
Received March 4, 2021, accepted June 10, 2021, date of publication June 17, 2021, date of current version June 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3090028

Stateless Node Failure Information Propagation
Scheme for Stable Overlay Networks
KIMIHIRO MIZUTANI , (Member, IEEE)
Department of Informatics and Cyber Informatics Research Institute, Kindai University, Osaka 577-8502, Japan

e-mail: mizutani@info.kindai.ac.jp

This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant JP20K19791.

ABSTRACT A structured overlay technology has the advantages for fault tolerance and computation
resource (i.e., node) discovery in distributed data storage and its computation platform, however, these
strengths are only guaranteed on stable environment that node failures do not occur frequently. To deal with
the environment, many advanced schemes based on the well-known node failure information propagation
scheme are proposed, which stabilizes the platform by quickly handling node failures. In the existing
scheme, a computation node propagates a node-failure informationwhen the node detect its failure. However,
the existing scheme needs stateful maintenance against propagation targets; in other words, it must maintain
the network connections of both the propagation target nodes and the nodes held on the general overlay.
The nodes then exhaust the machine resources (e.g., CPU, memory, network bandwidth) for the connection
management and cannot concentrates on their own tasks, such as data analysis or its storage application. To
resolve this problem, I propose a stateless node-failure information propagation scheme, which propagates
a node failure at the speed of the existing scheme but without requiring maintenance of the propagation
target connections. In the proposed scheme, each computational node can effectively utilize the machine
resources for its own task. Instead of retaining the propagation targets, my scheme estimates the propagation
targets after detecting a node failure. I analyzed the estimation accuracy of a simple propagation model,
which guarantees effective propagation. The accuracy was found to depend on the overlay distance between
the failed node and the propagator node. Based on this observation, my scheme adjusts the keep-alive
interval to bias the detection of closer node failures. In a simulation evaluation, the detection delay of the
proposed stateless propagation was similar to that of the stateful propagation scheme, but delivered superior
maintenance cost and scalability.

INDEX TERMS Peer-to-peer computing, overlay networks, fault tolerance.

I. INTRODUCTION
A large scale deep learning architectures [1]–[3] and dis-
tributed key value store are famous use-cases of distributed
computing technologies in current [4], [5]. In order to run
their distributed computing platforms permanently, it is much
important for the computation or storage nodes to keep the
network connectivity among them. A structured overlay net-
work satisfies the stability and connectivity requirements by
providing an effective routing function for the distributed
computing platforms. On such a network, the look up of
a target node requires only O(logN) messages [6]–[10].
To realize effective routing, each node maintains a routing

The associate editor coordinating the review of this manuscript and

approving it for publication was Daniel Grosu .

table containing only O(logN) nodes ID and addresses
(i.e., pointer), along with the states (i.e., alive or dead). How-
ever, in a high-churn environment that many node insertions
and failures, the maintenance costs of continuously updat-
ing the node states are very large. During a node insertion,
the inserted node notifies its presence to the existing nodes,
so the insertion process is safely completed. Conversely,
a failed node does not notify its failure to the existing nodes,
so the existing nodes must detect any failure through a
keep-alive messaging process [11]. In this process, a source
node sends a SYN message to a target node contained in the
routing table and confirms the status of the node (alive or
dead) by checking its response to an ACK message. If the
target node does not reply to the ACK message within a
specified time-out period, the source node detects that the

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88737

https://orcid.org/0000-0003-2020-6578
https://orcid.org/0000-0003-2340-5433

K. Mizutani: Stateless Node Failure Information Propagation Scheme

target node has failed. Note that the time of detecting a
node-A failure by all nodes is intractably large. In this paper,
I refer to this delay as the detection delay.

Methods for improving the detection delay of node failure
can be classified into two categories; detection schemes based
on node behavior [12]–[15], and propagation schemes of
node failure [19]–[24]. In the first category, a node estimates
the failure pattern of other nodes based on a failure-pattern
model, and adjusts the keep-alive interval based on the esti-
mation results. These actions reduce the detection delay and
the number of waste keep-alive messages in node-failure
detection. However, as the failure model is not dynamically
changed, the contribution of these schemes is limited.

