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ABSTRACT This paper proposes FPGA realization of an IP core for generic fractional-order derivative based
on Grünwald-Letnikov approximation. This generic design is applied to achieve reconfigurable realization
of fractional-order chaotic systems. The fractional-order real-time configuration boosts the suitability of
this particular realization for different applications, including dynamic switching, synchronization, and
encryption. The proposed design targets optimized utilization of the FPGA internal resources and efficient
employment of the external peripherals: switches and I/O ports in the FPGA board. The digital design of the
fractional-order dependent terms: binomial coefficients and power function is proposed. Three approxima-
tions of the power function using curve fitting are compared, settling on the quadratic approximation that
balances accuracy and efficiency. Three fractional-order chaotic systems: Liu, Li and Chen four-wing, are
verified for both commensurate and incommensurate orders cases, using one approach for the commensurate
order case and two approaches for the incommensurate order case. The reconfigurable design is realized on
the Artix-7 FPGA board, yielding throughputs of 1.1266, 1.1266, and 1.434 Gbit/s for both commensurate
and incommensurate orders cases of the three systems, respectively. Compared to recent related works,
the proposed implementation demonstrates its efficient hardware utilization and suitability for potential
applications.

INDEX TERMS FPGA, fractional calculus, Grünwald-Letnikov, fractional-order chaotic systems.

I. INTRODUCTION
Chaos is reported in systems that are very sensitive to ini-
tial conditions such that a slight variation leads to a sig-
nificant difference in behaviour [1], [2]. Continuous-time
chaotic differential equations have higher dimension and time
series complexity than discrete-time maps. They must be
discretized and solved numerically to be effectively used
in digital communication and security applications. Frac-
tional calculus, which enables differentiation and integration
of arbitrary real order, can describe the actual dynamics of
natural phenomena more accurately than the special case of
integer order [3]. It also enhances the controllability through
the extra degrees of freedom offered by the fractional orders.

Fractional calculus and chaos-based applications have
gained increasing attention in many fields such as controller
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design [4]–[6], communications systems [7], synchroniza-
tion [8], traffic flow control [9], encryption [10]–[14],
pseudo-random number generators [15]–[17], oscillator
design [18], [19], filters [20], [21], deep learning and
convolutional neural networks [22] and bioimpedance
modeling [23], [24].

The fractional-order derivative/integral has many defini-
tions including the Riemann-Liouville (RL), Caputo and
Grünwald-Letnikov (GL) [25]. The RL definition is given
by [25]:

RL
a Dqt f (t) =

1
0(n− q)

dn

dtn

∫ t

a

f (τ )
(t − τ )q−n+1

dτ. (1)

The Caputo definition is given by [25]:

C
a D

q
t f (t) =

1
0(n− q)

∫ t

a

f (n)(τ )
(t − τ )q−n+1

dτ, (2)
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FIGURE 1. The time line of GL digital realization and the proposed improvement.

where q is the fractional-order and n − 1 < q < n. The
summation form of the GL definition is given by [25]:

GL
a Dqt x(t) =

1
hq

b(t−a)/hc∑
j=0

w(q)
j x(t − jh), (3)

where w(q)
j are the binomial coefficients calculated recur-

sively as:

w(q)
0 = 1, w(q)

j =

(
1−

q+ 1
j

)
w(q)
j−1, j = 1, 2, .. (4)

Although fractional-order chaotic systems provide several
advantages in various applications, their hardware imple-
mentation faces some challenges due to memory depen-
dence [26]–[28]. With the rise of digital signal processors
and Field-Programmable Gate Arrays (FPGAs), realizations
in digital hardware have become more practical for industrial
use [29]. Fixed-point operations are widely used for hardware
realizations to save costs and enhance speed. However, a high
order of approximation is required to reach a good computa-
tional throughput.

Various methods have been proposed to realize the
fractional-order integration and differentiation opera-
tors [29]–[35]. In some of these methods, e.g. [29], [30],
high-level software such as MATLAB was used to generate
the Hardware Description Language (HDL) code of these
operators based on Finite Impulse Response (FIR) filter.
Other researches [36] presented implementations based on
LabVIEW. Nevertheless, they neither improved the perfor-
mance nor optimized the hardware resources. Digital design
and FPGA implementation of GL and Caputo derivatives
were presented in [31]. The advantage of GL over Caputo
in digital realization include smaller area, better perfor-
mance, avoiding the complexity of implementing Sinc or
Gaussian functions, unlike Caputo implementation [31].

