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ABSTRACT Brain Computer Interfaces (BCIs) are capable of processing neural stimuli using electroen-
cephalogram (EEG) measurements to aid communication capabilities. Yet, BCIs often require extensive
calibration steps in order to be tuned to specific users. In this work, we develop a subject independent
P300 classification framework, which eliminates the need for user-specific calibration. We begin by
employing a series of pre-processing steps, where, among other steps, we consider different trial averaging
methodologies and various EEG electrode configurations. We then consider three distinct deep learning
architectures and two linear machine learning models as P300 signal classifiers. Through evaluation on three
datasets, and in comparison to three benchmark P300 classification frameworks, we find that averaging
up to seven trials while using eight specific electrode channels on a two-layered convolutional neural
network (CNN) leads to robust subject independent P300 classification. In this capacity, our method achieves
greater than a 0.20 gain in AUC in comparison to prior P300 classificationmethods. In addition, our proposed
framework is computationally efficient with training time gains of greater than 3x, compared to linear
machine learning models, and online evaluation time speedups of up to 2x compared to benchmark methods.

INDEX TERMS Brain–computer interface, deep learning, EEG, P300, machine learning, signal processing.

I. INTRODUCTION
Patients who have suffered lower brain trauma, such as a
stroke or a traumatic brain injury (TBI), are often subjects of
locked-in syndrome (LIS). LIS prevents patients from mov-
ing their extremities resulting in, among a myriad of other
challenges, extremely limited communication capabilities.
However, neural stimuli from LIS patients can be analyzed to
aid communication abilities. Various neural signal process-
ing algorithms [1]–[4] have been proposed for Brain Com-
puter Interfaces (BCIs) [5], which are controlled using neural
inputs from the subject’s upper brain activity. Such neural
inputs are non-invasively collected with electrodes placed at
various positions on a subject’s scalp using electroencephalo-
gram (EEG) measurements [6]–[8]. The collected signals are
then processed in real time on board the BCI.

The P300 signal [9] is a specific type of Event Related
Potential (ERP), which results in a momentary increase of
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electrical activity in the brain. P300 responses are invoked
in subjects using the oddball paradigm, where several items
are successively shown and a subject is tasked with focusing
on one specific target item (typically by counting how many
times it appears on a changing screen). Following the display
of each target item, the brain emits a delayed spike approx-
imately 300 ms – 500 ms after processing the optical input.
Contrarily, the signal recorded following a non-target item
is relatively flat. An example of an invoked P300 target and
non-target stimulus is shown in Fig. 1. Despite the apparent
difference between target and non-target signals, however,
raw P300 signals contain high levels of noise and variability
across and within subjects. For example, as shown in Fig. 2,
a raw EEG target stimulus is almost indistinguishable from a
non-target signal.

Training machine learning models to classify target vs.
non-target P300 signals across subjects has proven challeng-
ing. This challenge is largely due to the inherent noise caused
by electrode amplifiers leading to a lack of discriminative
features between raw target and non-target signals. As a
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FIGURE 1. Average EEG response for 482 target and 2498 non-target
stimuli on Channel Cz. The target response shows an apparent P300 spike
compared to the relatively flat non-target response.

FIGURE 2. EEG response for a single target and non-target stimulus on
Channel Cz. Without signal averaging, or other feature engineering
techniques, distinguishing target and non-target responses is challenging.

result, BCIs are overwhelmingly trained on subject-specific
data that fail to generalize to other users. Although prior work
[10]–[14] has attempted to learn common feature spaces
shared among various users, they often require a com-
putationally costly domain transformation, achieve mod-
est classification performance on raw EEG time samples,
or require additional subject specific calibration. In this work,
we construct a computationally efficient subject independent
P300 classification framework, which eliminates the needs
for subject-specific BCI calibration.

A. RELATED WORK
Traditional P300 classification has largely relied on using
pre-processing techniques, such as filtering, trial averaging,
and dimensionality reduction, paired with Linear Discrimi-
nant Analysis (LDA) classifiers [15]–[19]. Although these
methods have been successful for subject-specific models,
they are difficult for generalization because better general-
ization requires higher dimensional input signals, which LDA
models often display degraded performance on [20]. Support

Vector Machines (SVMs) with linear kernels have also been
commonly used for P300 classification [21]–[23]. However,
SVMs often require excessive computational costs for pro-
cessing high dimensional signals and, furthermore, are often
used with subject-specific transformed input signals, such
as principal components, which hinder the model’s ability
to effectively learn generalized subject independent feature
spaces.

More recent methods have proposed using deep learn-
ing models such as Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) for P300 classifi-
cation. CNNs represent EEG inputs pictorially to efficiently
learn spatially correlated patterns that are difficult for linear
models to learn [1], [20], [24]–[27]. However, they often
require high-dimensional inputs making them computation-
ally expensive and infeasible to implement on BCIs. Further-
more, CNN classifiers are often subject-specific (i.e., they
are trained and tested using data from the same subject) and
have not been shown to learn common features for classify-
ing subjects’ data that was not included in the training set.
We build upon such methods by utilizing deep learning to
further minimize online calibration times.