Node-failure information propagation also effectively
reduces the detection delay of node failure. In propagation
schemes, a node detecting a node failure propagates the fail-
ure information to the other nodes containing the failed node
state in their routing tables. Figure 1 shows the basic assump-
tions of a propagation scheme. Each node in the structured
overlay maintains its routing table as a pointer list to shortcut
nodes. In detail, each entry in the routing table contains the
distance to the shortcut node and its pointer; accordingly,
each routing table is sized O(logN). The shortcut node is
referred among O log(N) nodes by a back pointer. When a
node fails, all nodes containing its entry in their routing table
must detect the failed node and replace it with a live one.
For example, suppose that node k fails in Figure 1. Nodes
b, e, and h are back-pointed from node k and contain the
pointer to node k in their routing tables; accordingly, all three
nodes must handle the failure of node k . In the propagation
scheme, when node h detects the node-k failure, it propagates
its failure information to the other nodes with back pointers
from node k (i.e., nodes b and e). Because this propagation
scheme does not depend on the node-failure pattern, its
detection time is reduced from that of the abovementioned
detection scheme. However, the propagation scheme adopts a

FIGURE 1. Basic assumptions of the node-failure information
propagation scheme.

stateful mechanism that forces a node to permanently main-
tain/update not only its routing table but also its propagation
targets (i.e., back pointers). The increased number of hold-
ing nodes degrades the computational performance of this
scheme on a computing platform.

In this paper, I propose an effective ‘‘stateless’’ propagation
scheme of node- failure information that detects an early
node failure without maintaining the propagation targets.
The proposed stateless propagation employs simple propa-
gation and keep-alive interval adjustment (KIA) functions.
The former function makes simple estimates of the prop-
agation targets of a node, but the estimation error grows
with increasing distance between the estimated target node
and the detector; consequently, the propagation delay and
number of waste propagations increase. After analyzing the
propagation error, I found smaller errors when the detector
propagates the failure information of nearby nodes. I thus
propose a modified KIA function that adjusts the keep-alive
frequency depending on the distance between the detector
and a failed node. With this adjustment, a node will more
likely detect a closer propagation target than farther targets.
The propagation error is then reduced and the propagation
is accelerated. In addition, the number of waste propagation
messages caused by the estimation error is lowered, and the
detection delay is improved. The detection delay of the pro-
posed stateless scheme was compared with that of an effec-
tive stateful propagation scheme (i.e., SN+BPTR) on three
structured overlays: Chord [6], Pastry [8], and Mercury [9].
The detection delay of the proposed scheme did not differ
from that of SN+BPTR, but the total number of maintenance
messages (e.g., for keep-alive and handling of node inser-
tion/failure processes) was 10%–30% lower in the proposed
scheme than in SN+BPTR. In the scalability evaluation,
the stateless propagation was more scalable to high node
numbers than stateful propagation. Therefore, my propaga-
tion scheme consumes lower computational resources than
the stateful scheme, while also achieving high stability.

The remainder of this paper is organized as follows.
Section II discusses related works on node-failure detec-
tion schemes. Section III describes the proposed propagation
scheme and Section IV reports the experimental results. The
paper concludes with Section V.

II. RELATED WORK
Many researchers have attempted to improve the delay of
node failure detection and the maintenance overhead of struc-
tured overlays. As mentioned above, the existing researches
are divisible into two categories: detection schemes based on
node behavior, and propagation schemes of node failure.

The former scheme adjusts the keep-alive interval in
response to node behavior. The authors of [12] modeled
the node-failure probability as an exponential probability
distribution. In their model, a node adjusts the timing of
the keep-alive/refresh action of the node state. The model
reduces the number of keep-alive instances and predicts
node failures. The authors of [13] proposed three algorithms

88738 VOLUME 9, 2021

K. Mizutani: Stateless Node Failure Information Propagation Scheme

(ProbKA, PredKA, and BugetProb) for reducing the number
of keep-alive instances and enabling fast failure detection.
ProbKA probabilistically determines the keep-alive tim-
ing, assuming a Weibull distribution of node alive inter-
vals. PredKA determines the next keep-alive interval by
considering the previous keep-alive result. This algorithm
multiplicatively increments the keep-alive interval at each
successful keep-alive. BugetProb reduces the keep-alive traf-
fic into ProbKA and PredKA. The authors of [14] also
proposed an adjustment scheme for the keep-alive interval,
whichminimizes the average detection delay of node failures.
This scheme imposes a bandwidth threshold and assumes that
the node insertion/failure intervals follow a bimodal distri-
bution. Under this distribution assumption, they solved the
minimization problem by the Lagrange multiplier method.
The authors of [15] also modeled the node-failure interval,
but assumed a Weibull distribution of intervals. However,
these schemes improve the detection delay and number of
waste maintenance messages only when the nodes behave
as assumed in the models. To generate non-assumed model,
the node behavior analysis based on neural network is pro-
posed [16]. However, the neural network approach takes both
high load computation andmodel database for each node, and
the approach needs the high expertise adjustment of neural
network parameters for realizing high prediction accuracy
[17], [18].