Major advantages for the GL over RL and Caputo definitions
in digital applications are the GL discretized form and the
short memory principle [31]. For FPGA implementation of
GL, a fixed window size approximation of length L is given
by:

GL
t−LD

q
t x(t) =

1
hq

L∑
j=0

w(q)
j x(t − jh), (5)

where h is the step size, L is the window size. Based on the
short memory principle, the error due to this approximation
is bounded by [31]:

1(t) =
∣∣∣GLa Dαt f (t)−

GL
t−LD

α
t f (t)

∣∣∣ ≤ ML−α

|0(1− α)|
, (6)

where a + L < t < b and |f (t)| < M when a < t < b. So,
it can be inferred that the error is reduced by increasing the
window size.

Figure 1 presents the time line of GL digital realization,
which has been gradually enhanced since [31], in which
FPGA implementation of the GL operator was proposed
using the window approach. The achieved throughput of
GL in [31] was 1.7315 Gbit/s. The limitation of [31] is the
GL output latency caused by the final stage of the design.
So, in [32], a different architecture of fractional-order dif-
ferentiator based on GL operator was proposed using the
window approach and the pipelining technique that resulted
in higher frequency and, hence, higher throughput. The
achieved throughput of GL in [32] was 4.4 Gbit/s. How-
ever, the proposed design in [32] was not reconfigurable,
and the fractional-order was provided at the design time and
cannot be changed in real-time. Afterwards, in [33], a new
algorithm was proposed to implement the fractional-order
integrator and differentiator based on GL using the win-
dow and linear approximation approaches. To achieve bet-
ter accuracy, two enhanced versions of the GL fractional
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order integrator and differentiator: the window and quadratic
approximation approach and the piece-wise linear (PWL)
approximation approach, were proposed in [34]. The PWL
approach improved the maximum absolute error than the
linear, and quadratic approximation approaches as reported
in [34]. Still, no reconfigurability was introduced in these
approaches. In [35], an enhanced design of the GL was
proposed. However, [35] did not validate the fractional-order
real-time configuration and proposed a variable-order system
switching between only two fractional-order values stored in
the design.

More recent researches presented applications of GL dig-
ital realization, such as: [37], which presented an auto-
mated digital design tool of a fractional-order controllable
multi-scroll attractor. Moreover, fractional-order chaotic
systems based on the GL realization were employed in
encryption applications [12]. However, all these works lack
reconfigurability where they provided fractional orders at the
design time. Any change in the fractional-order value requires
a change in the hardware realization and, consequently, a new
HDL code.

The FPGA realization of IP core for generic fractional-order
derivative, which allows the reconfigurability of fractional
orders in the processing time, is required for different poten-
tial applications. This generic FPGA system can realize
many fractional-order applications on hardware, e.g., edge
detection [38], [39], control [40], [41], synchronization [42]
and encryption [43]. Additionally, it can replace the cur-
rent realizations of mixed-signal and digitally implemented
fractional-order applications with the reconfigurable one,
e.g., analog/mixed-signal systems [44], [45], control [46] and
encryption [12], [47]–[49]. Furthermore, it can be used in
variable-order chaotic systems [50], [51], dynamic switching
and synchronization [52], and encryption applications with
dynamic encryption key [53]. This paper proposes a reconfig-
urable GL-based design of fractional-order chaotic systems,
which enables introducing the fractional-order directly in
real-time from the FPGA board. The usage of FPGA board
switches and I/O ports validates changing the fractional order
in real-time. It achieves a generic design which solves the
lack of reconfigurability problem in [31]–[35]. Digital design
and hardware architecture of the computational blocks for
fractional-order dependent terms are proposed. The recon-
figurable design is applied to three different fractional-order
chaotic systems: Liu, Li and Chen four-wing with optimized
hardware and the possibility of changing the fractional-order
through a wide range in real-time, unlike the system in [35].
The proposed design and implementation targets an effi-
cient utilization of FPGA internal resources and the external
peripherals: switches and I/O ports in the FPGA board.