RNNs, on the other hand, have been used to model EEG
data sequentially and succinctly to learn temporally corre-
lated data to a higher degree than linear machine learning
models. Although RNNs often entail a lower parameter space
than CNNs, they have typically shown degraded performance
for subject independent classification [11], similar to CNNs
and, further, require computationally intense data transfor-
mations that have not been shown to work for P300 clas-
sification [10]. Finally, convolutional LSTM (ConvLSTM)
models, consisting of convolutional and recurrent layers, have
been used for single trial P300 classification [28] but are
subject-specific and fail to learn a generalized feature space
for inter-subject classification.

Furthermore, prior work has largely focused on tun-
ing large-scale deep neural network architectures using
minimally pre-processed P300 signals. Contrary to these
approaches, we propose using relatively simple pre-processing
techniques, which we find significantly reduces the required
complexity of the deep learning classifiers. Specifically, our
proposed framework allows us to train a low-parameter,
yet highly effective, subject independent classifier, which
yields faster classification decisions during deployment,
while improving the overall classification rate compared to
high-parameter deep learning models such as EEGNet [29],
multitask autoencoders [30], and deep convolutional neural
networks (deep ConvNets) [31].

B. OUTLINE AND SUMMARY OF CONTRIBUTIONS
In this work, we develop a subject independent framework for
robust P300 signal classification. Ourmethodology integrates
signal pre-processing techniques with machine learning clas-
sifiers to improve subject independent prediction accuracy
while reducing the required model complexity and, thus, also
reducing the required computational overhead during both
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FIGURE 3. Our proposed system structure framework using our most
effective feature selection and signal classification techniques. We begin
by collecting the raw EEG recording from the subject and extracting the
following eight channels: P7, P3, Pz, Oz, P4, P8, Fz, Cz. Next, we perform
our proposed feature selection methodology, which consists of signal
segmentation, standard referencing, bandpass filtering, DC bias
elimination, and subsampling the signal for increased computational
efficiency. Finally, we average up to seven signals per event (for target
and non-target events) to construct the input signal, which is then
classified by our two-layered convolutional neural network (CNN). The
CNN classifies each ERP as a target or non-target signal.

development (training) and deployment (real-time decision
making). With our methodology in place, we are able to accu-
rately classify P300 signals from subjects whose data has not
been used to calibrate the BCI in a computationally efficient
manner relative to state-of-the-art baselines. As a result, our
method allows for faster communication capabilities by the
BCI user during real-world usage.

We begin by discussing our assumptions about the raw
EEG data collected by the BCI (Sec. II-A). Next, we outline
our feature selection methodology, which consists of steps
such as trial averaging, which reduces inherent signal noise,
and downsampling, which increases computational efficiency
during deployment (Sec. II-B). We also explore using dif-
ferent electrode channel combinations to construct the input
signal (Sec II-C), as well as different classifiers including
two linear machine learningmodels and three non-linear deep
learning classifiers (Sec. II-D and II-E). We evaluate our
methodology on three datasets (Sec. III-A) and empirically
explore different channel combinations and trial averaging
techniques (Sec. III-B), where we find that using data from
eight electrode channels with up to seven averaged signals
provides robust subject independent classification accuracy.
Using these insights, we demonstrate the robust performance

FIGURE 4. 32 channel EEG cap showing the arrangement of each
electrode, and its corresponding channel, on the scalp [32].

of our proposed method, compared to three benchmarks (Sec.
III-C), and quantify its computational efficiency (Sec. III-D).
Lastly, we give concluding remarks and discuss future work
in Sec. IV.

II. METHODOLOGY
In this section, we present our proposed P300 framework.
We begin by discussing our assumptions about the raw EEG
data (Sec. II-A). Then, we outline our novel feature selection
algorithm in which we extract salient signal attributes from
streams of EEG time-series signals (Sec. II-B). Next, we dis-
cuss the utilization of three different electrode configurations
for constructing the classification model inputs (Sec. II-C),
and we describe our three proposed deep learning classifi-
cation models as well as two benchmark models, that are
traditionally used for P300 classification, which we compare
our proposed methods to (Sec. II-D). Lastly, we discuss our
evaluation methods used to measure each model’s effective-
ness (Sec. II-E). Our proposed framework is shown in Fig. 3.

A. EEG DATA COLLECTION
We begin by outlining the form of the initially collected EEG
time-series signals. Specifically, we assume that a stream of
EEG samples were collected over a period of time using
an EEG cap, such as the cap shown in Fig. 4 (although a
32-channel EEG cap is shown, we do not necessarily assume
that the data was collected on 32 electrodes), with a sampling
rate of fs. Furthermore, we assume that a P300 signal was
evoked using the oddball paradigm at various time instances.
From this form of the raw data, we aim to extract all intervals
corresponding to target and non-target stimuli and classify
them accordingly.
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B. PROPOSED FEATURE SELECTION METHODOLOGY
Pre-processing P300 signals for classification requires exten-
sive feature engineering, which can often be computationally
intensive leading to slower response times [33]. In this work,
we significantly reduce the pre-processing steps required for
effective classification, and further, we completely eliminate
domain transformations, which are typically used to learn
salient P300 signal features. Specifically, for each channel,
our proposed data engineering pipeline is as follows. In gen-
eral, we denote c as the number of electrode channels and s
as the sampling rate.

1) Segmentation: We begin by extracting 1000 ms of the
EEG signal (initially sampled at fs) following the onset
of each target and non-target display.