Alternatively, node-failure propagation schemes propa-
gate the node-failure information to other nodes. These
schemes remove the dependence of the detection delay on
the node-behavior model. The authors of [19] proposed
SN+BPTR and another stateful propagation scheme called
propagating both failure and current state information for
back-pointer nodes (SNP+BPTR). The details of both prop-
agation schemes are illustrated in Figure 2. In SNP+BPTR,
suppose that nodes b, e, and h are back-pointed nodes of
node k . Each of these nodes is maintained in the back-pointer
list of node k . When node k fails and is detected by

FIGURE 2. Model of node-failure information propagation scheme in [19].

node h, node h refers to the back-pointer list of node k
and propagates the failure to the other back-pointed nodes.
In this scheme, each node holds O(logN) entries in its
routing table, and each entry holds O(logN) back point-
ers in its back-pointer list. Therefore, there are O(logN 2)
pointer/back-pointer node connections at each node. Note
that a node in SNP+BPTR must maintain the keep-alive
process not only of the nodes contained in its routing
table, but also those of the back-pointer nodes. In addi-
tion, each node cooperatively shares its acquired keep-alive
information. In contrast, although a node in SN+BPTR
holds a back-pointer list (as in SNP+BPTR), it maintains no
keep-alive for the back-pointed nodes. Therefore, SN+BPTR
requires less memory and fewer network resources than
SNP+BPTR. The propagation scheme in [20] is similar to
SN(P)+BPTR, but the nodes in this scheme do not share
their keep-alive information. Instead, each node actively
searches the backward-pointed nodes through numerous
search queries. In another node-failure information propa-
gation scheme [21], the back-pointer list is not held by the
back-pointed nodes (see Figure 3 for details). In this scheme,
node k saves its back-pointer list to the closest neighbor
node, and each back- pointed node from node k maintains
this information (of node l) in its entry for node k . When
a back-pointed node of node k detects a failure of node k ,
the detector finds the closest neighbor of node k in the routing
table, retrieves the back-pointer list, and propagates node k’s
failure status to the back-pointed nodes. In other propagation
schemes, the authors of [22] proposed a propagation method
for specified Bamboo distributed hash table, and the authors
of [23] proposed flooding propagation (i.e., broadcast). The
authors of [24] presented propagation schemes for multiple
structured overlays. When a node detects a node failure in a
certain overlay, it shares the failure information with other
overlays joined through the node.

FIGURE 3. Model of node-failure information propagation scheme in [21].

The node-behavior schemes and node-failure propaga-
tion schemes have their own advantages and disadvantages.

VOLUME 9, 2021 88739

K. Mizutani: Stateless Node Failure Information Propagation Scheme

The former scheme adjusts the keep-alive interval based on
the node behaviors, which improves the detection delay and
number of waste maintenance messages only when the node
behaviors accord with the assumed model behaviors. There-
fore, these schemes lack versatility. In contrast, the propa-
gation schemes (with the exception of the models in [11]
and [24]) remove the dependence of detection delay on the
node-behavior model, but require stateful node management.
Therefore, each node must maintain the back-pointed nodes
of the other nodes (that is, the back-pointer lists of the other
back-pointed nodes in [19], and the back-pointer list of the
closest neighbor node in [21]).

As the maintenance cost (e.g., numbers of states and
keep-alive messages) of the other back-pointer lists grows
with number of nodes, the stateful propagation schemes lack
scalability. For example, on a computing platform with sev-
eral thousand nodes (the largest current case of distributed
neural-network management [25]), each node must hold sev-
eral tens to hundreds of node connections for maintaining
the structured overlay in real-time. Such massive connections
management discriminates the node’s resources in general
cases of high load computing platforms [26].

In this paper, I propose a stateless propagation scheme
without back-pointer list management (Figure 4). Apply-
ing this scheme to the abovementioned case, each node
maintains only dozens of nodes connections while realizing
similar detection delay with simple, low-maintenance logic.
Although its detection delay is similar to that of stateful fail-
ure propagation, it incurs lower maintenance cost and is more
scalable to large node numbers than stateful propagation.

FIGURE 4. Model of node-failure information propagation scheme in
proposal.

III. ALGORITHM OF THE STATELESS
PROPAGATION SCHEME
This section describes the stateless propagation of a node
failure. When a node detects a node failure, the detector
estimates the IDs of the back-pointed nodes and propagates

the failure information to the successor nodes responsible for
the estimated IDs.

