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ABSTRACT When communicating in aeronautical wireless channels, the difficulty of radio modulation
recognition increases due to the loss of information caused by noise; particularly in circumstances with
low signal-to-noise ratios (SNRs), it is difficult to achieve recognition rates exceeding 90.0%. To improve
the radio modulation recognition performances of networks at low SNRs in complex electromagnetic envi-
ronments, a modulation recognition method based on multidimensional feature analysis is proposed in this
paper. It is realized through a cascaded structure including a Deep Cross Network (DCN) and an improved
Visual Geometry Group Network 16 (VGG16). Our network framework is divided into two modules.
In the one-dimensional data analysis module, we take the high-order cumulant of a transmitted signal as
the one-dimensional feature input of the DCN. In the two-dimensional data analysis module, the color
constellation density of the signal is extracted as the feature map input of the improved VGG16. Finally,
we build a cascaded neural network with hybrid feature inputs for modulation recognition. Experimental
results show that the recognition rate of our method is higher than 90.0% at an SNR of −4 dB. Compared
with other methods, the proposed method has better recognition performance at low SNRs in aeronautical
wireless channels.

INDEX TERMS Modulation recognition, cascade network, aeronautical channel, mixed data.

I. INTRODUCTION
The precise identification of modulation modes is the basis
for analyzing intercepted signals under non-cooperative wire-
less communications. However, the complexity of aeronauti-
cal wireless channels and the diversity of modulation modes
make it difficult to recognize modulation signals correctly.
As a consequence, the conventional approaches have diffi-
culty meeting the needs of communication countermeasures,
especially at low SNRs. Therefore, the correct recognition
of modulation modes has much research significance in the
fields of signal processing and wireless communication.

Current modulation recognition methods based on fea-
ture extraction can be divided into signal processing-based
methods and pattern recognition-based methods. The for-
mer mainly realizes recognition by manually calculating the
time-frequency domain characteristics and transform domain
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characteristics of the signal. Reference [1] combined cumu-
lants of different orders to form feature parameters, which
have a strong ability to recognize ASK and FSK modulation
modes. Nonetheless, the reference method cannot be used
when dealing with 8PSK and MFSK modes because they
have the same cumulative value. In addition, when the SNR
is lower than 4 dB, the recognition rate is lower than 75%.
Reference [2] comprehensively analyzed the instantaneous
features and cumulant features of a signal and used stacked
sparse autoencoders to achieve signal classification. This
method only works well when the FSK modulation method
is not considered; when the SNR is lower than 0 dB, the
recognition rate of this method drops rapidly to 80%. Ref-
erence [3] extracted the instantaneous amplitude, phase and
frequency parameters of a signal to realize automatic modula-
tion recognition. Like the abovemethods, that of reference [3]
only achieves a good recognition effect when the SNR is
higher than 10 dB. In addition, the spectrum correlation
function [4] and cyclic cumulant [5] have also been used to
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realize modulation recognition. The latter mainly uses pattern
recognition to achieve signal recognition by converting the
recognition issues from one-dimensional signal processing
problems into image pattern matching problems.

Reference [6] realized signal modulation recognition
through the superposition of two convolutional neural net-
works (CNNs), making use of the constellation map of a
transmitted signal to perform shape matching and subdivide
the modulation mode, thereby improving the recognition rate
of the method at low SNRs; however, this approach ignores
the influences of multipath fading and the Doppler frequency.
Reference [7] reduced signal noise with a Gaussian filter and
used a time-frequency map as the image input for network
training. When the SNR is lower than 4 dB, the recognition
rate is lower than 85%. In addition, two-dimensional signal
image features, such as eye patterns and constellation maps,
can also be used as feature inputs.

On the basis of existing studies, we find that high-order
cumulants can weaken the influence of channel fading while
suppressing Gaussian noise [8]. However, the modulation
modes that can be identified are limited through high-order
cumulant-based methods. In contrast, a constellation map
can better reflect the mapping relationships of a modulation
signal when noise interference is low. It can be seen that a
one-dimensional feature and a two-dimensional feature have
their own unique advantages in the field of modulation recog-
nition. We jointly extract two kinds of features and propose
a modulation recognition method based on hybrid feature
analysis.