The rest of this paper is organized as follows: Section II
reviews the GL-based solution of fractional-order chaotic
systems and the chaotic properties of three systems used
for validation. Section III describes the digital design
of the fractional-order dependent terms in the proposed
reconfigurable generic GL and their hardware architecture.

Section IV extends the proposed design to implement three
reconfigurable fractional-order systems, where one approach
for the commensurate order case and two approaches for the
incommensurate orders case are presented. Section V pro-
vides the FPGA simulation and experimental results for both
commensurate and incommensurate cases. The hardware
resources utilization and efficiency are compared, discussing
their suitability for potential applications. A comparison is
also made between Liu system implementation based on
reconfigurable GL and based on the traditional one in [32]
and other recent related works. Finally, Section VI concludes
the work.

II. GL-BASED SOLUTION OF THREE FRACTIONAL-ORDER
CHAOTIC SYSTEMS
The general form of a fractional order system with three
differential equations is given by:

Dq1x = f1(x, y, z), (7a)

Dq2y = f2(x, y, z), (7b)

Dq3z = f3(x, y, z), (7c)

The GL definition of this system is as follows [3]:

x(tk−1) = f1(x(tk−1), y(tk−1), z(tk−1))hq1 −
n∑
j=1

w(q1)
j x(tk−j),

(8a)

y(tk−1) = f2(x(tk−1), y(tk−1), z(tk−1))hq2 −
n∑
j=1

w(q2)
j y(tk−j),

(8b)

z(tk−1) = f3(x(tk−1), y(tk−1), z(tk−1))hq3 −
n∑
j=1

w(q3)
j z(tk−j),

(8c)

where q1, q2, q3 are the fractional orders, n = L for a window
size L and approximated GL operator and n = k when the
whole state memory is used in calculations.

A. LIU SYSTEM
The fractional-order Liu system [3], [54] is given by:

Dq1x = −ax − ey2, (9a)

Dq2y = by− dxz, (9b)

Dq3z = −cz+ mxy, (9c)

and can be solved based on (8) as:

x(tk−1) = (−ax(tk−1)− ey2(tk−1))hq1

−

L∑
j=1

w(q1)
j x(tk−j), (10a)

y(tk−1) = (by(tk−1)− dx(tk−1)z(tk−1))hq2

−

L∑
j=1

w(q2)
j y(tk−j), (10b)

z(tk−1) = (−cz(tk−1)+ mx(tk−1)y(tk−1))hq3
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−

L∑
j=1

w(q3)
j z(tk−j), (10c)

where h = 0.01, a = e = 1, b = 2.5, d = m = 4, c = 5
and L = 16. The equilibrium points and the corresponding
eigenvalues for Liu system are given in Table 1. From the
eigenvalues of the linearized Jacobian matrix, E2,3 are saddle
points of index two as they have two unstable eigenvalues
and, hence, a two-scroll attractor exists.

TABLE 1. Liu system equilibrium points, the corresponding eigenvalues
and equilibrium point type.

B. LI SYSTEM
The fractional-order Li system [55] is given by:

Dq1x = a(y− x), (11a)

Dq2y = (c− a)x + cy− dxz, (11b)

Dq3z = −bz+ ey2, (11c)

and can be solved based on (8) as:

x(tk−1) = (a(y(tk−1)− x(tk−1)))hq1

−

L∑
j=1

w(q1)
j x(tk−j), (12a)

y(tk−1) = ((c− a)x(tk−1)+ cy(tk−1)

−dx(tk−1)z(tk−1))hq2 −
L∑
j=1

w(q2)
j y(tk−j), (12b)

z(tk−1) = (−bz(tk−j)+ ey2(tk−j))hq3

−

L∑
j=1

w(q3)
j z(tk−j), (12c)

where h = 2−8, a = 8, b = 1, c = 8, d = 1, e = 1
and L = 19. Similarly, the stability of Li system is studied
in Table 2 indicating the existence of two-scroll attractor.

C. CHEN FOUR-WING SYSTEM
The fractional-order Chen four-wing system [56] is given by:

Dq1x = ax − yz, (13a)

Dq2y = −by+ xz+ d |x| , (13b)

Dq3z = −cz+ xy, (13c)

and can be solved based on (8) as:

x(tk−1) = (ax(tk−1)− y(tk−1)z(tk−1))hq1−
L∑
j=1

w(q1)
j x(tk−j),

(14a)

y(tk−1) = (−by(tk−1)+ x(tk−1)z(tk−1)

TABLE 2. Li system equilibrium points, the corresponding eigenvalues
and equilibrium point type.