Here, I define the back-pointed nodes of node i’s as Bi.
The k-th back- pointed node in Bi is denoted by Bik , where
the back-pointed nodes in Bi are sorted in order of their
distance from node i. When a node j detects a failure of node i,
it estimates the back-pointed nodes of node i as follows:

Bik
′
= suc(Bjk + d(i, j)), (1)

where Bjk
′

, suc(∗) and d(i, j) denote the estimated node
(i.e., the propagation target), the successor of ID ∗, and the
ID distance between nodes i and j, respectively. Figure 5
demonstrates the estimation of a failed node’s back pointers,
and propagation of the failed node information. When node
h detects a failure of node k , it estimates the back-pointed
nodes of k (excluding k itself). Then, node h can estimate
the ID of the k-th back-pointed node from k by calculating
Bhk+d(h, k). The ID’s successor is then looked-up by general
overlay routing. Overlay routing is the fundamental function
of structured overlay and requires only O(logN) queries [6],
[7], [10]. For example, in Figure 4, the look-up query for
Bh1 + d(h, k) arrives at node e and that of Bh2 + d(h, k)
arrives at node b. In this best-case estimation, all the failure
information of node k arrives at all back-pointed nodes of
node k . However, propagating this information to the correct
back-pointed nodes is difficult in general, because invisible
nodes from detector node h may exist there. For example,
suppose that in Figure 5, nodes exist between node Bh1 and
node e. In this case, the successor of Bh1 + d(h, k) does not
corresponded to node e.

FIGURE 5. Basic estimation of the back pointers of a failed node, and
propagation of the failure information to the estimated nodes.

Here, I investigated the estimation accuracy in a brief
simulation of Chord, a fundamental structured overlay used
in the previous Windows Azure architecture. The number of
nodes was varied as 1,000 and 10,000. Failure operations
were executed on each node set, and the back-pointed nodes
of the failed node were estimated by Equation (1). The result

88740 VOLUME 9, 2021

K. Mizutani: Stateless Node Failure Information Propagation Scheme

FIGURE 6. The success rate of stateless propagation for each entry of the
routing table in Chord sustained by 1,000 and 10,000 nodes. In both node
sets, the success probability Sk decreased as the propagation target
moved farther from the failure.

is shown in Figure 6. The accuracy depended on the dis-
tance between the detector and the failed node; specifically,
it improved as the detector moved closer to k . This result
indicates that for successful propagation, a node should detect
failures of closer nodes rather than those of farther nodes.
To improve the estimation accuracy and propagation success,
I proposed a keep-alive interval adjustment scheme in which
closer node failures aremore easily detected than further node
failures.

A. KEEP-ALIVE INTERVAL ADJUSTMENT: KIA
In general, a node maintains a keep-alive process for the
nodes registered in its routing table (i.e., pointed nodes),
which is executed constantly in constant intervals H . The
KIA is installed in each node, and its interval is adjusted
for each entry in the routing table. Here, RTi denotes the all
entries in node i’s routing table, and Sk denotes the estima-
tion accuracy of the k-th (k ≤ |RTi|) entry of the routing
table, as determined in Figure 6. With the abovementioned
definitions, the adjustment policy of node i’s KIA solves the
following optimization problem:

min
∑

k≤|RTi|
Hk · Sk

s.t.
∑

k≤|RTi|

1
Hk
=
|RTi|
H

,
(2)

where Hk denotes the calculated keep-alive interval of the
k-th routing table entry, obtained by solving this optimiza-
tion problem. The found keep-alive interval minimizes the
expected values of the success probability. More concretely,
KIA minimizes the interval in the entry because the failure
information of an entry node propagates more successfully
when k is lower. Under the constraint condition, the total
number of keep-alive processes per second in KIA equals
the number of keep-alive processes in the constant keep-alive
interval. Specifically, if 1

Hk
is the number of keep-alive

instances per second, the total number of keep-alive instances
per second at node i is |RTi|Hk

.

This problem can be solved by Lagrange multipliers. Here,
I define the Lagrange multiplier as λ and the

∑
k≤|RTi| Hk ·Sk

as f . Writing F = f − λ
∑

k≤|RTi|
1
Hk

, the gradient vectors
of F are given by

∂F
∂H1
∂F
∂H2
·

·

∂F
∂H|RTi|


=



S1 +
λ

H2
1

S2 +
λ

H2
2

·

·

SRTi +
λ

H2
|RTi|


= 0. (3)

Using this matrix under the constraint condition 2, the opti-
mal keep-alive interval of each Hk can be expressed by

Hk =
H ·

∑
j≤|RTi|

√
Sj

|RTi| ·
√
Sk

. (4)

FIGURE 7. Keep-alive interval Hk in the 1,000- and 10,000-node Chord
networks. In the networks of both sizes, the normalized Hk based on
|RTi |

H is well fitted by a quadratic function.

