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ABSTRACT Robust composite adaptive control designs for linearisable systems with known/unknown input
gain functions are presented. They mainly consist of a standard adaptive linearizing controller and an immer-
sion and invariance (I&I) based composite update algorithm, with the inclusion of a Lyapunov-based can-
celing term and a σ -modification term for ensuring the practical stability and preventing the parameter-drift
phenomenon at the same time. Next, the adding an integrator and the dynamic surface control (DSC)
techniques are incorporated for preventing the algebraic-loop problem in the latter case. In particular,
the proposed designs ensure the convergence of prediction errors to an order of the exogenous disturbance
without relying on persistent excitation (PE), which in turn improves the tracking performance significantly.

INDEX TERMS Adding an integrator, composite adaptive control, dynamic surface control, immersion and
invariance, smooth switching.

I. INTRODUCTION
Adaptive control incorporating a Lyapunov-based update
algorithm (LBUA) is now a standard tool for ensuring
the asymptotic tracking stability of a dynamical system
with parametric uncertainty [1], [2]. In the presence of
bounded disturbances, various modification terms, such as
the σ -modification, dead-zone, etc, can be included to ensure
the practical tracking stability and to prevent the occurrence
of the parameter-drift phenomenon simultaneously [2]. How-
ever, the online identification results are generally unsat-
isfactory due to the lack of prediction error terms in the
LBUA. Intuitively, more accurate identification implies better
tracking performance in practice.

Via either the filtering technique or a moving time
window of online integration of the regressor vector for
obtaining the prediction-error terms, versatile composite
adaptive control (CAC) schemes are now available in
the literature [1]–[9]. However, the former introduces extra
dynamics which may deteriorate the transient performance,
while the latter requires excessive computational burden.
Alternatively, the I&I method is a non-uncertainty equivalent
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approach which results in a filter-free, gradient-type param-
eter estimator [10]–[12]. By incorporating the so-called
dynamic regressor extension and mixing method [13], robust
stability of the parameter error dynamics with finite-time
convergence was achieved in [14], [15]. Noticeably, per-
formance improvement in the aforementioned works relies
on the parameter convergence, which in turn imposes var-
ious excitation criteria on the regressor vectors, such as
PE [3]–[7], internal excitation (IE) [9], relaxed PE [13],
[14], etc. Unfortunately, they are generally hard to ver-
ify beforehand [2], [11]. Accordingly, alternative approaches
for performance improvement relaxing such criteria are in
demand. In particular, issues regarding the convergence of
the prediction errors (not parametric errors) in the presence
of bounded disturbances and their influences on the tracking
performance remain open so far.

In this regard, CAC designs for linearisable systems
with known/unknown input-gain functions are presented
in this article. The update algorithm is constructed via
the I&I method with the inclusion of the LBUA and the
σ -modification terms for ensuring the practical stability and
the prevention of parameter-drift phenomenon at the same
time. Meanwhile, the adding an integrator technique [16]
and the DSC scheme are adopted for avoiding the possible
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algebraic-loop problems in cases when the input-gain func-
tions are unknown. More significantly, by exploring the fea-
tures of an invariant set with time-varying boundaries, it is
shown that the prediction errors can bemanaged to an order of
the exogenous disturbance without resorting to the aforemen-
tioned excitation criteria, which in turn improves the tracking
performance in a systematic way. The contributions of the
paper are summarized as follows
• Adaptive I&I control of a general linearisable system
with known/unknown input gain functions under exoge-
nous disturbances, to the best of our knowledge, is pre-
sented in the literature for the first time.

• Convergence of prediction errors and the corresponding
performance improvement are quantitatively character-
ized. In particular, it is shown that such an achievement
does not rely on PE or its variants, which facilitates its
practical applicability.

The rest of the paper is organized as follows. The
problem formulation is introduced in Section II. The pro-
posed control and parametric estimator designs for cases
with known/unknown input gain functions are detailed in
Section III/IV, respectively. Simulation works for demon-
strating the validity of the proposed designs follow up in
Section V. Conclusion is drawn in Section VI.

II. PROBLEM FORMULATION
Consider the following n’th-order linearisable system

ẋ1 = x2,
...

ẋn−1 = xn,

ẋn = g(x)u+ θTf φf (x)+ d(t), (1)

where x = [x1, x2, · · · , xn−1, xn]T ∈ Rn is the state vector;
u ∈ R is the control input; g(x) : Rn → R is the input-gain
function; θf ∈ Rr is the unknown constant parameter vector;
φf (x) : Rn → Rr is the known regressor; and d(t) is the
exogenous disturbance input satisfying |d(t)| ≤ ε, with ε
being an unknown positive constant.

This article aims to track a reference trajectory
xd (t) = [xd , ẋd , · · · , x

(n−1)
d ]T for x(t) via the adaptive I&I

approach. The following assumptions are first made herein.
• Assumption 1: The whole state x is measurable.
• Assumption 2: The reference trajectory xd (t) is
bounded and sufficiently smooth such that the signals
x(i)d , i = 0, · · · , n are available.

• Assumption 3: The regressor φf (x) is differentiable with
respect to its arguments.

• Assumption 4: g(x) is a C1 function bounded away from
zero for all x ∈ Rn.

As mentioned, despite that various CAC schemes are
now available in the literature, performance improvement of
these works generally relies on the convergence of parameter
errors, which in turn imposes certain excitation criteria on the
regressor vectors that are hard to verify beforehand. To relax

such restrictions, two I&I-based CAC designs are synthesized
in the sequel.