For the purpose of improving the modulation recogni-
tion performance of our approach at low SNRs, we select
the high-order cumulant and the color constellation den-
sity of the signal as the one-dimensional feature and the
two-dimensional feature, respectively. In addition, we build
a DCN and an improved VGG 16 cascaded network frame-
work to perform feature extraction, effectively combining the
advantages of both types of features and realizing the accurate
recognition of the modulation modes of the signal. DCN
can effectively capture the effective feature crossover on the
bounded degrees without artificial feature engineering, and
it has low computational cost which is suitable for explor-
ing the relationship between one-dimensional eigenvalue and
modulation mode. VGG16 explores the relationship between
the depth and performance of CNN, which is suitable for
explore the relationship between image features and modu-
lation mode.

The innovations of this paper are as follows:
1. A method of applying the one-dimensional and

two-dimensional features of aeronautical signals to the task of
modulation recognition is proposed, thereby maximizing the
complementary advantages of features with different dimen-
sions; this not only improves the ability of the method to
resist noise but also enhances its adaptability to different
modulation modes.

2. We improve the modulation recognition rate of the
method for aeronautical wireless signals at low SNRs. When

FIGURE 1. Model of model aeronautical wireless model.

the SNR is higher than −4 dB, the recognition rate still
exceeds 90% despite suffering from Doppler effects in the
aeronautical fading channel.

3. We construct a cascaded network capable of pro-
cessing multidimensional features. We explore the mapping
relationships between the features of different dimensions
and various recognition methods through the DCN and the
VGG16 cascaded network by extracting the high-order fea-
tures of signals. In addition, we introduce the idea of migra-
tion learning for training purposes, thereby simplifying the
computational complexity of the proposed method.

The subsequent sections of this paper are organized
as follows. In the second section, channel modeling and
two-dimensional features are introduced. In the third section,
the network training framework and its advantages are intro-
duced. In the fourth section, the experimental results are
analyzed to verify the performance of the proposed algorithm.
Finally, we summarize the defects of our method and suggest
a direction for future research in the fifth section.

II. AERONAUTICAL CHANNEL AND MIXED FEATURE
To begin with, we built the complex channel model that
aeronautical communication faces, mainly considering influ-
encing factors including multipath fading, Doppler fading,
Gaussian white noise interference, etc. Then the high-order
cumulants and constellation graph features were analyzed
from the formation mechanism. Finally, we constructed the
data set according to the channel model and signal features,
which consisted of the high-order cumulants and constella-
tion graph.

A. AERONAUTICAL WIRELESS CHANNEL
In a complex electromagnetic environment, a signal is prone
to decay due to factors such as the channel characteristics
and noise. An aeronautical multipath fast fading channel
model in cruise scenarios is shown in Fig. 1. As we can see,
the transmitted signal suffers from Doppler deviation and
dispersion [9], which are caused by the relative movement
of the receiver B and the transmitter A in direction path or
the receiver B and the reflection point in reflection path.
In addition, the transmission path is blocked by obstacles,
which cause multiple scattering paths to appear; this in turn
leads to multipath fading and time delays [10]. In addition,
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the influence of noise, which exists in all flight scenarios,
on the transmitted signal cannot be ignored. The purpose of
our method is to improve the modulation recognition rate of
the channel at low SNRs, so we fix the number of trans-
mission paths and the maximum Doppler frequency when
modeling the aeronautical wireless channel. The traditional
received radio rt (t) is as follows:

rt (t) = s(t) ∗ a(t) ∗ h(t)+ η(t) ∗ h(t) (1)

where rt (t) represents the received signal, s(t) represents the
pure transmitted signal, h(t) represents the impulse response
of the receiver filter, α(t) represents the impulse response, and
η(t) represents the noise. When we consider the influence of
doppler effects and multipath effects in aeronautical wireless
channels, final transmitted signal is expressed as follows
according to reference [11]:

r(t) =
L∑
n=0

an(t)s(t − nT )ej[2π1fdn(t−nT )+ϕn] + η(t) (2)

where αn(t) represents the impulse response of the nth path,
which demonstrates the impact of the multipath effect on
r(t). T represents the symbol period. 1fdn(t) represents the
maximumDoppler frequency, which demonstrates the impact
of the Doppler effect on the signal, ϕn represents the phase
change of electromagnetic waves caused by scattering and
reflection, randomly distributed between−π and π , and η(t)
represents the constructed channel model, which comprehen-
sively considers multiple interference factors and simulates
the complexity of the aeronautical communication. On the
basis of this channel, we can reasonably select signal features
and design a network structure for realizing recognition at low
SNRs.