Figure 7 plots the Hk (normalized |RTi|H) values determined
from the simulation results of Sk (Figure 6). I found that the
interval Hk in the k-th routing table depends on the squared
logarithmic distance between a detector and its pointer node
(Fitted curve of |RTi|H Hk in Figure 7). Hence, I can conclude
the fitting curve is calculated with following terms,

Hk ∝ log2 d(k, i) k ∈ RTi. (5)

Therefore, we can set the keep-alive interval based on this
approximated Hk . With this approximation, when KIA sets
the keep-alive interval Hk for the k-th entry in the routing
table, it executes more frequent keep-alive processes of closer
nodes than of farther nodes.

VOLUME 9, 2021 88741

K. Mizutani: Stateless Node Failure Information Propagation Scheme

Algorithm 1 KIA Function of Node i
Require: RTi,H
for k ∈ RTi do

Hk ← H
|RTi|
· log2 d(i, k)

setKeepAliveInterval(Hk , k)
end for

Algorithm 2 Node j′s(j ∈ RTi) Failure Information Propaga-
tion Function of Node i
Require: Bi, j
for k ≤ |Bi| do

target← Bik + d(j, i)
suc = findSuccessor(target)
notifyFailure(suc, j)

end for

The entire propagation process are summarized as
algorithm 1 and 2. The algorithm 1 is executed when node
i sets the keep-alive interval of each routing table entry. The
Hk is normalized at each second with a constant keep-alive
intervalH set by the system administrator. The algorithm 2 is
executed when node i detects the node j’s failure (j ∈ RTi).
The algorithm estimates the all back pointers of the failure
node, finds their successors, and finally notify the failure
information for them.

When a node detects a node failure, the computational
effort of determining the propagation targets by Equation (1)
is O(logN), because the number of propagation targets is
O(logN) in general structured overlays. Therefore, the com-
putational effort negligibly affects the maintenance effort of
the structured overlay network. In addition, the computational
effort of KIA is only O(RTi), and the keep-alive interval is
easily computed.

On the computing platform with the 1,000,000-node struc-
tured overlay (assumed as the largest computing platform
in current use), the number of the routing table entries and
back-pointer list entries are several tens to hundreds in the
conventional schemes. In these schemes, the node continu-
ously executes keep-alive processes and maintains their net-
work connections. In my proposed scheme, which requires
no back-pointer list, the number of network connections is
around 10, yet the propagation speed of the node-failure
information matches those of the conventional schemes. The
proposed scheme therefore provides high stability at low
computational cost (e.g., maintenance cost) on the largest
existing computing platform.

IV. PERFORMANCE EVALUATION
This section compares the maintenance costs, detection
delays of four schemes: the general scheme, SN+BPTR
(i.e., stateful propagation), stateless propagation without
KIA, and stateless propagation with KIA. Evaluations were
performed on three key value store computational plat-
forms based on the Chord, Mercury, and Pastry overlays.

All evaluations were executed by the following steps on an
original simulator.

1) The simulator generates 10,000 nodes with a set
keep-alive interval.

2) The simulator inserts the nodes into the Chord, Mer-
cury, and Pastry computational platforms.

3) In each node insert/failure interval, the simulator exe-
cutes the corresponding action on the nodes.

In my proposed scheme (named stateless with KIA in the
evaluation figures), the interval in the routing table entries
was changed by KAI. In all other schemes, the all keep-alive
interval was set to 1,000 seconds by the simulator. The
average interval of node insertion/failure was varied as 100,
500, 1,000, 5,000, and 10,000 seconds. Node insertions and
failures occurred simultaneously, ensuring a constant total
number of nodes in the computation platform [11], [28]. The
ID of each node in key value store computation platform was
determined by the uniform or Mandelbrot–Zipf [27] distribu-
tion with α = 0.62 and q = 5. Here, the Mandelbrot–Zipf
parameters were selected to fit the measured distributions
of real distributed platform’s traffic flows. The round trip
time (RTT) through all nodes was randomly selected from
a uniform distribution in the interval (0, 2] seconds, meaning
that a keep-alive process takes 1 RTT. The node placement
and node insertion/failure rates on the simulated computation
platform were those given in previous studies [11], [27], [28].
In this environment, Step (3) was iterated for 24 hours, and
the average detection delay and maintenance cost of each
schemewere evaluated in each overlay on each computational
platform.

A. DETECTION DELAY
Figure 8 shows the average detection delay in each propa-
gation scheme on the different overlays with different dis-
tributions of nodes. Although the propagation speed was
faster in SN+BPTR than in the stateless propagation schemes,
stateless propagation with KIA was only a few seconds

FIGURE 8. Average detection delays of both detecting node failure and its
failure information propagation.