III. CASES WITH KNOWN g(x )
We first consider the case where g(x) is known exactly in
this section. It starts with a standard adaptive linearizing
control. An I&I-based update algorithm, modified from [11]
and [12], is developed next. Stability analysis for the overall
closed-loop system then follows up.

A. CONTROL LAW
To begin with, define the following auxiliary error
variable [1]

S = (s+ λ0)n−1e1, (2)

where s = d/dt , λ0 > 0 is a constant, and e = x − xd =
[e1, · · · , en]T .

Differentiating S in (2) with time, it results in

Ṡ = g(x)u+ θTf φf (x)+ d(t)+ p(t), (3)

where p(t) = −x(n)d +
∑n−1

i=1 (
n− 1
i

)λi0s
n−ie1, with (

n− 1
i

)

standing for the binomial coefficient.
By virtue of the exponential stability of the e1 dynamics on

the sub-manifold S = 0, control of the original n-dimensional
system (1) has been reduced to the stabilization problem of
the one dimensional S-dynamics in (3). To that end, the fol-
lowing adaptive linearizing control is adopted

u =
1
g(x)

(−ksS − p(t)− θ̂Tf φf (x)) (4)

where ks > 0 is a gain constant and θ̂f is the estimated
parameter vector for θf .

The resulting closed-loop system becomes

Ṡ = −ksS + θ̃Tf φf (x)+ d(t) (5)

where θ̃f = θf − θ̂f .
For updating θ̂f , the following LBUA is widely utilized

˙̂
θf = γ0Sφf (x)− σ θ̂f (6)

where γ0 > 0 is the update gain and−σ θ̂f is the so-called σ -
modification for preventing the parameter-drift phenomenon.

Next, by calculating the time derivative of the following
Lyapunov function

V1(S, θ̃f ) =
1
2
(S2 +

1
γ0
θ̃Tf θ̃f ) (7)

along the closed-loop system (5) and (6), after some straight-
forward manipulations, it yields

V̇1 ≤ −keV1 +
1
2
(ε2 +

σ

γ0
||θf ||

2) (8)

where ke = min(2ks − 1, σ ).
It can be easily seen from (8) that S(t), θ̃f (t) ∈ L∞, and

for any 0 < c0 < 1, there exists a T0 > 0, such that |S| ≤
((1+ c0)δ0/ke)1/2, ∀t ≥ T0, where δ0 = ε2 + (σ/γ0)||θf ||2.
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The ultimate boundedness of ei(t), i = 1, · · · , n follows
immediately [1]

|ei(t)| ≤
2i−1

λn−i0

√
(1+ c0)δ0

ke
, ∀t ≥ T0 (9)

Strictly speaking, an exponentially decaying transient term
should be added to the right-hand side of (9) when e(0) 6= 0
[1]. However, since it decays rapidly to zero and is therefore
neglected herein for simplicity and without loss of generality.

Despite its popularity, such an approach suffers from the
following two drawbacks.

D1): The bound for |θ̃Tf φf (x)| and its influences on the
tracking performance are not quantitatively character-
ized.

D2): To decrease the error bound in (9), the criteria of
ke = min(2ks − 1, σ ) � 1 and γ0 � σ have to
be fulfilled simultaneously, which may lead to poor
transients or even high-adaptation instability when
γ0 � σ � 1 [2], [17].

In this regard, an I&I-based composite update algo-
rithm (CUA) lifting these two restrictions is developed in the
sequel.
Remark 1: Clearly, the more demanded asymptotic track-

ing stability can be attained via including a discontinuous
control term, such as sign(S), for counteracting the distur-
bance d(t) in (1). However, the unwanted chattering behavior
may be ignited at the same time. To prevent its occurrence,
a continuous approximation of sign(S), such as tanh(S),
is generally adopted. However, only practical stability can be
achieved instead [1], [21]. Besides, approximation errors are
inevitable and therefore issues of performance improvement
for a general robust adaptive control arise again. Conse-
quently, the proposed design covers a wide variety of appli-
cations.

B. COMPOSITE UPDATE ALGORITHM
The adaptive I&I is a non-certainty equivalent approach
which expresses the θ̂f in (4) as the sum of a deliberately
selected design function hf (x) ∈ Rr and the estimated param-
eter vector ϑf (t) ∈ Rr , i.e. [10], [11]

θ̂f (t)
1
= hf (x)+ ϑf (t), (10)

where

hf (x) = γ
∫ xn

0
φf (x1, · · · , xn−1, ξ )dξ, (11)

with γ > 0 being the gain constant, while ϑf (t) is updated by

ϑ̇f (t) = −
n−1∑
k=1

∂hf (x)
∂xk

xk+1 − γ0{γ1[g(x)u+ θ̂Tf φf ]φf

− Sφf } − σ θ̂f (12)

where γ1 = γ /γ0.

By a direct differentiation of (10) and taking (11)-(12) into
account, it yields

˙̂
θf (t) = ḣf (x)+ ϑ̇f (t)

=

n∑
k=1

∂hf (x)
∂xk

ẋk + ϑ̇f (t)

= γ0{Sφf + γ1(θ̃Tf φf + d(t))φf } − σ θ̂f (13)

As can be seen, the first term of (12) cancels out the
time derivative dhf (x)/dt to yield the desired remaining term
(∂hf (x)/∂xn)ẋn. On the other hand, it is reminded that (13) is
non-implementable and for the stability analysis only.