2) Referencing: We reference each signal against the mas-
toid channels by computing the average of the two
mastoid channels and subtracting it from each signal
segment.

3) Filtering: We filter each signal using a forward-
backward Finite Impulse Response (FIR) band-pass
filter to remove high frequency artifacts and noise from
the waveforms.

4) DC Bias Elimination: We eliminate the direct cur-
rent (DC) bias by averaging the first 100 ms of data in
each signal and subtracting it from each signal element.

5) Downsampling: We downsample each signal to 32 Hz
for computational efficiency, which does not remove
salient artifacts of signals with high sampling rates.

6) Signal Averaging: We average various numbers of suc-
cessive target and non-target signals to eliminate noise
and variation in signals. The results for averaging dif-
ferent numbers of signals are presented in Sec. III.

7) Constructing Model Inputs: We model the inputs for
our nonlinear deep learning models as single-channel
images consisting of the time-series EEG values from
each electrode channel (i.e., each sample was formed
into a c×s×1 tensor). For the linear models, we aggre-
gate the first two dimensions of the image tensor to
form a single vector, which is inputted into the model.

C. CHANNEL COMBINATIONS
We explore the most effective electrodes to extract features
from for robust classification. Specifically, in addition to
using aggregated signals collected from all 32 electrodes
of the EEG cap, we also consider 4-channel and 8-channel
configurations where the channels in each configuration are
chosen based on the location of electrodes on the scalp
that result in the most prominent P300 signal production
[34]–[37]. The 4-channel and 8-channel configuration use
the following aggregated channels, respectively: Pz, Oz, Fz,
Cz and P7, P3, Pz, Oz, P4, P8, Fz, Cz.

D. CLASSIFICATION MODELS
We propose three novel deep learning models to classify
P300 signals processed according to our methodology in

Sec. II-A. These proposed models consist of (1) convolu-
tional layers, (2) recurrent layers, (3) and both convolutional
and recurrent layers. In addition, we describe two linear
machine learning models that we use as baselines to com-
pare our proposed models with. These linear models (linear
discriminant analysis and support vector machines) are tradi-
tionally used in P300 classification [22].

We compare linear machine learning models with
non-linear deep learning models in order to demonstrate
the necessity of employing a sophisticated classifier on our
effectively pre-processed P300 signals. In particular, we find
this comparison to be important since (i) linear machine
learning models were heavily utilized prior to the advent of
deep learning-based classifiers for P300 signal classification
and (ii) because the comparison between models will reveal
the required complexity needed for the employed classifier.
In addition, we also compare our proposed method against
three deep learning-based baselines, which are discussed in
Sec. III-C.

1) LINEAR DISCRIMINANT ANALYSIS (BASELINE MODEL)
Linear discriminant analysis (LDA) is the most common
model used for P300 classification [33] The objective is to
determine the classification probability, P(Y = y|X = x),
of each input sample, x ∈ Rd , where the output is given by
y ∈ {0, 1} (corresponding to non-target and target classes,
respectively) using Bayes’ Theorem. Specifically, this is for-
mulated by

P(Y = y|X = x) =
P(X = x|Y = y)P(Y = y)∑1
i=0P(X = x|Y = i)P(Y = i)

. (1)

The class conditional probability, P(X = x|Y = y),
is modeled by the multivariate Gaussian distribution where
P(X = x|Y = 0) and P(X = x|Y = 1) share the
same covariance matrix, 6. The PDF, where | · | denotes the
determinant operation, is given by

P(x|Y = y)

=
1√

(2π )d |6y|

exp
(
−1
2

(x− µy)T6y
−1(x− µy)

)
.

(2)

Substituting 2 into 1, and taking the logarithm of both
sides, yields the LDA model, which is given by

P(y|x) =
(
−

1
2
(x− µy)T6y

−1(x− µy)
)

+ logP(Y = y)+ C, (3)

where P(Y = y) can be estimated from the data. Equation (3)
can also be written as follows:

P(y|x) = wT
y x+ wy0 + C, (4)

where wT
y and wy0 are the model parameters fitted during

training. The class prediction of a sample, x ∈ Rd , is then
given from 4 using the learned parameters estimated from the
training data.
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2) SUPPORT VECTOR MACHINE (BASELINE MODEL)
Training support vector machines (SVMs) on high dimen-
sional EEG data is often extremely computationally costly
making it infeasible to implement in BCIs. Therefore, suc-
cessful implementations often deploy SVMs on a reduced
dimensional representation (via Principal Component Analy-
sis) of the training data such as in [21] and [23]. We compare
our proposed deep learning method with such SVMs trained
on Principal Components (PCs). Specifically, given a training
dataset matrix, Xtr , (where each row is a single realization
x ∈ Rn) and its corresponding covariance matrix, 6, the jth

PC, for j = 1, 2, . . . , n, is given by aj = vTj X T
tr where vj is the

eigenvector corresponding to the jth largest eigenvalue. Our
experiments reduce the dimensionality of the data to k = 25
PCs, which accounts for approximately 80% of variability
in each model setup, to alleviate computational power and
training time.