88742 VOLUME 9, 2021

K. Mizutani: Stateless Node Failure Information Propagation Scheme

FIGURE 9. Total number of maintenance messages versus time (monitored over 24 hours).

slower than SN+BPTR. The stateless scheme without KIA
was slower because its propagation accuracy was lower than
in the stateless scheme with KIA. According to these results,
the node-failure information was propagated with a few sec-
onds delay in stateless propagation. This delay was smaller
than in the general detection scheme and the stateless scheme
without KIA.

B. MAINTENANCE COST
Figure 9(a) - 9(f) show the total numbers of messages
required for the keep-alive processes and failure propaga-
tions in each propagation scheme on the different overlays
with the uniform and Mandelbrot–Zipf distributions. In the
keep-alive operation, the sender’s SYN and the receiver’s
ACK messages are transmitted via a pair of nodes, so each

VOLUME 9, 2021 88743

K. Mizutani: Stateless Node Failure Information Propagation Scheme

FIGURE 10. Number of network connections versus number of nodes in
the compared methods on different overlays.

keep-alive operation generates two messages. During prop-
agation, a detector node propagates O(logN) back-pointed
nodes. Note that the propagation is recursively completed
for all back-pointed nodes. In the Chord and Mercury over-
lays with the uniform distribution, the number of messages
was 10 − −15% lower in both stateless schemes than in
SN+BPTR, and was 1−2% in theMandelbrot–Zipf distribu-
tion than in the uniform distribution. The latter is attributable
to the larger estimation error in theMandelbrot–Zipf distribu-
tion than in the uniform distribution results. This is because
the node ID’s density is concentrated on a certain area
in overlays, therefore, a number of nodes existed between
a detector and an estimated node. On the Pastry overlay,
the number of messages in both stateless propagations was
approximately 30% lower than in SN+BPTR, regardless of
node distribution. This result can be explained by the larger
size of the routing table on Pastry than on the other overlays
[8], which must be maintained by the nodes during stateful
failure propagation. More specifically, the routing table size
is approximately logL on Chord, but L(2b−1)

b (b > 0) on
Pastry. Therefore, a node maintains a large number of states
on a computational platform with the Pastry overlay, and
must performmany keep-alive messages and insertion/failure
processes.

These results confirm the lower maintenance costs in state-
less propagation than in SN+BPTR and the general detection
scheme (in which the costs were quite similar). Therefore,
stateless propagation incurs fewer overheads than general
detection schemes, and places a non-critical cost burden on
a platform’s computational processes.

C. SCALABILITY
Finally, I evaluated the scalability of each detection scheme
by increasing the number of nodes in the network.
Figure 10 plots the number of network connections
(e.g., in transmission control protocol sessions) versus num-
ber of nodes in each overlays. The SN+BPTR scheme

TABLE 1. Quality comparison of the detection schemes (circles: quality
achieved; crosses: quality not achieved).

formed over 1,000 connections in the Chord overlay, and
over 100,000 nodes in the Pastry overlay. The number of
connections depended on the features of the overlays, and
increased when the routing tables enlarged. The Chord over-
lay required fewer network connection than Pastry. In addi-
tion, SN+BPTR also takes much number of connections in
the overlays: epichord [29] and d1ht [30]. Unlike stateful
propagation, the stateless propagation scheme required no
additional network connections because they do not maintain
the back-pointer list of each routing table entries (as explained
for Figure 2). Therefore, the stateless propagation scheme is
scalable to large node networks without compromising its fast
failure detection.

D. SUMMARY OF THE EXPERIMENTS
The above evaluations are summarized as Table 1. The state-
ful propagation scheme (SN+BPTR) must handle many mes-
sages in networks with large-size routing tables. In addition,
it requires a large number of network connections to realize
fast propagation. On the other hand, the stateless propaga-
tion schemes (i.e., stateless with/without KIA) require fewer
messages and network connections than the stateful scheme.
However, stateless propagation without KIA takes estimation
error in the propagation target, which increases the detec-
tion delay of notifying a node failure to all back-pointed
nodes. Meanwhile, the stateless propagation scheme with
KIA improved the detection delay and shortened the delay
detection to that of stateless propagation. This is because
it refrains keep-alive messaging for high estimation error
targets. We conclude that stateless propagation with KIA
achieved efficient node-failure detection with low over-
heads; moreover, its performance met the requirements of
large-scale computing platforms (namely, low memory con-
sumption and small network overhead).