C. STABILITY ANALYSIS
Define

ρ1 =

√
(1+ c1)[(1+

1
γ1

)ε2 +
σ

γ
||θf ||2]

ρ2 =

√
(1+ c2)(ρ21 + ε

2)

2(ks − 1)
(14)

where 0 < c1, c2 < 1 are tunable constants.
The main results are summarized in the following.
Theorem 1: Consider the system (1), the controller (4),

and the parametric estimator (10)-(12). For any bounded
initial (x(0), θ̂f (0)), the following properties are ensured if
ks > 1.
P1: x(t), θ̂f (t), u(t) ∈ L∞,∀t ≥ 0;
P2: There exist a finite positive number T1 and a T2 ≥ T1,

such that

|θ̃Tf φf (x)| ≤ ρ1, ∀t ≥ T1, (15)

and

|ei(t)| ≤
2i−1

λn−i0

ρ2, ∀t ≥ T2, (16)

where i = 1, · · · , n.
Proof:

The time derivative of V (S, θ̃f ) in (7), along the trajectories
of the closed-loop system (5) and (13), can be calculated as
follows

V̇1 = SṠ −
1
γ0
θ̃Tf
˙̂
θf

= S(−ksS + θ̃Tf φf + d(t))− S(θ̃
T
f φf )

−γ1(θ̃Tf φf )(θ̃
T
f φf + d(t))+

σ

γ0
θ̃Tf θ̂f (17)

By completing the squares, Sd ≤ 0.5(S2+ ε2), (θ̃Tf φf )d ≤
0.5((θ̃Tf φf )

2
+ ε2), θ̃Tf θ̂f ≤ 0.5(−θ̃Tf θ̃f + ||θf ||

2), and then
substituting them into (17), it yields

V̇1 ≤ −keV1 −
γ1

2
(θ̃Tf φf )

2
+
δ1

2
(18)

where δ1 = (1+ γ1)ε2 + (σ/γ0)||θf ||2.

VOLUME 9, 2021 88039



J.-T. Huang, Y.-W. Jiang: Robust CAC of Linearisable Systems With Improved Performance

Define

b(t) = max[0,
(1+ c1)δ1 − γ1(θ̃Tf φf )

2

2ke
] (19)

Consider the case when b(t) = 0, or equivalently,
γ1(θ̃Tf φf )

2
≥ (1+ c1)δ1. Then (18) becomes

V̇1 ≤ −keV1 −
c1δ1
2

≤ −ke(V1 − b(t))−
c1δ1
2

(20)

Next consider the case when b(t) > 0, i.e. γ1(θ̃Tf φf )
2 <

(1+ c1)δ1. By adding and subtracting keb(t) to the righthand
side of (18), it becomes

V̇1 ≤ −ke(V1 − b(t))−
c1δ1
2

(21)

Clearly, (20) and (21) together imply that V̇1(t) ≤
−c1δ1/2, ∀V1(t) ≥ b(t), t ≥ 0. Since V1(t) decays with a
speed no less than c1δ1/2 when V1(t) > b(t), there then exists
a positive number T1 (depending on the initials) such that
(S, θ̃f ) ∈ �1(t) = {(S, θ̃f )|V1(t) ≤ b(t)},∀t ≥ T1. Conceptu-
ally,�1 can be regarded as an invariant set with time-varying
boundaries. Since 0 ≤ b(t) ≤ (1 + c1)δ1/2ke, it follows that
S(t), θ̂f (t) ∈ L∞ and consequently x(t), u(t) ∈ L∞. P1 is thus
proven.

To prove (15), we only need to consider the case when
b(t) > 0, t ≥ T1 since b(t) = 0, t ≥ T1 implies
that V1(t) ≤ 0 and therefore θ̃Tf φf (x) = 0. Under such
circumstances,

(θ̃Tf φf )
2
≤ ||θ̃f ||

2
||φf ||

2

≤ 2γ0||φf ||2V1

≤
γ0||φf ||

2[(1+ c1)δ1 − γ1(θ̃Tf φf )
2]

ke
(22)

and hence

γ0(1+ c1)δ1||φf ||2 ≥ (ke + γ0γ1||φf ||2)(θ̃Tφf )2

≥ γ0γ1||φf ||
2(θ̃Tφf )2 (23)

The ultimate bound in (15) then follows immediately.
To see how the proposed estimation design affects

the tracking performance, consider the Lyapunov function
V2(S) = 0.5S2. Its time derivative along (5) can be calculated
as

V̇2(S) = SṠ

= S{−ksS + θ̃Tf φf + d(t)}

≤ −(ks − 1)S2 +
(θ̃Tf φf )

2

2
+
d(t)2

2

≤ −2(ks − 1)V2 +
ρ21 + ε

2

2
, ∀t ≥ T1. (24)

Therefore, given a positive number 0 < c2 < 1, there
exists a T2 ≥ T1, such that

|S(t)| ≤ ρ2, ∀t ≥ T2. (25)

Similar to (9), the results in (16) can be attained
immediately.
Remark 2: The proposed design possesses the following

advantages.

(i) The ultimate bound in (15) can be decreased to an
order O(ε) sustained that (σ/γ )|θf |2 � 1. Note that
such a criterion does not necessarily imply a large γ ,
just a sufficiently small σ/γ ratio, e.g., σ = 0.01
and γ = 1.0. Under such circumstances, (15) can be
approximated as

|θ̃Tf φf | ≤ ρ1 ≈

√
(1+ c1)(1+ γ

−1
1 )ε (26)

Accordingly, the drawback stated in D1 is conquered.
(ii) The ultimate tracking error bound in (16) can be arbi-

trarily decreased via using sufficiently large control
gain ks alone, which is apparently less restrictive than
the criteria stated in D2.