The Linear SVM aims to learn a separating hyper-
plane, which maximizes the margin between itself and the
PCs. Specifically, for each training sample, xi ∈ Rk ,
i = 1, 2, . . . , n, along with its corresponding output, y ∈
{−1, 1}n, the Linear SVM model is given by

ŷ = wT x+ b, (5)

where w ∈ Rk and b ∈ R are the model parameters learned
during training. The model is then minimized by employing
the hinge loss in the objective function

min
w,b

1
2
||wTw|| +

∑
i

(yi(wT xi + b))+. (6)

The optimal w and b found in (6) is then used to construct
themodel shown in (5). Finally, given an input testing sample,
x ∈ Rk , and optimized parameters, w ∈ Rk and b ∈ R,
the SVM prediction is given by

sgn(wT x+ b), (7)

where sgn(·) is the sign of the resulting vector corresponding
to target and non-target responses.

3) CONVOLUTIONAL NEURAL NETWORK (PROPOSED
ARCHITECTURE)
Convolutional neural networks (CNNs) have achieved state-
of-the-art performance in a myriad of tasks, such as computer
vision [38] and neuroimaging [39], due to their superb abili-
ties to learn and analyze spatially correlated patterns. Their
successes have also been shared in EEG signal processing
but with the requirement of high parameter models, which
consume excessive training time, and have not been shown
to generalize across subjects, making them infeasible for
BCI implementation. Herein, we propose a low-parameter,
two-layered CNN model with small kernel dimensions that
are highly efficient to train. The first and second layers
contain 64 and 32 feature maps, respectively, each with
35% dropout to avoid overfitting. Each layer consists of

1× 10 dimensional kernels and employ the Rectified Linear
Unit (ReLU) activation function, which is given by

σ (a) = max{0, a}. (8)

The output of each feature map is given by

σ
(
v ∗ a+ b

)
, (9)

where ∗ denotes convolution, a is the input into the convo-
lutional layer, v is the kernel whose parameters are learned
during training, and b is a bias threshold.

4) RECURRENT NEURAL NETWORK (PROPOSED
ARCHITECTURE)
Recurrent Neural Networks (RNNs) employ feedback sys-
tems to create memory within deep learning models. Specif-
ically, given an input, x ∈ Rd , a recurrent layer, with k units,
calculates each hidden state, h ∈ Rk (where each element of
h is represented by ht for t = 1, 2, . . . , k), and layer output,
y ∈ Rk , for the subsequent unit, t , according to the following
formulation (with a random initial state for h0):

aaa(t) = bbb+WWWhhh(t−1) +UUUxxx(t) (10)

hhh(t) = tanh(aaa(t)) (11)

ooo(t) = ccc+VVVhhh(t) (12)

yyy(t) = σ (ooo(t)), (13)

where W denote parameters linking hidden layers, U denote
parameters used for connecting the input to the hidden layers,
and V denote parameters connecting the hidden state to the
layer’s output, and σ (·) is an activation function.
Long-short-term-memory (LSTM) cells [40] extend the

idea of recurrent layers andwere initially designed tomitigate
the vanishing gradient problem, but they were later found
to deliver strong performance on time-series data [41] and,
therefore, have been used to classify P300 signals. LSTM
cells differ from the foregoing recurrent behavior by introduc-
ing three operations: input gates to prevent the hidden state
of the respective LSTM unit from learning irrelevant inputs;
forget gates to eliminate input features that non-relevant fea-
tures after concatenating xt with ht ; and output gates, which
contain the outputs of the LSTM layer and are inputted into
the next layer. During forward propagation, the input gate,
g(t)i , and forget gate, f (t)i , for cell i at time step t are given by:

g(t)i = σ
1
(∑

j

Vg
i,jx

(t)
j +

∑
j

Wg
i,jh

(t−1)
j +bgi

)
(14)

f (t)i = σ
1
(∑

j

Vf
i,jx

(t)
j +

∑
j

Wf
i,jh

(t−1)
j + bfi

)
, (15)

where σ 1(·) is the logistic sigmoid activation function given
(element-wise) by σ 1(a) = 1/(1 + exp(a)) and Vg,f , Wg,f ,
and bg,f are the input weights, recurrent weights, and bias
vector, respectively, for the input and forget gates that act on
the current input vector, x(t), and current hidden layer vector,
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h(t). The internal state of the cell, s(t)i , is calculated using (14)
and (16) together:

s(t)i = f (t)i s(t−1)i +g(t)i σ
(∑

j

Vi,jx
(t)
j +

∑
j

Wi,jh
(t−1)
j +bi

)
,

(16)

where V, W, and b are the input weights, recurrent weights,
and input bias vector, respectively. Finally, the output gate,
p(t)i , and cell output, q(t)i , is given by:

p(t)i = σ
(∑

j

V0
i,jx

(t)
j +

∑
j

W0
i,jh

(t−1)
j + b0i

)
, (17)

q(t)i = tanh(sti )p
t
i . (18)

The model parameters are optimized by minimizing the
objective function shown in (20) using the backpropagation
algorithm. Our RNNmodel consisted of a single LSTM layer
with 32 cells, with input x ∈ Rc×s, followed by a fully
connected1 ReLU layer containing 64 units.