V. CONCLUSION
I proposed a stateless propagation scheme for transferring
node-failure information. Unlike the stateful propagation
schemes, the overlay nodes in the proposed scheme do
not maintain the statuses of the propagation target nodes.
In addition, the stateless propagation scheme calculates the
optimal propagation policy that improves the propagation
delay and the waste propagation. In the performance evalu-
ation, the stateless propagation schemes required 10%–30%
fewer overlay maintenance messages than stateful propaga-
tion. Although the detection delay of stateless propagation
was several seconds longer than that of stateful propagation,

88744 VOLUME 9, 2021

K. Mizutani: Stateless Node Failure Information Propagation Scheme

the scalability evaluation confirmed that (unlike stateful prop-
agation) stateless propagation was upscalable to huge net-
works (such as the 100,000-node computational platform).
I conclude that the stateless propagation improves the scal-
ability and maintenance costs over those of the stateless
propagation scheme, and is useful for constructing efficient
large-scale computing platforms.

REFERENCES
[1] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,

J. Long, E. J. Shekita, and B.-Y. Su, ‘‘Scaling distributed machine learning
with the parameter server,’’ inProc. 11thUSENIX Symp. Oper. Syst. Design
Implement., 2014, pp. 583–598.

[2] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, ‘‘Adaptive federated learning in resource constrained edge
computing systems,’’ IEEE J. Sel. Areas Commun., vol. 37, no. 6,
pp. 1205–1221, Jun. 2019.

[3] M. Assran, N. Loizou, N. Ballas, and M. Rabbat, ‘‘Stochastic gradient
push for distributed deep learning,’’ in Proc. Int. Conf. Mach. Learn., 2019,
pp. 344–353.

[4] J. Dhanani, R. Mehta, D. Rana, and B. Tidke, ‘‘Back-propagated neural
network on MapReduce frameworks: A survey,’’ in Smart Innovations in
Communication and Computational Sciences. Singapore: Springer, 2019,
pp. 381–391.

[5] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka,
A. Grabska-Barwińska, S. G. Colmenarejo, E. Grefenstette, T. Ramalho,
J. Agapiou, A. P. Badia, K. M. Hermann, Y. Zwols, G. Ostrovski, A. Cain,
H. King, C. Summerfield, P. Blunsom, K. Kavukcuoglu, and D. Hassabis,
‘‘Hybrid computing using a neural network with dynamic external
memory,’’ Nature, vol. 538, no. 7626, pp. 471–476, Oct. 2016.

[6] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
‘‘Chord: A scalable peer-to-peer lookup service for Internet applications,’’
in Proc. ACM SIGCOMM, 2001, pp. 149–160.

[7] P. Maymounkov and D. Mazières, ‘‘Kademlia: A peer-to-peer information
system based on the XORmetric,’’ in Peer-to-Peer Systems (Lecture Notes
in Computer Science), vol. 2429. Springer, 2002, pp. 53–65.

[8] A. Rowstron and D. Druschel, ‘‘Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,’’ in Middle-
ware (Lecture Notes in Computer Science), vol. 2218. Springer, 2001,
pp. 329–350.

[9] A. R. Bharambe, M. Agrawal, and S. Seshan, ‘‘Mercury: Supporting
scalable multi-attribute range queries,’’ in Proc. Int. Conf. Appl., Technol.,
Archit., Protocols Comput. Commun., 2004, pp. 353–366.

[10] J. Aspnes and G. Shah, ‘‘Skip graphs,’’ ACM Trans. Algorithms, vol. 3,
no. 4, p. 37, Nov. 2007, doi: 10.1145/1290672.1290674.

[11] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, ‘‘Handling churn in a
DHT,’’ in Proc. USENIX Annu. Tech. Conf., 2004, pp. 127–140.

[12] G. Ghinita and Y. M. Teo, ‘‘An adaptive keep-alive framework for
distributed hash tables,’’ in Proc. Int. Parallel Distrib. Process. Symp.
(IPDPS), 2006, pp. 1–10.

[13] R. Price, P. Tiňo, and G. Theodoropoulos, ‘‘Still alive: Extending keep-
alive intervals in P2P overlay networks,’’Mobile Netw. Appl., vol. 17, no. 3,
pp. 378–394, Jun. 2012.

[14] K. C. W. So and E. G. Sirer, ‘‘Latency and bandwidth-minimizing failure
detectors,’’ ACM SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 89–99,
Jun. 2007.

[15] D. Stutzbach and R. Rejaie, ‘‘Understanding churn in peer-to-peer net-
works,’’ in Proc. 6th ACM SIGCOMM Internet Meas. (IMC), 2006,
pp. 189–202.