(iii) The design in [11] was a disturbance-free modular
design, which required the prior boundedness of x(t).
Via including the LBUA and the σ -modification terms
herein, not only the aforementioned prerequisite is
relaxed, but also the parameter-drift phenomenon is
prevented at the same time.

(iv) The prediction errors in most of the existing CAC
schemes are obtained via either the filtering tech-
nique [1], [3], [5]–[8] or a moving time window of
online integration of the regressor vector, i.e. Q(t) =∫ t
t−τd

8(x(τ ))8T (x(τ ))dτ , where τd > 0 is the width
of the time window and8(x(t)) is the regressor vector
[4], [9]. As mentioned previously, the former intro-
duces extra filter dynamics while the latter requires
excessive computational burden. In contrast, the pro-
posed CUA in (10)-(12) is a filter-free approach and
hence conquers the drawback of the former. On the
other hand, it is reminded that the term Q(t) above can
only be attained via a real-time integration. In contrast,
the integration in (11) can be carried out off-line when
φf (x) is integrable with respect to xn. The computa-
tional burden of the former is alleviated under such
circumstances. Most of all, the ultimate boundedness
of θ̃Tf φf and its influence on the tracking performance
can be quantitatively characterized with relative ease
in the design herein.

IV. CASES WITH UNKNOWN g(x )
In this section, we consider the case where g(x) is with
linear parametric uncertainty in a form of g(x) = θTg φg(x),
θg, φg(x) ∈ Rm and φg(x) is differentiable in x. Moreover,
we assume that

• Assumption 5: g(x) fulfills

gm ≤ g(x) ≤ gu(x) (27)

where gm > 0 and gu(x) : Rn → R+ ∈ C1 are known
a priori. Note that (27) covers the typical assumption
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in [19] where gu(x) is a positive number or the one in [6]
with g(x) being an unknown positive number.

A. EXISTING CAC ALGORITHM
With θg being unknown, the adaptive linearizing control
in (28) becomes

u =
1
ĝ(t)

(−ksS + ϕ(θ̂f , x)), (28)

where ϕ(θ̂f , x) = −θ̂Tf φf (x) − p(t), ĝ(t) = θ̂Tg (t)φg(x), and
θ̂g(t) is the estimation of θg.
Note that the so-called control singularity may occur when

the denominator in (28) approaches zero. The smooth switch-
ing methodology in [18] can be invoked to bypass such a risk.
The control law is now in a form of

u = −
ks
gm
S + B(ĝ)ua + (1− B(ĝ))ur , (29)

where

ua =
1
ĝ(t)

ϕ(θ̂f , x),

ur = −
ϕ(θ̂f , x)
gm

tanh(
Sϕ(θ̂f , x)

w0
), (30)

and B(·) is a switching function given by [18]

B(ζ ) 1= 1− exp(−(ζ/ws)2), (31)

with w0,ws > 0 and ζ ∈ R.
By decreasing B(ĝ) continuously to zero, the control

authority switches smoothly from the adaptive linearizing
control ua to the robust control ur and vice versa. Note that the
popular logic-based switching mechanism cannot be adopted
herein for its non-differentiability at the switching point.
Besides smoothness, B(ζ ) possesses the following desired
feature for annihilating the control singularity problem,

B(ζ )
ζ
≤ cs/ws, ∀ζ ∈ R (32)

where cs ≈ 0.64.
By substituting (28)-(30) into (3), it yields the following

closed-loop system

Ṡ = −
g
gm
ksS + θ̃Tψs + d(t)

−(1− B(ĝ))ϕ(1+
g
gm

tanh(
Sϕ
w0

)) (33)

where θ = col[θf , θg] and ψs = col[φf , (B(ĝ)ϕ/ĝ)φg].
For updating θ̂ (t), the following CUA is widely

adopted [6], [7]

˙̂
θ (t) = γ0(Sψs + γ1x̃n)− σ θ̂ (34)

where x̃n = xn − x̂n is the prediction error, with x̂n being
the output of the following serial-parallel identificationmodel
(SPIM) [2], [8]

˙̂xn = −wpx̂n + wpxn + θ̂Tg φg(x)u+ θ̂
T
f φf (x) (35)

where wp > 0 is a gain constant.

By subtracting the xn dynamics in (1) from (35), x̃n can
actually be expressed as

x̃n =
1

s+ wp
[θ̃Tg φg(x)u+ θ̃

T
f φf (x)+ d(t)] (36)

As mentioned in (iv) of Remark 2, the extra filter dynamics
in (35) may cause extra computation and discount the perfor-
mance improvement. We are thus motivated to synthesize the
I&I-based CAC design in the following.

B. CONTROL DESIGN
Before the start, the algebraic-loop problem, arising from the
dependence of the design function h(x, u) on u(S, θ̂ ), has
to be resolved first. Among others, the adding an integrator
technique in [16] is invoked herein. By inserting an integrator
between the control input u and the system, the resulting
extended system becomes

ẋ1 = x2,
...