5) CONVOLUTIONAL LSTM NETWORK (PROPOSED
ARCHITECTURE)
Our last proposed deep learning model is the convolutional
LSTM recurrent neural network (CRNN) inspired from [28]
for subject-specific single-trial P300 classification. CRNN
models are considered to capture spatially and temporally
correlated data resulting in increased classification perfor-
mance. In this work, we construct a CRNNmodel, with input
x ∈ Rc×s×1, consisting of two ReLU convolutional layers
with 64 and 32 feature maps, respectively, each with a 1× 10
kernel, followed by a 16 cell LSTM layer.

E. TRAINING AND PERFORMANCE EVALUATION
Each proposed deep learningmodel is trained using the Adam
optimizer with a learning rate of 0.001 and 100 epochs.
Furthermore, the output layer of each proposed deep learning
model consists of a two-unit dense layer with the softmax
normalization function given by

σ 1(h)i =
ehi∑2
k=1 ehk

, (19)

where h is the model output, prior to softmax normaliza-
tion, termed logits. The softmax normalization results in a
probabilistic interpretation of the outputs where argmax

i
fi(h)

is the model’s assigned classification for any given input
sample x. Finally, each model is optimized by minimizing the
categorical cross entropy function, which is given by

L = −
2∑
i=1

yilog(σ 1(ŷi)), (20)

where yi is the ground-truth label, ŷ is the classifier’s assigned
label.

1The output of the fully connected layer, at each unit, is given by [wT x+
b]+, where w ∈ Rk and b ∈ R are the weight vector and bias, respectively,
learned during training, and x ∈ Rk is the output from the preceding layer.

III. RESULTS
Here, we evaluate our proposed methods from Sec. II.
We begin by introducing our employed datasets (Sec. III-A).
Next, we quantify the performance of each considered model
under multiple feature averaging techniques and electrode
configurations (Sec. III-B). We then show detailed metrics
outlining the strength of the strongest performing model for
each considered dataset (Sec. III-C). Finally, we discuss the
computational feasibility of our proposed methods (Sec. III-
D).

A. DATASETS
We evaluate our proposed method on three publicly available
P300 datasets, which are described below. Each dataset was
collected by invoking a visual stimulus using the oddball
paradigm on each subject. Moreover, the number of subjects
in each dataset, denoted by s, differs, allowing us to effec-
tively assess the performance of our methodology on subjects
whose data has not been exposed to the training algorithm.
In this capacity, we train each considered model using s-fold
cross validation, where each model was trained using data
from s − 1 subjects and tested on data collected from the
excluded subject for all s training combinations. The results
from each individual subject on each model were aggregated
to produce an averaged result to measure performance as
shown in Sec. III-B.
Dataset A: This dataset consists of s = 4 subjects and is

constructed using a subset of the data (from healthy subjects
only) presented in [16]. The data were collected by randomly
illuminating one of six items from a menu for 100 ms. Each
one of four subjects were tasked with counting the number
of illuminations of one specific target image. EEG data was
collected from each subject over several sessions using a 32-
channel EEG cap with a sampling frequency of 2048 Hz. The
four subjects were all males (ages 30 ± 2.3 years).
Dataset B: This dataset consists of s = 16 subjects and

was constructed by acquiring EEG data from 16 healthy
young adults (ranging in age from 22-30 years old) with no
history of neurological, physical, or psychiatric illness [12].
The data were collected on a 16-channel, active Ag/AgCl
electrodes, EEG cap (with a sampling frequency of 256 Hz)
using a P300 speller board by illuminating target characters
for 100 ms with an inter-stimulus interval of 150 ms.
Dataset C: Similar to Dataset A, this dataset was con-

structed using only the healthy subjects from the data pre-
sented in [42] for a total of s = 42 subjects. The subjects
ranged between 19 and 35 years in age. Each subject was
tasked with counting the number of target characters, which
would illuminate for 100 ms on a P300 speller board. The
EEG signals were captured using a g.USBamp 8-channel
EEG cap with a sampling frequency of 256 Hz.

B. MODEL EVALUATION
Each of the three electrode configurations were evaluated by
averaging up to 15 EEG segments (epochs). Figs. 5-9 show
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FIGURE 5. Average classification performance at various averaged
epochs using the 4-channel electrode configuration on Dataset A. We see
that the deep learning models, and in particular the CRNN, deliver better
performance compared to traditional linear machine learning models.

each considered model’s performance when averaging vari-
ous numbers of waveforms onDatasets A and B. Note that the
average classification accuracy in each figure was calculated
by averaging the accuracy of all subjects in their respective
datasets when their data was used for testing the respective
model (individual subject performance is discussed in fur-
ther detail below). In all three electrode configurations, our
proposed deep learning models outperform traditional linear
machine learning models and, in particular, we see that the
CNN is consistently one of the strongest performing models.

As shown in Figs. 5 and 6, the highest average classifi-
cation performance using the 4-channel configuration, for
each model, is achieved when a larger number of epochs
are averaged together. This is expected as averaging more
signals results in lower noise variance and a higher signal
to noise ratio (SNR). Although averaging less than eight
segments results in lower performance for each model on the
4-channel configuration, each of our proposed deep learning
models outperform the SVM and LDA on the raw EEG
time samples. However, the lower performance across all
tested models indicates that the four selected electrodes may
eliminate salient subject-independent P300 features, which
are captured on other electrodes and required for classifying
P300 signals across subjects.