+d |x(tk−1)|)hq2 −
L∑
j=1

w(q2)
j y(tk−j), (14b)

z(tk−1) = (−cz(tk−j)+ x(tk−j)y(tk−j))hq3−
L∑
j=1

w(q3)
j z(tk−j),

(14c)

where h = 2−8, a = 20
7 , d = 0.5, b = 10, c = 4 and

L = 20 for the commensurate orders case q1 = q2 = q3 and
L = 25 for the incommensurate orders case q1 6= q2 6= q3.
The system has only one equilibrium point at the origin
with eigenvalues λ = −10,−2, 207 indicating instability and
chaotic behavior.

Table 3 shows samples of the behavior of the three systems
at different values of the fractional orders for the commen-
surate order case. In addition, Fig. 2 shows their continuous
bifurcation diagram versus 0.7 < q1 < 1, where q2 =
q3 = q1. It shows that the three systems have a relatively
wide range of fractional orders corresponding to chaotic
behavior. Hence, a reconfigurable digital design that directly
introduces the fractional-order to the FPGA board and allows
its real-time change is beneficial.

III. RECONFIGURABLE GL DIGITAL DESIGN
This section illustrates the proposed reconfigurable generic
GL digital design and its hardware architecture.

A. BINOMIAL COEFFICIENTS AND GENERIC GL BLOCK
The GL implementation of [32] subdivides its operations into
two parts. The first part is the binomial coefficients given
by (4), which were stored in a LUT. The second part is
the summation of (5), which was implemented by row and
column vector dot product as shown in Fig. 3. Each upcoming
input is multiplied by all the binomial coefficients based on
the fixed window approach. The output is the summation of
(xjwi) product at different times, where j = {0, 1, . . . , n} and
i = {0, 1, . . . , n}. Two LUTs are required in the hardware,
the first one stores the binomial coefficients w0 to wn, and
the second one stores the output of the addition from (xiw1+

d1) to (xiwn + dn) with zero padding in the most significant
part while (x0w0 + d0) is directly taken as the first output.
The input is multiplied by all the binomial coefficients stored
in the first LUT (Coefficients LUT), then the output is added
to the data previously stored in the second LUT (Data LUT).
Multipliers and adders are required to accumulate the output
of the GL design [32]. The main problem in the GL imple-
mentation of [32] is that it uses fixed binomial coefficients
stored in a LUT. Any change in the fractional-order value
requires a new set of coefficients to be stored in the LUT.
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TABLE 3. Simulation results for Liu, Li and Chen four-wing systems.

FIGURE 2. Bifurcation diagrams of the commensurate fractional-order systems a) Liu b) Li c) Chen four-wing.

The proposed design in this paper solves the design limitation
in [32] by generating the binomial coefficients for any change
in the fractional-order.

Figure 4 shows the digital realization for the proposed steps
of generating the binomial coefficients calculated from (4)
towards computing generic GL using the fractional-order q
as an external input. The proposed reconfigurable GL output
presents the summation term in the differential equations of
a fractional-order chaotic system (8). The proposed design
requires three adders, three multipliers, divider, inverter,
counter, demux, two LUTs and four registers to store the
fractional-order, the coefficient value, the input and the

output, respectively. The proposed reconfigurable generic GL
works as follows:
• The fractional-order, e.g., q is stored in a register of
width 14-bit.

• The fractional-order q is added to one, and the counter
value j is multiplied by one; then the addition’s output is
divided by the multiplication’s output. This multiplica-
tion is to reserve the integer value of j into a fixed-point
representation to be used in the division operation with-
out affecting the counter value. This operation avoids the
complexity in implementing 1/j generation block using
LUT or quadratic approximation in [35].
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FIGURE 3. Summation term of (5).

• The divider’s output is subtracted from one and the
output is multiplied by the value w0 stored in a register
to produce w1 which is reserved in the same register to
be used in the following cycles.

• Consequently, q is used to generate all binomial coef-
ficients (w0,w1, . . . ,wn) for the chosen window size L
then the coefficients are stored in the Coefficients LUT.

