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ABSTRACT Due to the tremendous advancement in interactive multimedia systems and technologies,
security has become a major aspect. Advanced technology can be utilized for hacking autonomous systems
like Unmanned Aerial vehicles (UAVs) in different ways such as spoofing and jamming. It can be spoofed by
the injection of fake signals into the sensors. For the protection of the UAVs from the Global Positioning Sys-
tem (GPS) signal spoofing attack, we propose a newmethodology by incorporating a machine learning (ML)
algorithm such as Support Vector Machine (SVM). A detailed analysis of several learning algorithms is also
carried out to choose the suitable learning algorithm for the proposed work. Once the suitable ML algorithm
is selected, we perform K-fold analyses to develop other learning models by choosing different values of
K-folds thus we called them K-learning models. The purpose of developing K-learning models is to apply
voting techniques to the developed K-learning models. Moreover, the signal features used in the proposed
work are jitter, jitter (absolute), jitter (local), jitter (RAP), jitter (ppq5), shimmer, shimmer (local), shimmer
(dB), shimmer (apq3), shimmer (apq5) and frequency modulation. Based on these features of the signal,
we train our proposed model for the detection of counterfeit GPS signals. To gauge the performance of
the proposed model, we perform different experimentation analyses such as accuracy, precision, recall, and
F1-score. The results and analysis show the effectiveness of the proposed work over existing techniques.

INDEX TERMS UAV, SVM, spoofing attack, signal characteristics, GPS signal.

I. INTRODUCTION
Nowadays, the autopilot systems such as UAVs or drones
are frequently used for aerial surveillance systems, packet
delivery, and secure communication. In a danger zone, com-
munication signals that are exchanged between the UAVs
and ground station may be lost or corrupted by incorporating
possible cyber-attacks such as jamming and spoofing [1], [2].
In the case of grave danger, safe landing at the nearest safe
zone or return-to-home is a challenging task. It is difficult
to ensure a safe landing in unexpected zones with the weak
robustness of the autopilot system against powerful cyberse-
curity attacks. Hence, this problem demands an intelligent
decision-making system for UAVs that can take decisions
on run-time to tackle and overcome the threats with less
computational complexity [3]. Some of the major tasks to
secure the UAVs are lightweight, small-sized and weak com-
putational power. Due to the quite complex architecture of
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UAVs, it is hard to conceptualize UAVs security. However,
there is a trade-off between the strongUAVs security and their
expected benefits, functionalities, and cost. A detailed UAV
architecture is explained by Barth et al. in [4].

To resists cyber-attacks, it is crucial that the UAVs’ archi-
tecture must be robust. UAVs can be attacked in two ways:
integrity attack and Denial of Service (DoS) attack [5].
Integrity attacks include spoofing and false data injection,
while jamming, gray and black hole attack falls in the cat-
egory of DoS attack.

UAV systems mostly use GPS for landing on the desired
place. Although the GPS is capable of controlling the UAVS,
it has been found as vulnerable to the Radio Frequency
Interference [6]. Two major vulnerabilities are Jamming and
GPS spoofing which can be a major threat to civilian and
militaryGPS users. Jamming is referred to the transmission of
a radio signal with a relatively higher frequency and masking
the authentic signal with some noisy signal to disturb it [7].
While in GPS spoofing, an eavesdropper sends a counterfeit
signal and produces a fake position or alters the pre-defined
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FIGURE 1. A pre-defined and a counterfeit trajectory.

position to trap the UAV system from its mission. Therefore,
it is possible to spoof a military or civilian UAV by changing
the trajectory from the predefined one without the user’s
notice. Figure 1 shows the two trajectories that will follow the
UAV. The path ABC is the pre-defined trajectory, whereas the
line ABD is the spoofed trajectory. If the attacker launched
the spoofing attack successfully the UAV will divert from
point B and will move towards point D which is not the
desired location.

In recent years, security experts have found that the UAV
can easily be spoofed using the GPS spoofing attack if the
low-cost software and hardware are used [8]–[10]. Based
on the vulnerabilities discussed in [8]–[10], GPS spoofing
can be categorized into three major classes: receiver-based
spoofers, GPS signal simulators, and refined receiver-based
spoofers [11]. In the first category, the GPS receivers con-
catenate with the spoofing transmitter to find the pre-defined
location. This type of spoofing is a bit difficult to detect.
In the second category to spoof the GPS signal, the simulators
used to send GPS signals are concatenated with the radio
signals to produce a duplicate GPS signal. Combining GPS
signal with the noisy signal is not needed in this method. The
last category is more advanced. In this method, it is assumed
that the velocity and the position of the victim receiver are
precisely known. It is almost impossible to detect this type of
attack using traditional-anti-spoofing attacks [12].