B. FEATURE ANALYSIS
1) HIGH-ORDER CUMULANT FEATURE
The k th order cumulant Ckx(t) and the pth order mixing
moment of a stationary complex random process {X (t)} and
their mean value are expressed as follows:

Ckx(t) = (f1, f2, . . . , fk )

= Cum(x(t), x(t + f1), . . . , x(t + fk )) (3)

Mpq = E
[
X (k)pX∗(k)p−q

]
(4)

where X∗(k) and X (k) are mutually conjugated, so cumulants
of x(t) of different orders are:

C20 = Cum(X ,X ) = M20 (5)

C21 = Cum(X ,X∗) = M21 (6)

C40 = Cum(X ,X ,X ,X ) = M40 − 3M2
20 (7)

C41 = Cum(X ,X ,X ,X∗) = M40 − 3M21M20 (8)

C42 = Cum(X ,X ,X∗,X∗) = M42 −M2
20 − 2M2

21 (9)

C60 = Cum(X ,X ,X ,X ,X ,X )

= M60 − 15M20M40 + 30M3
20 (10)

C60 = Cum(X ,X ,X ,X∗,X∗,X∗)

= M63 − 6M41M20 − 9M21M42

+ 18M21M2
20 + 12M3

21 (11)

All of the above values cumulants are input to the neural
network in the form of vectors. Since the 4th and 6th order
cumulants of Gaussian white noise are 0, the high-order
cumulants can be used for recognition at low SNRs. More-
over, the different cumulants of the signal, such as the abso-
lute values of C2

20/C42 and C40/C42, C2
63/C

3
42 and others,

which are used to distinguish between different types of mod-
ulation modes, can weaken the channel interference effect
on the signal according to a theory in the literature [12].
However, modulation modes such as MFSK cannot be distin-
guished through high-order cumulants because those modes
have the same cumulative value; when applying existing
methods to high-order modulation recognition, the recog-
nition performances are unsatisfactory. Based on the above
analysis, simply making use of the cumulative values is insuf-
ficient for meeting diverse recognition requirements. There-
fore, we select the absolute values of C20, C21, C40, C41, C42,
C60, C63 and their corresponding combinations, C40/C42,
C2
20/C42, C2

63/C
3
42, C63/C3

21, and C42/C2
21, as 12 eigenval-

ues to form eigenvectors, and we combine these with signal
constellation features for modulation recognition purposes.
It should be noted that the second order cumulant cannot be
used on its own as a decision threshold for distinguishing
between modulation modes.

2) COLOR DENSITY CONSTELLATION MAP
A constellation map is a representation of the digital sig-
nal on the complex plane, and it reflects the amplitude and
phase information of the signal [13]–[15]. Different from
the process of feature extraction for a signal, it is essen-
tially a method of shape matching. To improve the classi-
fication performance of the constellation map, we choose
the improved color constellation density map as the fea-
ture map for recognition purposes. The color constellation
density map refers to the color labeling of different density
regions of the original constellation map, and the obtained
multichannel image features can effectively characterize the
mapping relationships between the constellation points and
modulation signals. Fig. 2 shows the constellation maps of
four modulation signals, QPSK, BPSK, 8PAM and 16QAM,
at an SNR of 4 dB.

The different columns in Fig. 2 represent the clean
constellation map that is not subject to multipath fading,
the constellation map faded through the aeronautical chan-
nel, and the faded color constellation map, respectively.
The abscissa represents the in-phase component, and the
ordinate represents the quadrature component. Therefore,
we can conclude that signal fading seriously distorts the
constellation map. Considering that the color constellation
map can add additional features while retaining the mapping
relationships of the original constellation map, we use this
improved map to replace the original image during signal
classification.
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FIGURE 2. Constellation map comparison(BPSK, QPSK, 8PAM, 16QAM).

FIGURE 3. The flow of data set generation.

C. DATA SET GENERATION
The flow of the dataset generation process is shown in Fig. 3.
A quadrature sampling signal with a sampling point of 1024 is
generated by MATLAB2019b first, and then we select signal
samples according to 9 modulation modes, including BPSK,
QPSK, 8PSK, 8PAM, 16QAM, 32QAM, 64QAM, MSK and
2ASK. Each type of modulation mode generates 2000 sam-
ples. Afterwards, we calculate the fading signal output with a
maximum frequency deviation of 200Hz under the three-path
channel according to (2), while simultaneously selecting dif-
ferent SNRs for noise superposition. In the end, we obtain the
corresponding one-dimensional cumulant feature dataset and
two-dimensional constellation dataset.