• The input signal, e.g., x is initialized and stored in a
register and then updated every clock cycle.

• Every clock cycle, the input x is multiplied by all the
coefficients stored in the Coefficients LUT, and the mul-
tiplication output is added to the data previously stored
in the Data LUT, where (d0, d1, . . . , dn) are initialized
to zero.

• The GL output in the first cycle will be (x0w0 + d0) and
the results (x0w1 + d1), . . . , (x0wn + dn) will be stored
in the Data LUT.

The fractional-order input q is a 14-bit fixed-point, 2b for
the integer part and 12b for the fractional part. The input x
is defined as a 28-bit fixed-point, 8b integer part and 20b
fractional part. The values stored in the Coefficients LUT
are 22-bit fixed-point, 2b for the integer part, and 20b for
the fractional part. They are calculated according to (4). The
values stored in the Data LUT are 50-bit fixed-point, 10b
for the integer part, and 40b for the fractional part. The
output is truncated to get 28b to be an input to the next
cycle. An adder’s input carry is one to perform the two’s
complement with the inverter for the subtraction operation.

B. POWER FUNCTION BLOCK USING CURVE FITTING
METHODOLOGY
The proposed hq generation block is realized based on curve
fitting methodology. The main problem in implementing
chaotic systems using reconfigurable GL design is realizing
the power operation hq for a fractional-order input q. Curve
fitting is the process of constructing a curve, or mathematical
function, that has the best fit to a series of data points [57],
[58]. The MATLAB curve fitting toolbox uses the method
of least squares when fitting data [58]. The goal of least
squares method is to minimize the sum of squares due to
error (SSE). SSE measures the total deviation of the response
values from the fit, which is also called the summed square
of residuals [57], [58]. SSE calculation is given by:

SSE =
nt∑
i=1

(yexp(ti)− ymod (ti))2, (15)

where yexp(ti) is the observed data value, ymod (ti) is the model
predicted value, nt is the number of data points. In our appli-
cation, the data points are exact, and the purpose is to find a
less complicated function approximation for hq. The curves
can be fit using polynomial and rational functions. Choosing
the optimal hardware polynomial fit with the best accuracy is
a real challenge. Based on section II, hq is generated for the
range 0.7 < q < 1. Three different approximations of hq are
assessed using MATLAB curve fitting toolbox [58].

1) LINEAR APPROXIMATION
Using linear approximation, hq is approximated to be a first
degree polynomial as follows:

hqLinear = c1q+ c2, (16)

where c1 = −0.09664 and c2 = 0.01038 for h = 0.01
and 0.7 < q < 1. Figure 5(a) shows the hardware imple-
mentation of hq based on linear approximation, where the
fractional-order input q in 14-bit fixed-point can be inserted
into the hardware block of the linear function with the con-
stant coefficients c1, c2 and generates hq in 22-bit fixed-point.
The proposed design requires one adder and one multiplier.

2) QUADRATIC APPROXIMATION
Using quadratic approximation, hq is approximated to be
a second degree polynomial as follows:

hqQuadratic = c1q2 + c2q+ c3, (17)

where c1 = 0.2193, c2 = −0.4695 and c3 = 0.2606 for
h = 0.01 and 0.7 < q < 1 for Liu system. Figure 5(b)
shows the hardware implementation of hq based on quadratic
approximation. The proposed design requires two adders and
three multipliers. For Li and Chen four-wing systems, c1 =
0.1454, c2 = −0.3007 and c3 = 0.1595 for h = 2−8 and the
same range of q.

3) RATIONAL APPROXIMATION
Using rational approximation, hq is approximated to be lin-
ear/linear rational function as follows:

hqRational =
c1q+ c2
q+ c3

, (18)

where c1 = −0.02169, c2 = 0.0277 and c3 = −0.3872 for
h = 0.01 and 0.7 < q < 1. Figure 5(c) shows the hardware
implementation of hq based on rational approximation. The
proposed design requires two adders, one multiplier and one
divider.