The 8-channel electrode configuration significantly out-
performs the 4-channel configuration in that the deep learning
models are able to achieve high accuracy when averaging
a small number of segments on both Dataset A and B. For
example, the CNN trained on averages of six waveforms
achieve an average of 95.05% accuracy across the four sub-
jects in Dataset A and an average accuracy of 92.18% across
the 16 subjects in Dataset B. The CNN’s ability to learn
generalized features on low numbers of averaged epochs
indicates the potential for rapid real time P300 classifica-
tion on deployed BCIs as opposed to linear methods, which
require longer processing times for better performance and

FIGURE 6. Average classification performance at various averaged epochs
using the 4-channel electrode configuration on Dataset B. Here, we see
that the CNN and RNN are the strongest overall performing models.

FIGURE 7. Average classification performance at various averaged
epochs using the 8-channel configuration on Dataset A. Averaging six
epochs and using a CNN for classification delivers the highest average
accuracy across subjects and significantly outperforms linear classifiers.

tend to learn subject-specific signal artifacts. Furthermore,
contrary to the 4-channel configuration, the CNN is the best
performing overall model across each segmentation value in
the 8-channel configuration indicating that learning discrimi-
native features from averaging a small number of waveforms
is possible using both efficient pre-procesing and an efficient
classification model. Lastly, each model’s ability to deliver
relatively high classification accuracy using the 8-channel
configuration indicates that salient features required for
effective P300 classification are captured on merely eight
electrodes.

High electrode configurations are often used for EEG
signal processing because they consist of high-resolution
attributes believed to improve BCI algorithms. However, our
results demonstrate that using time samples from more than
eight electrodes degrades classification performance in both
deep learning and linear machine learning classificationmod-
els. To demonstrate this, we show the performance of our
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FIGURE 8. Average classification performance at various averaged
epochs using the 8-channel configuration on Dataset B. We see that the
CNN and RNN are again the strongest performing models on average.

considered classifiers using the 32-electrode configuration on
Dataset A and the 16-electrode configuration on Dataset B
in Figs. 9 and 10, respectively. Here, the lower performance
of the SVM and LDA models is expected as linear mod-
els have exhibited degraded performance when processing
high-dimensional EEG inputs [20]. However, our considered
deep learning models also attain lower classification per-
formance, compared to the lower electrode configurations
indicating that they have higher difficulty in learning dis-
criminative features when they process signals from higher
numbers of electrodes. Moreover, the superior ability of the
deep learning models, compared to linear models, is consis-
tent with the other electrode channel configurations.

As a general trend, the P300 classification accuracy tends
to increase when higher numbers of epochs are averaged.
Yet, we see that models trained on more than eight channels
(i.e., as in Figs. 9 and 10), sometimes deviate from this
trend. Specifically, in these cases, the classification accu-
racy drops on certain classifiers (in particular on recurrent
deep learning-based models and the LDA classifier) before
increasing for higher averaged epochs. We believe that this
is due to the LDA failing to effectively separate target and
non-target trials in high-dimensional signals due to the over-
lap in the variance of the two classes, leading to a lack of
effective separability (consistent with the findings of [20]).
Furthermore, the recurrent-based classifiers trained on high
dimensional inputs may learn ineffective time correlations on
certain channels, which do not provide salient characteristics
for effective distinction between target and non-target signals,
thus leading to lower classification performance in certain
cases.

C. SUBJECT PERFORMANCE
We now evaluate the efficacy of our method on our
three considered datasets. In doing so, we compare our
proposed method to three baseline P300 signal classifi-
cation frameworks: EEGNet [29], multitask autoencoders

FIGURE 9. Average classification performance at various averaged
epochs using the 32-channel electrode configuration on Dataset A.
Similar to Figs. 5 - 8, we see that the CNN is, on average, the best
performer in terms of classification accuracy.

FIGURE 10. Average classification performance at various averaged
epochs using the 16-channel configuration on Dataset B. Similar to Fig. 8,
the performance of the SVM and LDA increase after dropping.

(MT AE) [30], and deep convolutional neural networks (deep
ConvNets) [31]. The EEGNet is a multi-layered binary CNN
classifier, with each layer consisting of either temporal, spa-
tial, or pointwise filters along with batch normalization,
dropout, and downsampling (via pooling). The deep ConvNet
is similar to the EEGNet, with the exception of using several
more convolutional layers in its construction. Lastly, the MT
AE trains a deep autoencoder (consisting of convolutional
and recurrent LSTM layers) on the collected ERP signals
and then uses the autoencoder’s latent variable representation
to train a binary classifier to distinguish between target and
non-target signals.

We evaluate each dataset independently by training the
model using s − 1 subjects from the corresponding dataset.
Then, we use the outstanding subject for evaluation, wherewe
first determine the number of true positives (TP), false pos-
itives (FP), True Negatives (TN), and False Negatives (FN).
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TABLE 1. Comparison of our proposed method with three benchmarks. Each metric corresponds to the average value over each subject in the dataset (as
well as its standard deviation) when that subject was used as the testing data. We see that the proposed method is always the best performing except on
Dataset C, where the deep ConvNet performs equivalently to the proposed method. The proposed method also provides a faster classification time,
quantified in Table 5.