III. DCN AND VGG16 BI-LSTM CASCADE NETWORK
We design the hybrid data input network for processing mul-
tidimensional features by building the cascaded deep cross
network and the VGG16 Bi-LSTM network for dealing with
different features; the latter extracts signal features of differ-
ent dimensions for training.

1) HIGH-ORDER CUMULANT FEATURE
In traditional recognition methods, cumulants of different
orders and their combined forms are typically used as
the thresholds of decision trees for recognizing modulation
modes, but the thresholds must be set manually. To better
explore the mapping relationships between high-order cumu-
lants and modulation modes, we design a DCN with layers
as in Fig. 4, where each layer includes a cross network and
a deep network that can realize the cross features of all
combined cumulants without being dependent upon manual
feature extraction. The interlayer relationship of the cross

FIGURE 4. The frame of deep cross network.

network is expressed as:

xm = x0xTm−1Wm−1 + bm−1 + xm−1 (12)

where x0 represents the input feature vector, xm represents
the output of the mth layer, and Wm and bm represent the
corresponding weight and bias terms, respectively. By setting
x0 to [c1c2]T andW0 to [w0,1w0,2]T , if we ignore the influence
of the bias term, we can obtain:

x1 = x0xT0 W0 + x0

=

[
c1
c2

]
[c1c2]

[
w0,1
w0,2

]
+

[
c1
c2

]
=

[
w0,1c21 + w0,2c1c2 + c1

w0,2c22 + w0,1c2c1 + c2

]
(13)

It can be seen that the input of each layer of the cross
network is a cross-combination of all elements from the
previous layer. As the number of network layers increases,
the order of the characterization of the element combination
also increases. Additionally, the highest cross-order of themth

layer reaches m + 1. Moreover, a deep neural network is set
up in parallel to improve the ability of the proposed network
to learn high-level features, and the interlayer relationship is:

hn = f (Wn−1hn−1 + bn−1) (14)

where f (·) represents the linear activation function [16] and
hn represents the output of the nth layer. After combining
the deep network and cross network layers, we obtain the
network output xmn as:

xmn = f (
[
xTm, h

T
n

]
Wlog its) (15)

2) VGG16 BI-LSTM NETWORK
We select VGG16 to extract features from the constellation
map and add the Bi-LSTM layer for deep feature extraction.
The network model, which is shown in Fig. 5, consisting of
five convolutional layers, four pooling layers, one Bi-LSTM
layer and two fully connected layers.

To improve the calculation speed of the network, the idea
of migration learning is adopted by the training process, and
some pre-trained model weights are fine-tuned and migrated
to the VGG16 Bi-LSTM structure to optimize the results and
reduce the total training cost.
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FIGURE 5. The framework of the VGG16 Bi-LSTM network.

FIGURE 6. The framework of the cascade network.

3) DCN AND VGG16 CASCADE NETWORK
The design of the joint network model used for modulation
recognition is shown in Fig. 6. The inputs consist of one-
dimensional numerical features and two-dimensional image
features. We combine the noise immunity of the cumulant
with the modulation adaptability of the constellation map.
Next, we construct a network framework for processing
mixed data inputs, through which the modulation recognition
performance of the proposed method under low SNRs is
improved effectively. When training the model, we migrate
some pre-trained and fine-tuned model weights to the net-
work structure so that the calculation parameters of the
network are reduced and the method becomes suitable for
real-time signal analysis.

After combining the features of different dimensions, mod-
ulation mode classification is performed through the fully
connected layer and the softmax activation [17] function. Our
model uses the Adam optimizer [18] to determine the optimal
solution of the network parameters and the cross-entropy
classification error is selected as the loss function. This func-
tion is expressed as:

`(w, b; x1, x2, y) = −
N∑
i

(yi)T log(f1(x1,i, x2,i;w, b))

+λ1
∑
‖w‖2 (16)

where f (·) is used to adjust the joint output value of the
given feature and λ1

∑
‖w‖2 represents a regular term used

to prevent overfitting and improve the feature generalization
ability of our method.

FIGURE 7. Confusion matrix at SNRs of −4 dB and 4 dB.

IV. ANALYSIS OF EXPERIMENTAL RESULTS
Aiming at verifying the effectiveness of the method proposed
in this paper, we analyze the performance of the proposed
network at different SNRs first, and then we compare our
model with traditional methods and other network models
used for analyzing the advantages of multidimensional fea-
ture inputs. Finally, we discuss the influence of the chosen
network parameters on the recognition performance of our
method. The comparison is based on the aeronautical multi-
path fast fading channel model in cruise scenarios.