ẋn = (θTg φg)xn+1 + θ
T
f φf + d(t),

ẋn+1 = u (37)

with the corresponding S dynamics

Ṡ = (θTg φg)xn+1 + θ
T
f φf + p(t)+ d(t), (38)

It is noted that the uncertainty in (37) now becomes the
extended-matching type as a price. The backstepping tool
emerges as the best candidate for the control design [19], [20].
Define the state variable

z = xn+1 − q (39)

where q(t) is the output of the following first-order filter

τ0q̇(t)+ q(t) = α(t), q(0) = α(0), (40)

with τ0 > 0 and α(t) being the virtual controller at disposal.
The DSC technique above is mainly for preventing the

algebraic-loop problem arising from the differentiation of
α during the backstepping design procedure, which will be
further clarified later on.

By replacing xn+1 in (38) with (α+z), followed by a direct
differentiation of (39), the extended tracking error system can
be rewritten as

Ṡ = (θTg φg)(α + z)+ θ
T
f φf + d(t)+ p(t)+ g(x)ν(t)

ż = u− q̇ (41)

where ν(t) = q(t)− α(t).
For stabilizing (41), the virtual/actual controllers are spec-

ified as follows

α = −
1
gm

[ks + a1gu(x)2 + b1(B(ĝe)
ϕ(θ̂f , x)

ĝ
)2]S

+B(ĝe)
ϕ(θ̂f , x)

ĝ
− (1− B(ĝe))

ϕ(θ̂f , x)
gm
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· tanh(
Sϕ(θ̂f , x)

w0
) (42)

u = −kzz+ q̇− Sgu(x) tanh(
zSgu(x)
w0

) (43)

where a1, b1 > 0 are tunable constants and
ĝe = xn+1θ̂Tg φg(x).
Instead of B(ĝ) in (29), the switching function B(ĝe) is

adopted in (42) for forming a prediction error term consistent
with the upcoming CUA and hence enhancing the perfor-
mance improvement.

By substituting (42)-(43) into (41), it yields the following
closed-loop system

Ṡ = −
g
gm

[ks + a1gu(x)2 + b1(B(ĝe)
ϕ

ĝe
)2]S

+ θ̃Tf φf + d(t)+ g(x)(z+ ν(t))+
B(ĝe)
ĝ

g̃ϕ

− (1− B(ĝe))ϕ(1+
g(x)
gm

tanh(
Sϕ
w0

))

ż = −kzz− Sgu(x) tanh(
zSgu(x)
w0

) (44)

It is reminded that the term (B(ĝe)/ĝ)g̃ϕ in (44) is actually
equivalent to (B(ĝe)/ĝe)g̃eϕ, which will be used in the later
stability analysis.
Remark 3: By picking up a sufficiently small τ0 in (40),

ν(t) can be made sufficiently small. Under such circum-
stances, the filter dynamics acts as the fast dynamics while
the tracking error system (44) plus the upcoming parameter
update algorithm are the slow dynamics. The ν(t) converges
exponentially to the set [−ε, ε] within the time interval
[0,T1], where ε,T1 > 0 can be made arbitrarily small via
using sufficiently small τ0. However, too small τ0 nay ignite
the peaking phenomenon in q̇(t) and hence initial spikes in
u(t) [21], [22]. On the other hand, larger τ0 implies narrower
filter’s bandwidth. Larger ν(t) and hence spikes in q̇(t) may
appear whenever faster variation of α(t) occurs. Those spikes
then enter u(t) for the inclusion of the cancelling term q̇
in (43). Systematic guidelines for selecting the optimal τ0
are unfortunately lacked so far. Consequently, some trial and
error procedures should be taken in practice.
Remark 4: By a direct differentiation of ν(t).

ν̇ = −
1
τ0
ν − α̇ (45)

The solution ν(t) of (45) with ν(0) = 0 is

ν(t) = −
∫ t

0
e
−

1
τ0
(t−ξ )

α̇(ξ )dξ (46)

Therefore, given positive numbersµ,Tq and a boundedC1

function α(t) with |α̇(t)| ≤ µ,∀t ∈ [0,Tq], the bound for ν(t)
can be estimated as

|ν(t)| ≤ τ0µ(1− e−Tq/τ0 ). (47)

As a consequence, given ε > 0, picking up a τ0 within
(0, δ], δ = ε/µ, one has (see Lemma 2 of [19])

|ν(t)| ≤ ε, ∀t ∈ [0,Tq]. (48)

Note that only the existence of δ can be ensured when the
upper bound µ is unavailable. Such a property plays a key
role in the subsequent stability analysis.

C. COMPOSITE UPDATE ALGORITHM
First, the xn-subsystem in (1) is rewritten in a compact form
of

ẋn = θTφ(x)+ d(t), (49)

where θ = col[θf , θg], φ = col[φf , xn+1φg] ∈ Rr+m.
Again, let

θ̂ (t) = h(x1, · · · , xn, xn+1)+ ϑ(t), (50)

where

h = γ
∫ xn

0
φ(x1, · · · , xn−1, ξ, xn+1)dξ, (51)

and

ϑ̇ = −

n+1∑
k=1
k 6=n

∂h
∂xk

ẋk + γ0[Sψ̄s − γ1(θ̂Tφ)φ]− σ θ̂ (52)

where ψ̄s = col[φf , (B(ĝe)ϕ/ĝ)φg].
By substituting (51)-(52) into (50), it yields

˙̂
θ (t) = γ0[Sψ̄s + γ1(θ̃Tφ + d(t))φ]− σ θ̂ (53)

Remark 5: The state z in (39) is alternatively defined as
z = xn+1 − α in a conventional backstepping design, with
the corresponding error dynamics ż = u − α̇ [10], [20].
However, due to the dependence on xn+1 of θ̂ (t) in (50) and
hence α(t) in (42), the term (∂α/∂xn+1)u(t) included in α̇(t)
will render the system uncontrollable when 1− ∂α/∂xn+1 =
0. In contrast, the introduced DSC scheme alleviates such
drawbacks via filtering instead of differentiating α(t).