TABLE 2. Subject-specific metrics on each considered model using the 8-channel configuration on Dataset A. Rows in bold indicate the best performing
model for its corresponding subject.

Using these metrics, we calculate the accuracy, recall, preci-
sion, error, F-measure, and the Area Under the Curve (AUC)
of the receiver operating characteristic curve. The calcula-
tions for each metric is shown in (21) - (25) below.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(21)

Recall =
TP

TP+ TN
(22)

Precision =
TP

TP+ FP
(23)

Error =
FP+ FN
TP+ FN

(24)

F-measure = 2
Recall × Precision
Recall + Precision

(25)

Table 1 shows the performance of our proposed frame-
work in comparison to the three considered baselines. Note
that we only consider averaging up to seven signals using
the 8-channel electrode configuration when evaluating our
proposed method, since that combination demonstrated the

TABLE 3. Resulting p-values obtained from two-tailed paired-sample
t-test between the mean accuracy from our method in comparison to the
considered baselines. At a significance level of α = 0.05, we see that our
results are statistically significant in eight out of the nine cases.

best balance between a low number of required signals and
strong classification performance in Figs. 5 - 10. In Table 1,
we see that our proposed method is consistently the strongest
performing model in comparison to the three considered
baselines. In addition, we see that the performance of each
method is somewhat lower, overall, on Dataset B, indicating
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that the dataset contains less discriminative features in its
signals compared to Datasets A and C. Furthermore, we see
from Table 1 that both the proposed method and the deep
ConvNet perform equivalently on Dataset C, achieving per-
fect performance across on subject, while the EEGNet and the
MT AE also achieve high classification rates on the dataset.
We believe this is due to the dataset eliminating bad trials by
design (i.e., eliminating trials from the dataset with excessive
noise or subject movement during collection), thus increas-
ing the ability to effectively discriminate between target and
non-target signals.

To assess the significance of our improvements over the
baselines, we conduct pairwise statistical tests between the
accuracies obtained by our method and the baselines, and
find that the mean improvement in accuracy is statistically
significant (with p < 0.05) in eight out of the nine cases.
Specifically, Table 3 shows the calculated p-values from the
two-tailed paired-sample t-test between our proposedmethod
and each considered baseline on each dataset. We see that
at a significance level of α = 0.05, our improvements
are statistically significant in comparison to all baselines on
Dataset A and Dataset B. On Dataset C, the mean accuracy
from our method is statistically significant in comparison to
the EEGNet and the MT AE, but we obtain a p-value of 1.0
when calculating the significance between the Deep ConvNet
and our method due to their identical performance.

For a closer examination into the performance of each
considered model, we present the results of each considered
classifier on every subject in Dataset A in Table 2. Here,
we see that the CNN outperforms each of the other considered
classification models for Subjects 1-3, but the CRNN is the
best performer for classifying signals obtained from Subject
4. However, Subject 4 resulted in lower classification perfor-
mance regardless of the model as demonstrated by the lower
accuracy and AUC values calculated for that subject. [16]
claimed that the lower performance experienced by this sub-
ject could be due to mental fatigue resulting in low quality
data collection. Therefore, assessing the CRNN is the best
performing model for subject 4 may not be justifiable due
to the overall lower quality of data collected for that subject.
Furthermore, as a general trend, the RNN is the second best
classification model for each subject followed by the CRNN
(except in the case of Subject 4 for the aforementioned rea-
son). The LDA and SVM models achieve the lowest perfor-
mance for each subject indicating that they are not capable
of learning generalizable properties of P300 signals to the
same degree as non-linear deep learning models. We found
that the 4-channel and 32-channel configurations follow the
same trend in which the CNN and RNN are among the best
performing classifiers followed by the CRNN and then the
LDA and SVM models.

D. MODEL EFFICIENCY
Beyond the classification performance of eachmodel, we also
evaluate the computational overhead of each considered clas-

TABLE 4. Model training times for each model on dataset A. Note that
the model used to test each subject was trained on data from the other
three subjects.

TABLE 5. Average online evaluation times (and their standard deviations)
for each model and dataset on a single sample. We see that our proposed
method delivers the fastest evaluation time per sample while retaining
the highest average AUC.

sifier.2 Specifically, we calculate both the training time of
each classifier and the evaluation time of samples during
deployment.

We begin by evaluating the training times of each classifier
that we consider in our proposed method (during offline
calibration). The training time of each model depends on
several factors such as the number of subjects in the train-
ing dataset, the number of trials collected per subject, and
number of electrode channels used to construct the input
signals. Since each dataset we consider varies widely in these
factors, we select Dataset A to serve as an example of the
difference experienced in training times between models and
electrode configurations. Table 4 shows the average training
times of each considered classifier, using different electrode
configurations, on Dataset A.

As shown in Table 4, the linear models require sig-
nificantly less training time compared to the deep learn-
ing models. However, the computational efficiency enjoyed
by these models is compromised by consistently lower
classification performance. Among the deep learning mod-
els, on the other hand, both the CNN and RNN have

2The computational overhead was calculated when running each model
on an NVIDIA Tesla P100 GPU with 16 GB of memory.
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relatively low and comparable computational costs accom-
panied by high average accuracies. The CRNN results in
stronger classification performance than either considered
linear model but is highly computationally costly requiring
up to 631.25 seconds for training while achieving similar
performance to both the CNN and RNN for each channel
configuration.