4) COMPARISON OF RECOGNITION RATES
As shown in Fig. 7, we select the modulation recognition
confusion matrix at SNRs of −4 dB and 4 dB for analy-
sis. According to our experimental simulation results, it can
be seen that when the SNR is below −4 dB, the overall
recognition rate of this algorithm is higher than 90%. When
the SNR is higher than 4 dB, the recognition rate reaches
95%. The confusion matrix shows that our method has a
higher recognition rate than other methods for low-order
modulation modes, but it is easily confused when trying to
recognize 16QAM, 32QAM, and 8PAM, and this indicates
that the cumulant is not suitable for high-order modulation
recognition. Moreover, the shape of the constellation changes
in aeronautical fading channel, and it is difficult to recognize
modulation modes when their fading constellation shapes are
close to each other.

The recognition rates of our method at different SNRs are
shown in Fig. 8. When the SNR is lower than −10 dB, the
recognition rate drops rapidly. The reason for this is that the
shape features of the constellation are severely deformed,
so they cannot be used for matching recognition. In this case,
the main function of the cascade network is to extract the
cumulant feature, but themodulationmodes that the cumulant
feature can recognize are limited, so when the SNR is less
than −10 dB, the overall recognition rate decreases greatly.

5) COMPARISON OF DIFFERENT STRUCTURES
For the purpose of verifying the effectiveness of the cascaded
network proposed in this paper, we conduct experimental
comparisons from two perspectives: the feature input and the
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FIGURE 8. Recognition results at different SNRs.

FIGURE 9. Comparison of feature inputs.

network model. Fig. 9 shows the comparison between the
cascaded network in this paper and other methods that extract
constellation features and cumulant features separately when
the SNR is set to (−8, 8).

It can be seen that when the SNR is higher than 4 dB,
the recognition rate achieved when inputting only the con-
stellation map is significantly higher than that achieved when
only inputting the cumulant, and the performance obtained
using the color constellation map is higher than that obtained
using the original constellation map. However, when the SNR
is lower than 4 dB, the performance of the algorithm when
using the constellation map as the input decreases rapidly.
In contrast, the cumulant extraction-based method has a
higher recognition rate than those of the compared methods.
In addition, the recognition rate achieved when using only the
DCN model is significantly higher than that achieved when
using only the DNN model, and this proves the rationality
of using cross features to achieve cumulant combination.
The method in this paper combines the advantages of the
two abovementioned types of features, and through cascade
network training, the resulting recognition rate is higher than
those of the methods based on single feature inputs.

Additionally, we compare the proposed network with other
network structures. The comparison results are shown in Fig.

FIGURE 10. Comparison of network structure.

TABLE 1. Comparison between different numbers of cross network layers.

10, where the competing methods include GoogleNet [19],
ResNet [20] and DenseNet [21]. It can be seen that our net-
work framework has its best recognition effect when the SNR
is higher than 2 dB, but when the SNR is lower than 2 dB,
the recognition rate drops significantly. The model in this
paper has a recognition rate of 90% or above when the SNR
is higher than −4 dB, and its anti-interference performance
is strong.

6) COMPARISON BETWEEN DIFFERENT NUMBERS OF
CROSS NETWORK LAYERS
When setting the SNR to 2 dB, the relationship between
the number of cross network layers [22] and the recogni-
tion rate is shown in Table 1. When the number of layers
increases, the recognition rate gradually improves as well.
However, when the number of network layers is more than
five, the recognition rate does not improve further. The com-
parison shows that the ability of the high-order cumulant to
distinguish between different modulation modes is related to
the order of the cross feature. This ability is not improved
further when we set five DCN layers. In other word, a seven-
order crossover feature cannot be used to distinguish between
modulation modes.

V. CONCLUSION
To improve the ability of networks to recognize modula-
tion signals at low SNRs in aeronautical wireless channels,
we analyze signal characteristics of different dimensions.
In addition, cumulant features and constellation features are
selected as the input for the hybrid feature model. The selec-
tion of hybrid features can not only suppress noise but can
also efficiently identify high-order modulation modes. At the
same time, we design a cascaded network framework for
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extracting mixed data features. We simplify the training pro-
cess through transfer learning. Experimental results show that
the recognition rate of our method is over 90%when the SNR
is higher than −4 dB. It is proven that our method can be
used for modulation recognition in complex electromagnetic
environments. Next, we will continue to analyze the signal
features, turn the research of modulation recognition to radio
frequency fingerprint identification.
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