[16] R. Kaur, A. L. Sangal, and K. Kumar, ‘‘Modeling and simulation of
adaptive neuro-fuzzy based intelligent system for predictive stabilization
in structured overlay networks,’’ Eng. Sci. Technol., Int. J., vol. 20, no. 1,
pp. 310–320, Feb. 2017.

[17] I. N. Da Silva, D. H. Spatti, R. A. Flauzino, L. H. B. Liboni, and
S. F. dos Reis Alves, ‘‘Artificial neural network architectures and training
processes,’’ in Artificial Neural Networks. Springer, 2017, pp. 21–28.

[18] J. Fu, P. Liu, and Q. Zhang, ‘‘Rethinking generalization of neural models:
A named entity recognition case study,’’ in Proc. AAAI Conf. Artif. Intell.,
2020, pp. 7732–7739.

[19] S. Q. Zhuang, D. Geels, I. Stoica, and R. H. Katz, ‘‘On failure detection
algorithms in overlay networks,’’ in Proc. IEEE 24th Annu. Joint Conf.
IEEE Comput. Commun. Societies. (INFOCOM), 2005, pp. 2112–2123.

[20] I. Dedinski, A. Hofmann, and B. Sick, ‘‘Cooperative keep-alives: An effi-
cient outage detection algorithm for P2P overlay networks,’’ in Proc. 7th
IEEE Int. Conf. Peer-Peer Comput. (P2P), Sep. 2007, pp. 140–150.

[21] K. Mizutani, T. Inoue, T. Mano, O. Akashi, S. Matsuura, and K. Fujikawa,
‘‘Living will for resilient structured overlay networks,’’ IEICE Trans.
Commun., vol. E99.B, no. 4, pp. 830–840, 2016.

[22] (2005). BambooDHT. [Online]. Available: http://bamboo-dht.org/
[23] Z. Yao, D. B. H. Cline, X. Wang, and D. Loguinov, ‘‘Unifying models of

churn and resilience for unstructured P2P graphs,’’ IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 9, pp. 2475–2485, Sep. 2014.

[24] K. Mizutani, S. Matsuura, S. Doi, K. Fujikawa, and H. Sunahara,
‘‘An implementation and its evaluation of a framework for managing states
of nodes among structured overlay networks,’’ in Proc. 6th Int. Conf. Netw.
Services (ICNS), Mar. 2010, pp. 282–287.

[25] Google Official Report. Using Large-Scale Brain Simulations for
Machine Learning and A.I. Accessed: 2012. [Online]. Available:
https://blog.google/topics/machine-learning/using-large-scale-brain-
simulations-for/

[26] Z. Zhang, Y. Gu, F. Ye, H. Yang, M. Kim, H. Lei, and Z. Liu, ‘‘A hybrid
approach to high availability in stream processing systems,’’ in Proc. IEEE
30th Int. Conf. Distrib. Comput. Syst., Jun. 2010, pp. 138–148.

[27] M. Hefeeda and O. Saleh, ‘‘Traffic modeling and proportional partial
caching for peer-to-peer systems,’’ IEEE/ACM Trans. Netw., vol. 16, no. 6,
pp. 1447–1460, Dec. 2008.

[28] K. Shudo, ‘‘Churn resilience improvement techniques in an algorithm-
neutral DHT,’’ IPSJ J. Comput. Syst., vol. 49, no. SIG 2(ACS 21), pp. 1–9,
2007.

[29] B. Leong, B. Liskov, and E. D. Demaine, ‘‘EpiChord: Parallelizing the
chord lookup algorithm with reactive routing state management,’’ Comput.
Commun., vol. 29, no. 9, pp. 1243–1259, May 2006.

[30] L. R. Monnerat and C. L. Amorim, ‘‘D1HT: A distributed one hop hash
table,’’ in Proc. 20th IEEE Int. Parallel Distrib. Process. Symp. (IPDPS),
Apr. 2006, pp. 1–10.

KIMIHIRO MIZUTANI (Member, IEEE)
received theM.S. and Ph.D. degrees from the Nara
Institute of Science and Technology, in 2010 and
2015, respectively. He was a Researcher with the
NTTGroup (Network Innovation Laboratories and
West Research and Development Center), from
2010 to 2019. He is currently a Lecturer and a
Senior Assistant Professor (Principal Investiga-
tor) with the Department of Informatics, Kindai
University. His research interests include future

network architectures and various systems powered by deep learning. Hewas
a recipient of the Best Student Paper Award from ICCSA and the Research
Awards from IEICE, in 2010 and 2013, respectively.

VOLUME 9, 2021 88745

http://dx.doi.org/10.1145/1290672.1290674