To resist GPS spoofing attacks, Hybrid Position Receiver
(HPR) and GNSS Receiver Stand-alone (GRS) techniques
are frequently used [13], [14]. The GRS techniques are
based on vestigial signal defense [10] and spatial process-
ing [15]. More details about these techniques can be found
in [16]–[18]. There are also some drawbacks of HPR tech-
niques which are explained in [19].

As the autopilot system is completely reliant on GPS
location, ground station, and target. Attacks initiated by the
eavesdropper are always random and opportunistic. Several
components such as sensors, actuators guidance and control
systems which is mounted on the UAVs, are always suscep-
tible to a spoofing attack. In this case, an entire mission can
be devastated by feeding misleading data in the form of target

location or wrong trajectory for landing [20]. Using low-cost
hardware or weak software installation, UAVs can easily be
hacked by initiating spoofing or false data injection attack.

Spoofing attack can be of different nature which is
explained below:

A. VARIOUS SPOOFING TECHNIQUES
Autopilot systems having GPS signal receivers are vulnerable
to spoofing attacks. The effect of spoofing attack may depend
on the robustness of the system i.e., the more the robust
system, the more the resources at the attacker’s end will be
required to expose the system.
• Simple spoofing
In simple spoofing, attackers can generate false Global
GNSS signals. it can be used in practice by low-cost
hardware and software [21].

• Intermediate spoofing
In this scenario, the attacker generates false signals,
while, initiating the attack on each channel of the tar-
get receiver simultaneously by performing code phase
alignment between genuine and spoofed incoming
signals [22].

• Spoofing with multiple antennas
It is an advanced technique mainly used against sev-
eral antenna receivers, in which the attacker generates
multiple signals to disturb the frequency of the other
signals [23].
To protect the UAVs from GPS spoofing attacks, in this
paper, an ML model is proposed which is based on the
SVM and voting techniques such as hard and soft voting.
The proposed system for the detection of spoofed GPS
signals is activated whenever a GPS signal is received
by the UAV. The UAV will not perform any action
until it receives the GPS signal which is sent by the
authentic user. If a counterfeit GPS signal is received by
the UAV, it will wait for the next signal until it receives
the authentic signal. The classification of the counterfeit
and an original GPS signal will be based on the features
which are explained in section III. Once the authentic
GPS signal is received, the UAV will act accordingly.
The main advantages of the proposed model are com-
putationally efficient and can easily be implemented for
real-time applications.

B. CONTRIBUTIONS OF THE WORK
The major contributions of this paper are as follows:
• We have proposed a security system that detects the
authenticity of the GPS signal; whether the signal is
spoofed or authentic. The proposed system is incorpo-
rated with ML algorithms that help to classify the two
categories of the signal.

• Different characteristics of signals are incorporated as
features that are used to classify the spoofed and authen-
tic signals.

• Several machine learning algorithms are investigated to
select the most appropriate learning algorithm for the
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proposed work. The reason being is some of the ML
algorithms such as logistic regression and SVM having
a sigmoid kernel do not provide better results.

• Different learning models using K-fold analyses are also
created by selecting different values of K-folds. To fur-
ther enhance the accuracy of the proposed model, voting
techniques are integrated to choose a learning model
which classifies the signal with the highest accuracy
shown by a specific learning model among the other
proposed learning models.

• Different experimentation analyses such as accuracy,
precision, recall and F1-score are performed to evaluate
the effectiveness of the proposed work.

C. MOTIVATIONS
UAVs are useful and resourceful in surveillance and intel-
ligence operations [24]. The deployment of UAV security
systems demands tremendous material investment, time and
a great amount of mind. In the last few years, several secu-
rity protocols are proposed to protect the UAVs from signal
spoofing attacks [25]–[29]. Some of them are vulnerable to
jamming and spoofing attacks [19], [30].