Figure 6 shows the three approximations versus the the-
oretical one for h = 0.01, where the accuracy is bet-
ter for both quadratic and rational approximations than the
linear one as further indicated by the shown error graph.
Goodness-of-fit statistics such as SSE andRootmean squared
error (RMSE) are used to evaluate the accuracy. RMSE is
known as the fit standard error, which estimates the ran-
dom component’s standard deviation in the data [57], [58].
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FIGURE 4. The hardware architecture of the reconfigurable generic GL design.

FIGURE 5. hq Hardware implementation using curve fitting (a) linear, (b) quadratic and (c) rational approximations.

TABLE 4. Goodness of fit statistics of different approximations for 0.01q.

The error calculations are given by:

MSE =
SSE

nt − np
, (19a)

RMSE =
√
MSE, (19b)

where np is the number of estimated model parameters.
Table 4 gives the values of the goodness-of-fit measures for
linear, quadratic and rational approximations for h = 0.01,
where the best accuracy is reported for the rational approxi-
mation design.

IV. RECONFIGURABLE FPGA IMPLEMENTATION OF
CHAOTIC SYSTEMS
The basic building blocks of the IP core for generic
fractional-order derivative based on GL: binomial coeffi-
cients generation and hq generation blocks are applied to
achieve the reconfigurability of the fractional-order chaotic
systems using the steps illustrated in the flowchart in Fig.7
and Algorithm 1. First, the inputs clk, rst and q are read from
the FPGA board. Then, the value of hq is calculated and used

FIGURE 6. hq Curve fit for h = 0.01.

to compute the first term of (8) (denoted in Fig.7 by x1, y1
and z1). Afterwards, the coefficients wj are generated and
used to calculate the second term of (8) (denoted in Fig.7 by
x2, y2 and z2). Finally, the outputs,which represent the state
variables x, y and z, are produced using the subtraction of the
two mentioned terms of (8) in each clk cycle.

Figure 8 presents the general design for any fractional-
order chaotic generator with three differential equations.
Three registers are used to store the state variables x, y and
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FIGURE 7. Flowchart of the IP core for generic fractional-order derivative
based on GL with a chaotic system application.

z. The numerical solution for each variable is implemented
using a combinational circuit. Three fractional orders are
introduced as inputs to the hq generation blocks and the
generic GL blocks. The fractional-orders are used to calculate
hq based on curve fitting approximation of Section III-B
and to evaluate the dot product in the system of differential
equations based on generic GL in Section III-A.
For the commensurate order case q1 = q2 = q3 = q,

the fractional-order is introduced to the FPGA board through
14 switches as shown in Fig. 9. For the incommensurate order
case q1 6= q2 6= q3, two approaches are introduced for
FPGA board connections. The first approach (A) is shown
in Fig. 10, where the fractional orders are introduced to the
FPGA board through 14 switches and 28 entries through JA,
JB, JC, JD ports. The second approach (B) shown in Fig. 11
targets a more efficient utilization of the peripherals, where
all the three fractional orders are inserted to the FPGA board
through the 15 switches only. Each fractional-order refer to
5 switches (bits) covering up to 25 levels or 32 values. For
example, to cover the range of orders from 0.7 to 1 with step
0.01, it can be distributed on 31 levels as shown in Fig. 11.
In approach (A), the fractional-orders can vary through wide

Algorithm 1 Pseudo Code of the IP Core for Generic
Fractional-Order Derivative Based on GL With a Chaotic
System Application
1- Inputs: clk, rst, q, Outputs: x, y, z
2- Binomial coefficients generation

Definition of w0
for j = 1, . . . .,L do
wj = (1− ((1+ q)/(1 ∗ j))) ∗ wj−1
end for

3 -hq generation for quadratic approximation
hq = c1 ∗ q ∗ q+ c2 ∗ q+ c3

4- Chaotic system application
• Initialization of x, y, z
• First term of (8) computation

x1 = f1(x, y, z) ∗ hq

• Second term of (8) computation
x2 = d0 + (w0 ∗ x)
for j = 1, . . . .,L do
dj−1 = dj + (wj ∗ x)
end for

• x = x1 − x2
Similarly repeat for y and z calculation

range without constraints given the corresponding hq approx-
imation. However, in approach (B), the fractional-orders can
take one of the 32 values only and hence the corresponding
hq values are stored without the need for an approximation.
Consequently, approach (B) needs less computational circuits
than approach (A); yet, it consumes more storage for the
values of the fractional-orders and the corresponding hq.