D. STABILITY ANALYSIS
Define two compact sets �a = {X |||X || ≤ ra} and �b =

{X |||X || ≤ rb}, with X = col[x, xn+1, q, θ̂ ] ∈ Rn+r+m+2,
ra > 0, xd (t) ∈ �a, ra < rb, and

ρ3 =

√
(1+ c3)δ3

γ1

ρ4 =

√
(1+ c4)(ε2 + 4caw0 + a

−1
1 ε2 + 2b−11 ρ23 )

kv,4
(54)

where δ3 = (1 + γ1)ε2 + (σ/γ0)|θ |2 + 4caw0 + (2/a1)ε2,
ca = 0.2785, a1 > 0 is a tunable constant, 0 < c3, c4 < 1,
and kv,4 = min[2ks − 2b1 − 1, 2kz].
The main results are summarized in the following.
Theorem 2: Consider the extended system (41), the con-

troller (43), the parametric estimator (50)-(52), and the filter
dynamics in (40). For all X (0) ∈ �a, the following properties
are ensured sustained Assumption 1-5 and kv,4 > 0, τ0 � 1.
P3: x(t), xn+1(t), q(t), θ̂ (t), u(t) ∈ L∞,∀t ≥ 0;

88042 VOLUME 9, 2021



J.-T. Huang, Y.-W. Jiang: Robust CAC of Linearisable Systems With Improved Performance

P4: There exist a finite positive number T3 and a T4 ≥ T3,
such that

|θ̃Tφ(x)| ≤ ρ3, ∀t ≥ T3, (55)

and

|ei(t)| ≤
2i−1

λn−i0

ρ4, ∀t ≥ T4, (56)

where 1 ≤ i ≤ n.
Proof:

Select the Lyapunov function

V3 =
1
2
(S2 + z2 +

1
γ0
θ̃T θ̃ ) (57)

Its time derivative along the closed-loop system (44)
and (53) can be calculated as follows

V̇3 = SṠ + zż−
1
γ0
θ̃T
˙̂
θ

= S{−
g
gm

[ks + a1gu(x)2 + b1(B(ĝe)
ϕ

ĝe
)2]S

+ θ̃Tf φf +
B(ĝe)
ĝ

g̃ϕ + d(t)+ g(x)(z+ ν(t))

− (1− B(ĝe))ϕ(1+
g(x)
gm

tanh(
Sϕ
w0

))}

− kzz2 − zSgu(x) tanh(
zSgu(x)
w0

)

− θ̃T [Sψ̄s + γ1(θ̃Tφ + d)φ −
σ

γ0
θ̂ ] (58)

First, it is noted that the term S θ̃T ψ̄s cancels out S(θ̃Tf φf +
B(ĝe)(g̃/ĝ)ϕ). Next, by completing the squares, Sd ≤

0.5(S2 + ε2), (θ̃Tφ)d ≤ 0.5[(θ̃Tφ)2 + ε2], Sg(x)ν(t) ≤
(a1S2gu(x)2 + a−11 ν2(t)), θ̃T θ̂ ≤ 1

2 (−θ̃
T θ̃ + ||θ ||2), and

recalling Lemma 1 of [23],−Sϕ(1+ (g/gm) tanh(Sϕ/w0)) ≤
caw0, Szg − zSgu tanh(zSgu/w0) ≤ caw0. Then substituting
them into (58), one has

V̇3 ≤ −kv,3V3 −
γ1

2
(θ̃Tφ)2 +

1
2
{
σ

γ0
||θ ||2 + (1+ γ1)ε2

+ 4caw0 +
2
a1
ν2(t)}, (59)

where kv,3 = min[2ks − 1, 2kz, σ ].
Now, since the righthand sides of (44) and (53) are bounded

for bounded X , there exists a Tb > 0, such that X (t) ∈
�b,∀X (0) ∈ �a, t ∈ [0,Tb]. Meanwhile, α(t) in (42) is
apparently bounded ∀t ∈ [0,Tb]. Based on Remark 4, given
ε > 0, there exists a δ > 0, such that |ν(t)| ≤ ε,∀t ∈
[0,Tb], τ0 ∈ (0, δ]. As a result,

V̇3 ≤ −kv,3V3 −
γ1

2
(θ̃Tφ)2 +

δ3

2
, ∀t ∈ [0,Tb] (60)

It implies that

V3(t) ≤ V3(0)e−kv,3t +
δ3

2kv,3
(1− e−kv,3t )

≤ max[V3(0),
δ3

2kv,3
], ∀t ∈ [0,Tb] (61)

Denote cv = minV3(X ),∀X ∈ ∂�b, where ∂�b is the
set of boundary points of �b. By selecting a rb such that
cv > maxX (0)∈�a [V3(0), δ3/(2kv,3)], then Tb can be extended
to∞. The boundedness of X (t) and hence u(t) follows imme-
diately and therefore P3 is thus proven.
Next, since V̇3 in (60) is in the same form of (18), by sim-

ilar reasoning, it can be easily concluded that there exists a
T3 > 0, such that |θ̃Tφ| ultimately converges to ρ3 for all
t ≥ T3. (55) is thus proven.
To prove (56), consider the Lyapunov function V4(S, z) =

0.5(S2 + z2). Its time derivative along (44) can be calculated
as

V̇4 = SṠ + zż

≤ −[ks −
1
2
+ b1(B(ĝe)