As the vulnerable UAV system is composed of such
components which are not robust can be easily hijacked
by deploying cyber-attacks [31]. To make the UAV system
robust, it should be capable of resisting cyber-attacks such
as WiFi attacks, DoS attacks and signal spoofing attacks.
To hijack the UAVs and disconnecting the communication
systems, signal spoofing attacks are at the top priority of
the attackers. Signal spoofing attacks can be performed in
different ways; a) sending higher frequency signals, (b) false
data injection and (c) high gain antenna spoofing [32], Due
to the different spoofing attack strategies, the UAVs can be
risky to execute several operations such as search and rescue
operation, packet delivery and disaster management. This is
the basic motivation behind this research work Therefore,
to protect the UAVs from signal spoofing attacks, there must
be an intelligent signal spoofing detection protocol that can
classify the authentic and spoofed signals efficiently.

II. LITERATURE REVIEW
GPS signal spoofing is an act of producing counterfeit signals
to take control and hijack UAVs. To reduce the signal spoof-
ing threats, there has been growing interest to develop such
intrusion detection systems that can detect GPS signal spoof-
ing with maximum accuracy. Signal spoofing techniques can
be categorized as (1) signal processing techniques, that helps
to collect the raw data from signals and process them accord-
ingly, (2) hardware techniques, which need multiple sensor
and control systems and (3) a combination of hardware and
signal processing techniques, that collects the raw signals
data and process them using the control systems and signal
processors.

In the past few years, there has been a variety of work has
been proposed to detect the spoofed signals. For instance,
receiver autonomous integrity monitoring (RAIM) is the

most frequently used technique to detect signal spoofing
attacks [33]. Signal spoofing attacks can be controlled using
intrusion detection systems, such as anti-spoofing mech-
anisms [34]–[36]. In [37], sedjelmaci et al. proposed a
rule-based IDS to differentiate between the spoofed and
authentic signals. Also, the proposed system is useful to
detect jamming and false information insertion detection
attacks. To achieve the desired purpose, several rules are
defined based on the fixed threshold values. However, fixed
threshold value techniques may misclassify the correct pre-
dictions. In [38], a new IDS is designed that incorporates
behavior rule specifications. As the system used only a few
behavior indicators, the system is weak and fails to withstand
cyber-attacks on UAVs. In [39], Muniraj et al. proposed a
mitigation mechanism for UAVs against cyber-attacks such
as actuator-based attacks. In this work, only actuator-based
attacks are handled to protect the UAVs from hijacking.
In [40], Xiao et al. presented a user-centric IDS for UAVs
that incorporates reinforcement learning for attack detection.
From the existing work present above, we can analyze that
the traditional IDSs have major limitations.

In this paper, we have used different ML algorithms to
proposed such a mechanism that can detect authentic and
spoofed signals. For the time-efficient attack detection sys-
tem, the advent of ML-based IDS has made it possible
to detect cyber-attacks in UAVs with significant accuracy.
Moreover, the use of deep learning techniques also arises
issues with big data collection. However, some of the ML
algorithms do not perform better on the specific data set. The
performance of several ML algorithms may vary with the
nature of the data. Therefore, we also propose the analysis
of the performance of the different ML algorithms to select a
suitable ML algorithm for the proposed model.

The rest of the paper is organized as follows: In section III,
a brief overview of the SVM is given. While section IV
provides the proposed work for the detection of spoofing
attacks. Moreover, K-fold analysis is also presented in this
section. Section V is devoted to the analysis of the proposed
work and section VI concludes the proposed work.

III. SUPPORT VECTOR MACHINE
SVM is a classifier that classifies future predictions into
different classes [41]. As the SVM is a supervised learning
algorithm, there must be a portion of the dataset for training
purposes. In the proposed work, SVM is implemented to clas-
sify the GPS signals into two categories; whether it belongs
to the spoofed family or authentic.