Following Fig. 8, the hardware implementation of the
fractional-order Liu system (10) is illustrated in Fig. 12(a).
Each of the three registers x, y and z is represented by a 28-bit
fixed point, 8b for the integer part and 20b for the fractional
part. The proposed design requires six adders, eleven multi-
pliers, squarer, seven inverters, three hq generation blocks and
three generic GL blocks. The squarer is used to compute y2.
The binomial coefficients are 22-bit fixed-point, 2b the inte-
ger part and 20b for the fractional part, while the constants
are 28-bit fixed-point, 8b the integer part, and 20b for the
fractional part. The output of each multiplier and generic
GL blocks are truncated to get 28b for x, y and z. Similarly,
the hardware implementation of the fractional-order Li sys-
tem (12) is illustrated in Fig. 12(b). It requires seven adders,
nine multipliers, squarer, six inverters, in addition to the three
hq and generic GL blocks. The hardware implementation
of the fractional-order Chen four-wing system (14) is illus-
trated in Fig. 12(c). It requires seven adders, ten multipliers,
an absolute block used as a comparator, six inverters and the
same common blocks.

V. RESULTS AND DISCUSSION
First, we compare the proposed different curve fitting for hq

discussed in Section III-B experimentally. FPGA resources
summary for different approximations of 0.01q is presented
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FIGURE 8. Reconfigurable hardware architecture of fractional-order chaotic systems.

FIGURE 9. FPGA board connections for commensurate orders.

FIGURE 10. FPGA board connections for incommensurate orders using
approach (A).

in Table 5. The quadratic implementation consumes fewer
slices and slice registers than those in linear and rational
implementations. On the other hand, it consumes more DSPs.
The achieved throughput for linear, quadratic, and rational
approximations is 4.83, 2.76, and 0.253 Gbit/s, respectively.

FIGURE 11. FPGA board connections for incommensurate orders using
approach (B).

The proposed design for the reconfigurable fractional-
order systems is written in Verilog HDL with the simula-
tion of Xilinx ISE 14.7 and implemented on Xilinx FPGA
Artix-7 XC7A100TCSG324 by using Chip scope. The logic
in the FPGA resources tables is automatically chosen by the
compiler. Several compilations provide the same dynamics.
The maximum frequency refers to the global clock frequency
used to update the synchronous logic. The source of the clock
is the external crystal oscillator associated with the Artix-7
board. Summary of FPGA implementation results for Liu
system using different approximations for hq is presented
in Table 6. The achieved throughput is 1.1266 Gbit/s for the
three implementations. When compromising the utilization
and the approximation accuracy for the three implementa-
tions, the quadratic approximation is the most appropriate.
Hence, computing hq using quadratic approximation is
chosen for implementing Li and Chen four-wing sys-
tems to compromise between accuracy, utilization, and
speed.

Table 7 presents FPGA resources of Liu, Li and Chen
four-wing systems for the commensurate order case. The
achieved throughputs, in this case, are 1.1266, 1.1266 and
1.434 Gbit/s for the three systems, respectively.
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FIGURE 12. Reconfigurable hardware architectures of (a) Liu, (b) Li and (c) Chen four-wing systems.

Table 8 gives FPGA resources of the three systems for the
incommensurate order case for the two proposed approaches.
Approach (A) consumes fewer slices than approach (B) since
the fractional orders can be inserted directly into the design
in real-time. While in approach (B), the fractional orders are

selected in real-time among a specific set of values (31 val-
ues) stored in the design based on switch signals. Approach
(B) has less arithmetic complexity as there is no need
for hq generation blocks. So, it generally consumes fewer,
or sometimes equal, slice registers and DSPs as approach (A).
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TABLE 5. FPGA resources summary comparison using different approximations for 0.01q.

TABLE 6. Liu System FPGA resources summary comparison using different approximations for hq.

TABLE 7. FPGA resources summary comparison for the commensurate Liu, Li and Chen four-wing systems using quadratic approximation for hq.

TABLE 8. FPGA resources summary comparison for the incommensurate Liu, Li and Chen four-wing systems using approaches (A) and (B) and quadratic
approximation for hq.

TABLE 9. Comparison between the proposed implementation of Liu and Liu implementation in [32].