ϕ

ĝe
)2]S2

+ S(θ̃Tf φf + B(ĝe)
g̃
ĝ
ϕ)− kzz2

+
1
2
((1+ γ1)ε2 + 4caw0 +

2
a1
ε2) (62)

Again, by completing the squares, S(θ̃Tf φf ) ≤ b1S2 +
b−11 (θ̃Tf φf )

2, SB(ĝe)(g̃/ĝ)ϕ = SB(ĝe)(g̃e/ĝe)ϕ ≤

b1(B(ĝe)ϕ/ĝe)2S2 + b−11 g̃2e and then substituting them
into (62), it yields

V̇4 ≤ −kv,4V4 +
1
b1

((θ̃Tf φf )
2
+ g̃2e)

+
1
2
(ε2 + 4caw0 +

2
a1
ε2)

≤ −kv,4V4 +
δ4

2
, ∀t ≥ T3 (63)

where δ4 = ε2 + 4caw0 + (2/a1)ε2 + (2/b1)ρ23 .
Therefore, there exists a T4 ≥ T3, such that

|S(t)| ≤

√
(1+ c4)δ4

kv,4
, ∀t ≥ T4 (64)

The results in (56) follows immediately [1].

V. SIMULATION
In this section, two case studies are presented for demonstrat-
ing the validity of the proposed designs.
Case 1 (Known g): The proposed I&I-based CAC design

in (4) and (10)-(12) is compared with the LBUA-based design
in (4) and (6) herein. Consider the following linearisable
system

ẋ1 = x2,

ẋ2 = g(x)u+ θTf φf (x)+ d(t), (65)

where x = [x1, x2]T , θf = [5, 4, 3]T , φf =

[x1x22 sin(3x
3
2 ), x

3
1 exp(2x2), x1x2]

T , g(x) = 3(1 + x21e
−x2 ) +

cos(x1 + 1)+ 0.5 sin(2x1 + x2), and d(t) = 0.2 sin(10t).
Since φf (x) is integrable with respect to x2, the integration

in (11) can be carried out to yield

hf (x) = γ [−
x1
3
cos(3x32 ),

x31
2
e2x2 ,

x1
2
x22 ]

T (66)

VOLUME 9, 2021 88043



J.-T. Huang, Y.-W. Jiang: Robust CAC of Linearisable Systems With Improved Performance

FIGURE 1. Comparison of tracking error e1(t) in Case 1.

FIGURE 2. Comparison of tracking error e2(t) in Case 1.

FIGURE 3. Comparison of parametric error |θ̃f (t)| in Case 1.

The reference trajectory is yd = sin(t). The adopted
numerical values are λ0 = 2.0, ks = 2.0. γ0 = γ1 = 1.0, σ =
0.01, and x(0) = ϑf (0) = 0. By choosing c1 = c2 = 0.1,
the upper bounds for |θ̃Tf φf (x)| in (15) and |ei(t)| in (16) are
ρ1 = 0.7987 and ρ2 = 0.6107 ∗ 22i−3, i = 1, 2, respectively.

The simulation results are shown in Figures 1-5. The
tracking errors e1(t) and e2(t) of the proposed CAC design
are well bounded respectively by 0.3053 and 1.2214 (the
red-dashed lines) in Figure 1 and Figure 2, respectively.
In contrast, the standard LUBA not only takes longer time
to converge into the respective zones, but also with larger
tracking errors along the way. Next, the estimated param-
eters |θ̂f | in Figure 3 and the prediction errors θ̃Tf φf (x)

FIGURE 4. Comparison of prediction error θ̃T
f φf (t) in Case 1.

FIGURE 5. Comparison of control input u(t) in Case 1.

in Figure 4 demonstrate the same discrepancy between the
two schemes. Noticeably, although both |θ̂f (t)| do not con-
verge to |θf |, nevertheless, θ̃Tf φf (x) of the proposed method
are ultimately bounded by ±0.7987, the red-dashed lines
in Figure 4, while the latter fails to fulfill such a crite-
rion. Finally, the poor transient peaks in u(t) of the LBUA
in Figure 5 demonstrated again the superiority of the pro-
posed CAC design.
Case 2 (Unknown g): Next, simulation on a practical

brushless DC motor with unknown input gain functions
will be conducted herein. Neglecting the dynamics of the
electrical subsystem, the system dynamics can be modeled
by [24]

ẋ1 = x2

ẋ2 =
1
M

[(KF0 + KFx(x1))
u
R
− Bx2

+ ffric(x2)+ fcog(x1)+ fdis(t)] (67)

where x1 is the displacement, x2 is the velocity, u is the
control input voltage, M is the mass of the inertia, R is the
resistance, B is the combined coefficient of the damping
and viscous friction on the load, KF0 > 0 is an unknown
constant, ffric(x2) is the friction force modeled by ffric(x2) =
−fc tanh(acx2), with fc, ac > 0, fdis(t) is the bounded distur-
bance, while KFx(x1) and fcog(x1) are periodic functions in a
form of

fcog(x1) = ATc Sc(x1)

KFx(x1) = ATKSK (x1)
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FIGURE 6. Comparison of position error e1(t) in Case 2.

FIGURE 7. Comparison of velocity error e2(t) in Case 2.

where Ac = [Ac,1, · · · ,Ac,ρa ]
T , AK = [AK ,1, · · · ,AK ,ρb ]

T

are the unknown weights, Sc = [sin( 2πx1Tx
), cos( 2πx1Tx

), · · · ,

sin( 2πρax1Tx
), cos( 2πρax1Tx

)]T and SK = [sin( 2πx1Tx
), cos( 2πx1Tx

),

· · · , sin( 2πρbx1Tx
), cos( 2πρbx1Tx

)]T are the known basis vector
functions, with Tx > 0 being the known period.