To accomplish the classification task, several inputs/feature
vectors are required. The number of features used in the
dataset represents the dimensions of the dataset. For instance,
if the dataset contains ten features, the data would be ten-
dimensional. It can be represented as:

For N-D dataset: Y = X1,X2,X3,X4, . . . .XN

where X1, X2, X3,. . . . XN are the independent features on the
basis which SVM predicts the feature event (Y).
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While preparing the dataset, the number of features and
the number of output labels do not need to be equal. Instead,
it may vary depending upon the required number of out-
put classes. To classify the data points into their respective
class, SVM uses a line or a hyperplane. For a 2-Dimensional
dataset, a line (support vector) is used to classify the data with
maximum margins. Whereas, in the case of higher dimen-
sions, a hyperplane is used which can be express as:

Cx + w = 0 (1)

wherew is the bias and C is a vector of the same dimension as
the input feature vector x. As we used a 7-dimensional dataset
in the proposed work, Cx can be represented as:

C1
∗ x1+C2

∗ x2+C3
∗ x3+C4

∗ x4

+C5
∗ x5+C6

∗ x6+C7
∗ x7

While making predictions, following expression can be
incorporated:

Y = sign(Cx + w) (2)

where sign is dependent on the input, it returns +1 and −1 if
the inputs are positive or negative respectively. xi is feature
vector and yi is the label that can be +1 or −1. It can be
written as: {

Cx−w ≥ +1 yi = +1
Cx−w ≤ −1 yi = −1

(3)

SVMalso uses different kernels for classification purposes.
The kernel can be polynomial, rbf, linear or sigmoid [42].
We have used all these kernels in the implementation of SVM
for the proposed work and reported the results in section V.

IV. PROPOSED GPS-SPOOFING DETECTION MECHANISM
For the protection of UAVs from hijacking, UAVs must have
such a mechanism that can detect spoofed signals not only
with perfection, it should also be time-efficient. To accom-
plish the desired tasks, it is not the right choice to use aux-
iliary equipment. It can increase the cost as well the load of
the UAVs. UAVs are normally equipped with Inertial Mea-
surement Units (IMU) sensors, control systems, and camera
sensors. Incorporating IMU to detect spoofing attacks is a
relatively simple and low cost, but it has a cumulative error in
gauging velocity [43]. That is the reason, we develop such a
methodology that can detect spoofing with a minimum error
rate. Figure 2 shows the generalized flow diagram of the
proposed work.

As the UAVs receive so many signals at a time, but the
questions arise here that how the UAV will extract the GPS
signal from all those signals. Most of the signals have a
single frequency i.e Radio signals transmit with a single
specific frequency like 1KHz or 3KHz and so on. However,
GPS signal has some specific characteristics that make it dif-
ferent from other signals [44]. Transmitting simultaneously
navigation data using binary phase-shift keying (BPSK) and
several ranging codes are included in the characteristic of

FIGURE 2. Generalized flow diagram of the proposed work.

GPS signals. Moreover, most of the civilian or military GPS
devices using two different GPS frequencies at a time [45].

To detect the GPS counterfeit and authentic signal spoof-
ing, an ML-based security system is proposed. The main
purpose of the purpose work is to classify the spoofed and
original GPS signal. UAVs are mostly controlled by GPS
signals. It is important to receive the right destination location
by the UAVs in order to land safely at the desired place. The
major threat for the UAV is the spoofing attack. To resist
this type of attack, we propose an ML model in which
SVM and voting techniques are incorporated. To achieve the
desired task, the proposed model is divided into two sections:
(a) preparation of a new ML model based on one specific
ML algorithm such as SVM and (b) generation of a different
learning model by selecting the appropriate values of K in
K-fold analysis. In the first section of the proposed model,
a dataset is taken as an input that is used for both training
and testing purposes. The features used in the dataset are the
signal characteristics. A training phase comes first followed
by the testing phase. Once the model is trained, an unknown
signal is given as an input to test the proposed model. At this
stage, an initial model is prepared. The same procedure is
repeated to test several ML models and select a model in
which the highest accuracy is archived. To further improve the
accuracy of the proposed model, five more learning models
are prepared by selecting the different values of K using
K-fold analysis. In the last, voting techniques such as hard
and voting are applied to select the final learning model by
which the signal is classified.

The proposed scheme has several advantages. First,
it effectively uses the sensors to detect the signals, therefore
we do not need to add auxiliary equipment in UAV. Sec-
ond, the proposed scheme is lightweight and can easily be
implanted in real-time applications. Third, depending on the
efficiency of sensors to detect the signals, it can resist the
signal spoofing attacks. The flow diagram for the proposed
scheme is shown in Figure 3. The detail of the proposed
methodology is described given below:

To develop a GPS signal spoofing attack detection tech-
nique, the following steps are under consideration:
• Take a dataset that consists of different characteristics of
GPS signal such as jitter, jitter (absolute), jitter (local),
jitter (RAP), jitter (ppq5), shimmer, shimmer(local),
shimmer(dB), shimmer(apq3) and shimmer (apq5).
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FIGURE 3. Flow diagram of the proposed work.