The systems are implemented at the same values of
the parameters given in Section II. Throughputs of
1.1266, 1.1266 and 1.434 Gbit/s are achieved for the incom-
mensurate order case of the three systems, respectively.
Figs. 13 show the experimental oscilloscope results using the
Artix-7 FPGAboard. Figs. 13 (a)-(c) show the commensurate
cases of Liu, Li and Chen four-wing systems, and Fig. 13(d)
shows the incommensurate case of Liu system (Approach A).

Table 9 presents a comparison between the proposed
implementation of Liu systemwith 28-bit fixed-point and Liu
system implementation in [32] with 32-bit fixed-point. The
proposed implementation achieves fewer slices by 82.95%,
less number of slice registers by 55%, higher frequency by
3.39% because it uses more optimal window size L and 28-bit
fixed-point for x, y and z instead of 32-bit fixed-point. The
proposed implementation consumes higher DSPs than [32]
due to the increase of the arithmetic operations needed for
achieving the reconfigurability. The lower throughput is owed

to its calculation method by multiplying the number of output
bits by the produced frequency, and the proposed Liu design
assigns fewer bits for x, y and z compared to the increase in
the produced frequency.

The reconfigurability of the GL design in [35] was not
verified, where the proposed system was limited to switch
between two fractional orders stored in the design using a
select signal, while this work achieved the real-time reconfig-
urability of the GL design. Additionally, hq calculation in [35]
was restricted to h values that equal power of 2, while this
work provided a generic design for any h value, which added
a greater tolerance in changing the step size than [35].

The proposed design and implementation represents an IP
core for reconfigurable fractional-order derivative based on
GL, which paves the way towards several applications that
require dynamic fractional-orders, including variable-order
chaotic systems, dynamic switching and synchronization
and encryption applications with dynamic encryption key.
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FIGURE 13. FPGA experimental results for the commensurate (a) Liu,
(b) Li, (c) Chen four-wing systems and (d) the incommensurate Liu system
(Approach A).

The proposed implementation can be further extended to
include real-time reconfigurability of all system parameters
with wide ranges corresponding to chaotic behavior. Further
optimization and time constraints can be explored to enhance
both hardware resources utilization and maximum frequency
and, hence, efficiency and throughput.

VI. CONCLUSION
A reconfigurable FPGA implementation of fractional-order
chaotic systems based on GL approximation was proposed.
The fractional-order real-time configuration was validated
unlike previous introduced works, which set its value at
design time. The proposed hardware architecture achieved
optimized utilization of the FPGA internal resources and
efficient employment of the external peripherals: switches
and I/O ports in the FPGA board. The digital design of
the fractional-order dependent terms: binomial coefficients
and power function was proposed. First, binomial coeffi-
cients were computed from the fractional order’s variable
value rather than stored in LUT for fixed orders. Second,
the power function hq was computed using curve fitting,
where the quadratic approximation balanced accuracy and
efficiency. Three fractional-order chaotic systems that exhibit
chaotic behavior for a wide range of the fractional-order
were selected for verification. The three systems were imple-
mented with reduced window size and the number of bits
assigned to the state variables for better utilization and effi-
ciency. Throughputs of 1.1266, 1.1266 and 1.434 Gbit/s were
achieved for both commensurate and incommensurate order
cases of the three systems, respectively.

The FPGA simulation and experimental oscilloscope
results for both commensurate and incommensurate cases

were demonstrated using the Aritex-7 FPGA board. Regard-
ing the incommensurate order case, approach (A) utilized
14 switches or 14 entries for each fractional-order and com-
puted hq, while approach (B) restricted each fractional-order
to 5 switches corresponding to 32 values and stores hq. Conse-
quently, approach (B) consumed more slices to store the val-
ues of the fractional-order and hq than those in approach (A).
However, approach (B) had fewer computational circuits,
which consumed fewer, or sometimes equal, slice registers
and DSPs than those in approach (A). The proposed Liu
achieved less number of slices than [32] by 82.95%, less num-
ber of slice registers by 55%, higher frequency by 3.39%; yet,
larger DSPs to achieve reconfigurability. Potential applica-
tions of the proposed reconfigurable implementation include
variable-order chaotic systems, dynamic switching and syn-
chronization, and encryption applications with a dynamic
encryption key.
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