The proposed I&I-based CAC design in (43) and (50)-(52)
is now compared with the standard SPIM-based CAC in (29)
and (34)-(35). Rewrite g(x) in a linearly parameterized form
of g(x) = θTg φg, θg = col[KF0,AK ,1, · · · ,AK ,ρb ]/(MR)
with φg = col[1, sin( 2πx1Tx

), · · · , sin( 2πρbx1Tx
), cos( 2πρbx1Tx

)],
f (x) = θTf φf , θf = col[−B,−fc,Ac,1, · · · ,Ac,ρa ]/M and

φf = col[x2, tanh(acx2), sin(
2πx1
Tx

), · · · , cos( 2πρax1Tx
)]. The

lumped parameter vector and the basis vector function are
θ = col[θf , θg] and φ = col[φf , x3φg], respectively. The
integration in (47) can be explicitly calculated to yield

h(x) = γ [0.5x22 ,
1
ac

ln cosh(acx2), sin(
2πx1
Tx

)x2, · · · ,

sin(
2πρax1
Tx

)x2, x2x3, sin(
2πx1
Tx

)x2x3,

· · · , sin(
2πρbx1
Tx

)x2x3]T (68)

The reference trajectory is changed to yd = 0.3 sin(t)(1+
0.2 cos(0.5t)), while the extra numerical values are: M =

10kg. B = 0.5N/m/s, KF0 = 55.5N/A, R = 3.9�, and Tx =
1.0m. For simplicity, we choose fcog = 25 sin( 2πx1Tx

+
π
4 )N ,

FIGURE 8. Comparison of prediction error θ̃T φ(t) in Case 2.

FIGURE 9. Comparison of parametric error |θ̃(t)| in Case 2.

FIGURE 10. Filter input α(t) and output q(t) in Case 2.

KFx = 1.11 sin( 2πx1Tx
+

π
4 ), fc = 6, ac = 5, fdis(t) =

0.5 sin(5t), λ0 = ks = kz = 5.0, and τ0 = 0.05. By choosing
c3 = c4 = 0.5, the upper bounds for |θ̃Tφ(x)| in (55) and
|ei(t)| in (56) are ρ3 = 0.8466 and ρ4 = 1.3567 ∗ 22i−3, i =
1, 2, respectively.
The simulation results are shown in Figures 6-12. The

proposed design exhibits better tracking performance in e1
of Figure 6 and e2 of Figure 7 than the SPIM-based scheme.
Next, in contrast to the latter, the prediction errors θ̃Tφ of the
proposed design converge quickly to fulfill |θ̃Tφ| ≤ 0.8466
marked by the two red-dashed lines in Figure 8. On the
other hand, the estimated parameters in Figure 9 did not
reflect such a trend. It verifies that the tracking performance
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FIGURE 11. Trajectories of u(t) and q̇(t) in Case 2.

FIGURE 12. Comparison of u(t) of SPIM-based and x3(t) of I&I based
schemes in Case 2.

improvement of the proposed design does not rely on the
parameter convergence.

By using τ0 = 0.05� 1, the filter output q(t) and the vir-
tual control α(t) in Figure 10 almost coincide, meaning that
ε � 1. As mentioned in Remark 3, large q̇ = (α− q)/τ0 and
consequently large u(t) occurs when rapid variation in α(t)
appears in Figure 11. In view of the extended system (37),
it should be cautious that the actual input force to the x2
dynamics is the extended state x3, i.e.

∫ t
0 u(τ )dτ , instead of

u(t) itself. A comparison of control efforts between u(t) of
the SPIM-based scheme and x3(t) of the proposed design
is depicted in Figure 12. They are about the same magni-
tudes, implying that the proposed design does not consume
excessive control efforts in this application. On the other
hand, the oscillatory portion of the input force x3(t) around
t = 1 sec in Figure 12 will produce corresponding oscillatory
acceleration signal ẋ2 for the system (67) and hence similar
velocity response in Figure 7. It in turn leads to oscillatory
behaviors in θ̃Tφ(x) for the dependence on x2 of φ(x).

VI. CONCLUSION
Adaptive control designs for linearisable systems with known
or unknown input-gain functions are not new at all. However,
they generally suffered from the previously mentioned two
drawbacks D1 and D2, which remains open so far. The pro-
posed designs conquer such drawbacks and hence improve
the identification and the tracking performance simultane-
ously. For the cases with unknown input-gain functions,

the adding an integrator technique, the DSC scheme, and
the smooth switching algorithm are incorporated together
for solving the algebraic-loop and control-singularity prob-
lems simultaneously. Simulationworks have demonstrated its
effectiveness and superiority over the existing designs. Most
of all, the achievement does not rely on the parameter con-
vergence and hence the corresponding excitation criteria on
the regressor vector. It is appealing to practical applications
in this respect.

Despite these achievements, there are some topics worth
of further investigations, such as prevention of high-gain
effects in the filter dynamics, systematic guidelines for the
gain selections, and output-feedback control, etc. Moreover,
extension of such an approach to more general nonlinear
systems is also quite challenging. To start with, some existing
works are noticeable, such as [10], [19], [21], [22], [25].
We are encouraged to tackle the aforementioned tasks in the
near future.
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