• To classify the signal, whether it is genuine or spoofed,
first, it is required to extract the features from the
received signal. The explanation of features used in the
proposed scheme is given below:

A. SIGNAL CHARACTERISTICS AS FEATURES
In the proposed work, we have used signal attributes
such as ‘‘jitter’’, ‘‘Shimmer’’ and their subcategories as
features. Based on the numeric values of the features,
our algorithm detects whether the signal is spoofed or
authentic. When the UAV receives any signal, the pro-
posed model will extract the feature values from the
received signal and make a feature vector ie. Fvec = f1,
f2, f3, f4,. . . ..fn. The values in the feature vector will be
compared with each feature vector in the data set using
the proposed model. After applying the proposed model,
if it declares the signal is sent from the authentic user,
the UAV will be ready to take action accordingly.
On the other side, if the signal will declare fake or
spoofed, the UAV will decline to take further action
and wait for other incoming signals. This process of
receiving the signal will continue until the UAV will
have an authentic signal. Once the UAV will have an
authentic signal, it will act accordingly and after the
completion of the task, the same process will repeat for
another signal.
To classify the signal, jitter and Shimmer are used as the
features. The other features of signal such as frequency,
mean, root mean square, and range are used in the related

works [46]–[48]. According to existing work, [46]–[48],
while using features other than jitter and shimmer,
the overall accuracy of the model is not good enough
to classify the signal correctly. Moreover, there are ten
parameters are used as features because only two or
three parameters are not suitable to classify the signal
correctly. Therefore, to achieve the high accuracy of the
model, we have used ten parameters as features which
are explained below:

1) Jitter
Jitter refers to how much difference between the
two periods. It can be expressed by four parame-
ters: the absolute jitter (jitta), the local (jitt), the
five points period perturbationQuotient (ppq5) and
the relative average perturbation (rap). The jitta is
represented in µs and the other three terms can be
represented in percentage [49]–[51].

2) Jitter (absolute)
It is referred to the absolute difference between
the two consecutive periods of the signal. It is also
known as jitta. Mathematically it can be calculated
as:

jitta =
1

M − 1

M−1∑
j=1

(|Tj − Tj−1|) (4)

where Tj is the duration in seconds of each period
and ‘M’ is the total number of periods. Table 1
shows the intervals for jitta in which the proposed
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TABLE 1. Defined intervals for jitta.

model will check whether the signal is spoofed or
original.

3) Jitter (local)
It is the average absolute period of three consecu-
tive periods, divided by the total average period of
the signals. It is also called jitt. Mathematically it
can be cal written as:

jitt =
1

M−1

∑M−1
j=1 (|Tj − Tj−1|)

1
M −

∑M
j=−1(Tj)

(5)

The jitter(local) intervals for the original and
spoofed signal is defined in Table 2:

TABLE 2. Defined intervals for jitter(local).

4) Jitter (RAP)
It represents the average absolute difference of a
single period and the average of that period with
its two nearby periods, divided by the total average
period of the signals. Jitter (rap) can be expressed
as:

RAP =
1

M−1

∑M−1
j=1 (|Tj − ( 13

∑j+1
m=j−1(Tm))|

1
M −

∑M
j=−1(Tj)

(6)

The jitter (RAP) intervals for the original and
spoofed signal is defined in Table 3:

TABLE 3. Defined intervals for jitter (RAP).

5) Jitter (ppq5)
It represents the average absolute difference of a
single period and the average of that period with
its four nearby periods, divided by the total aver-
age period of the signals. It can be represented in
percentage which can be calculated as:

RAP =
1

M−1

∑M−1
j=1 (|Tj − ( 15

∑j+2
m=j−2(Tm))|

1
M −

∑M
j=−1(Tj)

(7)

The jitter (ppq5) intervals for the original and
spoofed signal is defined in Table 4:

TABLE 4. Defined intervals for jitter (ppq5).