Interestingly, our results show that reducing the number of
channels used for classification significantly reduces model
training time and, in some cases, improves accuracy. For
example, the CNN trained using the 8-channel configuration
provides a 2.66x speedup in model training, over the CNN
trained on the 32-channel configuration, while boosting the
average accuracy from 92.85% to 95.05%. TheRNNprovides
a similar speedup of 2.97x while retaining approximately
equivalent classification performance when using 8 channels
instead of 32. The speedup is even more apparent for the
CRNN and SVM models, which provide a 3.42x and 4.42x
speedup, respectively, when using the 8-channel configura-
tion in place of the 32 channels. Similar to the RNN, the
average classification performance remains approximately
equivalent when eliminating features collected from the addi-
tional 16 electrodes. For the LDA, the training time remains
below one second for both the 8 and 32-channel configura-
tions while actually improving average classification perfor-
mance when only using 8 channels. However, the increased
accuracy in the 8-channel case is significantly lower than the
performance achieved by the deep learning models trained on
the same channel configuration.

As expected with reduced dimensional inputs, the models
trained on the 4-channel configurations provided significant
speedups (3.56x, 4.23x, 6.01x, 8.86x, and 4.41x for the CNN,
RNN, CRNN, LDA, and SVM, respectively) compared to the
models trained on the 32-channel configuration. However,
the higher classification performance was achieved using
8-channels indicating that the features lost when reducing
the 8-channel configuration to the 4-channel configuration
results in eliminating vital features required for learning gen-
eral P300 properties for effective inter-subject classification.
Overall, the CNN trained using the 8-channel configuration
provides the best balance between computational efficiency
and classification robustness as it achieves the highest aver-
age accuracy across all considered models while mitigat-
ing the need for excessive training times required by the
32-channel configuration.

Lastly, we consider the average classification time of a
sample from each dataset during deployment on our proposed
model (using the 8-channel electrode configuration on the
CNN). Table 5 summarizes these results and shows a compar-
ison of evaluation times to the three considered benchmarks.
Here, we see that our proposed method delivers the fastest
online evaluation times (with up to a 2x speedup in some
cases) while also resulting in the most robust classification
performance. Through analyzing both the offline training and
online evaluation times, we find that our proposed method
results in the lowest computational efficiency among our

considered datasets and benchmarks, thus resulting in faster
communication capabilities by the user during deployment.

IV. CONCLUSION
In the scope of this work, we proposed a novel EEG pro-
cessing pipeline capable of learning intrinsic P300 signal
properties. In particular, we demonstrated that our proposed
pre-processing methods paired with novel deep learning clas-
sification models effectively distinguish target and non-target
P300 signals on one particular subject when the model was
trained using aggregated data from various other subjects.
Our results demonstrated that each considered deep learning
model is capable of learning intrinsic P300 signal properties
to a greater extent than linear machine learning models, such
as the Support Vector Machine (SVM) and Linear Discrimi-
nant Analysis (LDA) algorithms, which are traditionally used
for P300 classification. Among the three considered deep
learning architectures, our results showed a similar perfor-
mance for both the CNN andRNNwhere the CNNwas shown
to be slightly more robust in each experimental setup. The
CRNN, although shown to be more robust than either linear
model, was consistently the lowest performing deep learning
model, on average, across all subjects.

In addition to the CNN achieving the best performance,
our experiments revealed the ability of deep learning models
to learn intrinsic P300 signal properties without requiring a
large amount of signal averaging leading to faster decision
making by BCIs while processing fewer epochs. Further-
more, in addition to achieving robust performance with as
few as seven averaged trials, using data from eight electrodes
was shown to be both more (or equivalently) robust and less
computationally costly than using data from all 32 electrodes
for classification. The reduced computational overhead stems
directly from the reduced cardinality of the input features,
which often scales proportionally with the required train-
ing time. The equivalent classification performance achieved
using eight electrodes indicates that salient P300 signal fea-
tures are captured on this particular subset of channels as
classification performance is not degraded when eliminating
the measurements captured on the remaining electrodes.

As noted in prior work, the P300 response evoked by
certain subjects with disabilities can differ from expected
P300 signals, so the learned feature space captured for differ-
ent subjects with particular disabilities may differ. In future
work, we anticipate exploring and learning these common
feature spaces associated with various neurological disorders.
Furthermore, an extension of our methodology can be applied
using deep neural network autoencoders, which can be used
to reconstruct noise-free representations of noisy P300 sig-
nals on raw EEG signals. In this capacity, autoencoders can
dramatically decrease computational complexity and poten-
tially further eliminate pre-processing steps beyond what was
eliminated in this work. Finally, we anticipate applying active
learning algorithms to our models in which incorrect predic-
tions made on a particular subject are used to refine the BCI’s
classification capabilities for real-time calibration. Active
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learning would not only result in accurate pre-trained models,
but it would also allow real-time algorithmic improvement in
BCIs for P300 classification. Ultimately, finding a common
feature space for P300 signals across various subjects, while
keeping computational costs low, is crucial for designing BCI
prototypes that can work without subject-specific calibration.
This work steps towards alleviating this challenge by show-
ing the feasibility of capturing common P300 characteristics
from a set of subjects using deep learning models.
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