect the differences between
cloud models from a global perspective. Improved TOPSIS
based on GRA can ensure the consistency of the score dif-
ferences between the evaluation criteria when solving for the
criterion weights. Altogether, the proposed MCDM solution
can provide customers with decision-making consultations as
the demand for cloud services increases and can also pro-
vide guidance for the development direction of cloud service
providers.

Even with the advantages of our proposed scheme, there
are some limitations and room for further research. First,
the proposed method assumes that the deterministic linguis-
tic measurement provided by decision makers regarding the
alternative cloud services are correct. However, due to the
cognitive limitations of decision-makers, the evaluation of
indicators in the real world is often vague. Therefore, in the
future, we can use vague language terms to evaluate indi-
cators and study how to quantify them as cloud models.
Second, in the future, by studying the actual application of
cloud service in enterprises, building a more refined evalu-
ation index system and obtaining accurate evaluation index
data, re-evaluating the QoS of cloud services, and verifying
the effectiveness of the proposed methods, we can improve
cloud service QoS evaluation. Third, the proposed method’s
calculation time can be significantly reduced through soft-
ware development techniques that will facilitate a faster the
evaluation and selection of the cloud service with the high-
est QoS. Additionally, the proposed method should further
expand cloud service selection research by analyzing other
cloud services to enhance the external validity and universal
applicability of the research results.

APPENDIX
QUESTIONNAIRE ON QoS OF CLOUD SERVICES
The company needs to purchase cloud services for the truck
dispatch platform. Currently, four cloud service suppliers
provide four cloud services A1, A2, A3 and A4 as alterna-
tives. The content of the cloud service evaluation criteria is
described in the questionnaire. Please evaluate the alterna-
tives according to the cloud service information provided by
the suppliers and carefully compare the content of the cloud
service evaluation criteria. The preset linguistic assessment
terms set is {very poor, poor, medium poor, medium, medium
good, good, very good}= {S0, S1, S2, S3, S4, S5, S6}. Please
fill in the ‘‘Level’’ column.

Your evaluation is very important to the company’s devel-
opment, and please be sure to fill it out carefully.

Thanks for your cooperation!
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