6) Shimmer
The methodology to calculate the shimmer is sim-
ilar to the jitter. The only difference between the
jitter and shimmer is that the jitter refers to the
periods of the signal while the shimmer considers
the maximum peak amplitude of the signal. For
shimmer, there are also four related terms such
as shimmer(local) in the percentage of the aver-
age amplitude, shimmer(absolute) in dB (Shdb),
the three-point Amplitude Perturbation Quotient
(apq3), and the five-point Amplitude Perturbation
Quotient (apq5) both are also in percentage.

7) Shimmer (local)
Shimmer represents the average absolute differ-
ence between any two consecutive amplitudes,
divided by the total average amplitude of the sig-
nals. It is also called shim. Mathematically, it can
be represented as:

Shim =
1

M−1

∑M−1
j=1 (|Aj − Aj+1|)

1
M −

∑M
j=1(Aj)

× 100 (8)

The shimmer(local) intervals for the original and
spoofed signal is defined in Table 5:

TABLE 5. Defined intervals for shimmer (local).

8) Shimmer(db)
It is the average absolute logarithmic between any
two consecutive amplitudes and it is also called
ShdB and is given in dB. It can be calculated as:

Shdb =
1

M − 1

M−1∑
j=1

(|20 ∗ log(
Aj=+1
Aj

)|) (9)

The Shdb intervals for the original and spoofed
signal are defined in Table 6:

TABLE 6. Defined intervals for shimmer (db).

9) Shimmer (apq3)
It is the average absolute difference between the
amplitude of any one period and themean of its two
nearby periods amplitudes (nearby period ampli-
tudes can either be one previous and the other is
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subsequent or it can be two consecutive), divided
by the average of the total amplitude of the sig-
nal. The expression for the calculation of shimmer
(apq3) is given as:

apq3 =
1

M−1

∑M−1
j=1 (|Aj − ( 13

∑j+1
m=j−1(Am))|

1
M −

∑M
j=1(Aj)

(10)

The shimmer(apq3) intervals for the original and
spoofed signal is defined in Table 7:

TABLE 7. Defined intervals for shimmer (apq3).

10) Shimmer (apq5)
Shimmer(apq5) is identical to the shimmer(apq3),
the only difference is that shimmer(apq5) takes
4 neighbor periods amplitude instead of two. It can
be calculated as:

apq5 =
1

M−1

∑M−2
j=2 (|Aj − ( 15

∑j+2
m=j−2(Am))|

1
M −

∑M
j=1(Aj)

(11)

The shimmer(apq5) intervals for the original and
spoofed signal is defined in Table 8:

TABLE 8. Defined intervals for shimmer (apq5).

11) Frequency modulation
Modulation is a technique of mixing an original
signal with a high-frequency signal or a carrier
signal. Although the GPS signal will have a high
frequency, due to security measures, before send-
ing the GPS signal, it will be modulated with a
specific frequency. i.e 250 MHz to 300 MHz. The
demodulator which is mounted on the UAV will
demodulate the signal. If the extracted signal does
not lie in the selected frequency range, our model
will declare the GPS signal as a spoofed signal and
the UAV will not perform any action.
The attacker can send the GPS signal in two ways
(a) GPS signal with modulation (b) GPS signal
without modulation. The attacker doesn’t know the
frequency of the carrier signal by which the origi-
nal GPS signal is modulated. In this case, the car-
rier signal will also act as a secret key signal which
must be kept confidential as a result, the security of
the system will further enhance.

The dataset that we created is according to the intervals
explained above. It is used to classify the signals into two

categories: 1) spoofed signal 2) authentic signal. Once
the dataset is created, it will be divided into two sec-
tions, one is for training purposes, while the remaining
part of the data will be used for testing purposes. The
splitting of the data is performed randomly. A random
portion of the data is selected for training and testing
purpose. We have applied different ML algorithms on
our proposed dataset such as linear regression, Naïve
Bayes, decision tree, SVM with different kernels (sig-
moid, polynomial, Gaussian, and nonlinear), and ran-
dom forest. After applying such algorithms, we have
analyzed that some of them such as linear regression
SVM (with the sigmoid kernel) do not perform well
on the proposed dataset which we have created. The
detailed analyses are given in section V.
To gauge the accuracy of the proposed model on a
different portion of the dataset, we have performed a
K-fold analysis.

B. K-FOLD ANALYSIS
We evaluate the performance of the model by selecting
a specific percentage for the test samples randomly.
Therefore, when we evaluate the proposed model multi-
ple times by selecting the random portion of the dataset
for testing and training purposes, the proposed model
shows significantly different accuracy values every time.
This happens because, in every iteration, the test and
training data change. Therefore, it is not suggestible to
test the proposedmodel only a single time for evaluation.
On the other side, different ML algorithms show dif-
ferent accuracy values for the proposed model. For the
selection of the best learning algorithm for the proposed
work, we have performed K-fold experimentation. The
main aim behind K-fold experimentation is that each
sample in the dataset has the opportunity of being tested.
The number of iterations to evaluate the performance
of the proposed work using K-fold cross-validation
depends on the value K . For instance, a dataset contain-
ing samples; let’s say fifty samples, and anyone wants to
test the model by selecting each sample as a test sample
in every iteration, the value of K should be fifty or we
can say that the value of k must be equal to the total
number of samples (N ) present in the dataset (K = N ).
For each iteration, the equation will be:{

if Testing sample T = 1
Training sample K− 1

(12)

In the proposed work, we have tested the model in two
ways cross-validation methods. We called it two ways
because, for the first time, we have split the dataset into
‘N’ parts. However, testing each sample in the big data
will lead to high computational complexity. Therefore,
instead of splitting the data into ‘N’ parts, we have cho-
sen different values of K, (i.e. K = 5, K = 10, K = 15,
K = 20). For K = 10 means that we have performed
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FIGURE 4. K-fold experimentation: when ten percent of the dataset is chosen in each iteration as a training fold.

FIGURE 5. K-fold experimentation: when five percent of the dataset is chosen in each iteration as a training fold.

10 iterations to evaluate the performance of the proposed
model. While for the other values of K, the number of
iterations will be accordingly. Figures 4 and 5 shows
‘k = 10’ and ‘k = 20’ iteration validation processes,
respectively.

• After performing the K-fold analysis on the proposed
dataset, we have trained our proposed model for the pre-
diction of the nature of the signal (spoofed or authentic).

• Finally, to evaluate the performance of the proposed
work, we will calculate its accuracy, precision, recall,
and F1 score. Table V gives the statistics and the com-
parison of the proposed work with the existing ones.

C. VOTING TECHNIQUES
After performing the K-fold analysis on the proposed model
which is developed by incorporating the SVM, we have

created five more different models (M1, M2, M3, M4, M5)
to develop a voting classifier. For the classification purpose,
two voting techniques are considered; (a) hard voting (b) soft
voting.

1) HARD VOTING
In hard voting, the voting classifier counts the number of
votes and then assigns a particular class to the test sample.
In case of the proposed work, we have built the first four
models using cross-validation in which the values of K are
K = 5, K = 10, K = 15 and K = 20. These four
models have given the name K -learning models, While the
fifth model is built by selecting the random training data
(75%) from the whole dataset. The accuracy score for the
K -learning models is mentioned in Figure 6 where it can be
seen that the votes for the class A is more than the class B.
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FIGURE 6. Assigning a particular class by incorporating hard voting.

Therefore, the voting classifier declared that the test sample
belongs to the class B,

2) SOFT VOTING
In soft voting, rather than counting the votes, the probability
of occurring the events P(CA) and P(CB) is considered. A test
sample is tested through each K -learning model and calcu-
lates the probability occurrence. In Figure 7, the probability
occurrence of a test sample corresponding to each model is
shown.

FIGURE 7. Assigning a particular class by incorporating soft voting.

Once all the probabilities are calculated, the voting classi-
fier takes an average and then assigns a specific class to a test
sample as given below:

Probability of class A =
P(CA)1+P(CA)2+. . .+P(CA)5

5
(13)

Probability of class A =
0.91+0.83+0.06+0.94+0.04

5
= 55.6

Probability of class B =
P(CB)1+P(CB)2+. . .+P(CB)5)

5

Probability of class A =
0.09+0.17+0.94+0.06+ 0.96

5
= 44.4 (14)

V. PERFORMANCE EVALUATION FOR THE PROPOSED
MODEL
The proposed work is implemented on python 3.7. For
this, we have used the Jupyter notebook. Moreover, the

specifications of the system on which the proposed model is
tested are 8GB RAM, Intel(R) Core(TM) i3-4030U CPU @
1.90GHz. To gauge the performance of the proposed model,
a number of statistical analyses are performed which are
outlined below:

A. CONFUSION MATRIX
A confusion matrix is a two-dimensional array that is useful
to calculate the parameters (precision, accuracy, and recall)
that reveals the model’s performance. The confusion matrix
generated by incorporating SVM with polynomial kernel for
the proposed work is displayed in Table 9.

TABLE 9. SVM (polynomial-kernel) confusion matrix for the proposed
model.

The confusion matrices corresponding to the different ML
algorithms for the proposed model are given in Table 10:

B. CLASSIFICATION ACCURACY
Accuracy reveals that how many true predictions are made
by the model. More the true prediction will result in high
accuracy.

True predictions ∝ accuracy

It can be calculated as:

Accuracy =
Correctly predicted events
total number of samples

(15)

OR

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

According to Table 9, the accuracy of the proposed model
will be:

Percentage accuracy =
38+ 41

38+ 1+ 0+ 41
= 98.7%

C. PRECISION
It is the ratio of the true positive observations and the total
number of true and false positive observations. It can be
express as:

Precision =
TP

TP + FP
According to the values given in Table 9, the precision of

the proposed model is:

Precision =
38

38 + 0
= 1
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TABLE 10. Confusion matrices generated using several ML algorithms for
the proposed model.

D. RECALL
It defines the sensitivity of the model. To make the model
ideal in terms of recall, FN should be zero. As FN increases,
the denominator will also increase which results in a decrease
in the overall value of recall, which is not required for anyML
model. Recall can be calculated as:

Recall =
TP

TP + FN
(17)

For the proposedmodel, recall value according Table 9 will
be:

Recall =
38

38+ 1
= 0.97

E. F1-SCORE
F1 score is dependent on both precision and recall. It will be
maximum if both the precision and the recall values are equal

TABLE 11. Analysis of proposed work corresponding to the different ML
algorithms.

TABLE 12. Accuracy Analysis (%).

TABLE 13. Precision Analysis (%).

to 1. Mathematically, it can be calculated as:

F1 = 2×
precision× recall
precision+ recall

(18)
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TABLE 14. Recall analysis.

TABLE 15. F1 score analysis.

TABLE 16. Comparison of the proposed work with the existing ones.

According to Table 9, F1 score for the proposed model will
be:

F1 = 2×
1× 0.97
1+ 0.97

= 0.98

The scores of the different metrics when incorporating
decision tree, SVM, LR, RF, and NB for the proposed model
are given in Table 11. Based on the analysis, we have selected
SVM (with the polynomial kernel) for the proposed work,

because it gives better results as compared to the other ML
algorithms as can be seen in Table 11. Once the suitable
ML algorithm is selected for the proposed work, we have
developed four different models (K -learning models) using
the K-fold validation method. The statistical results for the
K -learning models are given in Tables 12, 13, 14 and 15.

Moreover, we have also made a comparison between the
proposed work with the existing work as given in Table 16.
From Table 16, it can be clearly visualized that the proposed
model exhibits better results than the existing ones in terms
of accuracy, precision, recall, and F1 score.

VI. CONCLUSION
In this paper, a new ML model is proposed to classify the
spoofed and authentic signals received by UAVs. In the pro-
posed methodology, several ML algorithms are deployed in
order to select a suitable classification algorithm. To achieve
the desired task, we have used GPS signal characteristics as
features. Based on the feature specifications, our proposed
model detects whether the signal is sent by the attacker or
a legitimate entity. Moreover, to enhance the accuracy of
the proposed work, we have developed different ML models
using K-fold analyses by selecting different values of K-fold.
These K-learning models are then used for voting purposes.
For that, we have used soft and hard voting to assign the class
to the unseen or test data. Different experiments and analyses
were conducted to evaluate the strength of the proposed
model. Moreover, a comparison of the proposed work with
the existing work is also carried out which clearly shows that
the proposed model works better than the existing ones.

As the proposed model is based on different ML algo-
rithms, a decent accuracy is achieved. For further improve-
ment in the proposed work, ML algorithms can be replaced
with deep learning (DL) algorithms or a combination of both
ML and DL algorithms. Moreover, In the future, DL strate-
gies can be integrated with a convolution Neural Network
(CNN).
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