IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 5, 2021, accepted June 9, 2021, date of publication June 16, 2021, date of current version June 28, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3089704

R2U3D: Recurrent Residual 3D U-Net for

Lung Segmentation

DHAVAL D. KADIA®1, (Member, IEEE), MD ZAHANGIR ALOM 2, (Member, IEEE),
RANGA BURADA“3, TAM V. NGUYEN “1, (Senior Member, IEEE),

AND VIJAYAN K. ASARI“4, (Senior Member, IEEE)
! Department of Computer Science, University of Dayton, Dayton, OH 45469, USA
28t. Jude Children’s Research Hospital, Memphis, TN 38105, USA

3Microsoft, Redmond, WA 98052, USA

“Department of Electrical and Computer Engineering, University of Dayton, Dayton, OH 45469, USA

Corresponding author: Dhaval D. Kadia (kadiad1 @udayton.edu)

This work was supported in part by the University of Dayton Open Access Fund and in part by the National Science Foundation (NSF)

under Grant 2025234.

ABSTRACT 3D Lung segmentation is essential since it processes the volumetric information of the lungs,
removes the unnecessary areas of the scan, and segments the actual area of the lungs in a 3D volume.
Recently, the deep learning model, such as U-Net outperforms other network architectures for biomedical
image segmentation. In this paper, we propose a novel model, namely, Recurrent Residual 3D U-Net
(R2U3D), for the 3D lung segmentation task. In particular, the proposed model integrates 3D convolution
into the Recurrent Residual Neural Network based on U-Net. It helps learn spatial dependencies in 3D and
increases the propagation of 3D volumetric information. The proposed R?U3D network is trained on the
publicly available dataset LUNA16 and it achieves state-of-the-art performance on both LUNA16 (testing
set) and VESSEL12 dataset. In addition, we show that training the R2U3D model with a smaller number of
CT scans, i.e., 100 scans, without applying data augmentation achieves an outstanding result in terms of Soft

Dice Similarity Coefficient (Soft-DSC) of 0.9920.

INDEX TERMS 3D Lung segmentation, R*?U3D, semantic segmentation, deep CNN, biomedical image

analysis.

I. INTRODUCTION
Lung cancer is considered the second most common cancer
type in both men and women [1]. The lung cancer patient
is more likely to be successfully treated if it is found at an
earlier stage, and before it has spread. Many patients having
lung cancer report many kinds of delays in the diagnosis.
The patients waited a median of 21 days before visiting a
doctor and more than 22 days to complete the investigations.
The median wait to start the treatment once the patients were
seen at the cancer center was ten days. The total time from
the development of the first symptoms to starting treatment
was 138 days [2]. This affects the survival possibilities of
the patients. Lung cancer screening using the low-dose CT
is used to treat the patient to reduce lung cancer mortality.
Lung segmentation is important because it gives the volu-
metric information of the lungs. It is challenging because the
lungs have irregular shapes, sizes, low contrasts, and complex
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boundaries [16]. Moreover, lung segmentation removes the
unnecessary areas of the CT scan and segments the lungs’
actual area, where attention is much essential. Lung seg-
mentation prevents computer program to process irrelevant
volumetric data that can produce false positives and leads to
the erroneous diagnosis. Additionally, it can be considered as
a necessary preprocessing for different lung disease analysis
such as lung nodule detection or segmentation, pulmonary
embolism (PE) diagnosis, Acute Respiratory Distress Syn-
drome (ARDS), and pneumothorax analysis [17], [19], [20].

Lung segmentation helps to save annotation time.
Particularly for 3D segmentation applications, annotation
is time-consuming, and such segmentation application can
produce the segmentation that can be corrected with some
additional efforts.

Traditional methods such as thresholding, edge tracking,
region growing, contrast, and neighborhood homogeneity are
applied for lung segmentation, but these methods do not give
promising results when the CT scan of lungs is infected or
has high attenuation patterns. They use edge detection filters
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and other mathematical operations and algorithms. These
methods have advantages; if the data are less diverse and
domain knowledge is applied correctly, they give accurate
results. Using the patch-based approach limits feature extrac-
tion by the number of patches, and that affects learning. The
texture-based methods addressed such situations but gave
poor results when some abnormalities were in the peripheral
lung. Using traditional methods, the lung segmentation of a
3D CT scan can also be two-dimensional by applying 2D
segmentation on each slice. The study shows that inter-slice
smoothness is significantly smoother in 3D segmentation
than 2D segmentation [15], [29].

In 1959, Arthur Samuel described machine learning as the
“field of study that gives computers the ability to learn with-
out being explicitly programmed” [30]. Deep learning (DL)
is a subfield of machine learning, a field within artificial
intelligence (AI). DL consists of a multilayer neural network
that extracts features in more depth. The convolutional neural
network (CNN) is one of the most powerful architectures in
deep learning. CNN correlates nearby pixels of an image and
produces different outputs using respective sets of weights.
These sets of weights extract the features from an image.
Repeating this process further gives us the features of an
image. The initial stages of feature extraction give low-level
features, and since the further stages extract the features from
the previous or earlier stages, the later stages give high-level
features. Low-level features help to correlate and understand
small details, and high-level features represent the big picture
or summarization of previous low-level features. A fully
connected network is very bulky, whereas CNN has less train-
able spatial feature extraction parameters. In recent years,
deep convolutional neural networks are vital and outperform-
ing state of the art in feature extraction, visual recognition,
and object segmentation. The deep neural networks contain
millions of parameters to solve complex problems, and hence,
it is quite necessary to have the right data in the proper format
and enough amount to train the parameters. With less data
availability, it is necessary to discover the neural network
architecture that can be trained using less amount of training
data.

Traditional machine learning applications use techniques
like support vector machines (SVMs) and random forests
(RF). An issue with these approaches is that it requires col-
lective efforts of field experts to approach useful features.
Its optimization is time costly, and features are domain or
problem-specific. Applicability of the same features among
different domains is not always possible. Comparing to the
traditional machine learning methods, deep learning has
numerous advantages. Deep learning techniques learn use-
ful features and do not require handcrafted features. Using
transfer learning, the features learned from one dataset can
be used to learn new features from different datasets. This
gives importance to pre-trained deep learning systems trained
on large datasets and sophisticated computational resources.
They can be made available to the public to apply it to
their applications. 3D convolutions are playing an essential
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role in spatial feature extraction in three-dimensions. Having
fewer training data can be solved by training a 3D con-
volutional neural network on 3D patches of available data.
This increases the training samples, and data augmentation
helps further model generalization. Computer-aided diagno-
sis (CADx) requires sophisticated tools. It requires a deep
neural network to learn complex features. Less training data
will not let the deep neural network learn diverse features. So,
instead of training a deep neural network from scratch, trans-
fer learning can be applied, where the pre-trained model is
trained on another dataset with enough diverse data. A signif-
icant transfer learning application is to use it for fine-tuning
by freezing the initial layers of pre-trained convolutional
neural networks and training the later layers. It works because
high-level features differ among different datasets more than
low-level features. It means better learned low-level feature
extraction can be used to learn high-level features on a differ-
ent dataset. During this process, the DL architecture remains
the same; only the weights get updated. Another application
of transfer learning is as a neural network weight initialization
step. It helps the neural network to converge faster than other
kinds of initialization approaches. Data augmentation gener-
ates new samples that increase the diversity in data points.
Using such generated data for training reduces the probability
of overfitting, and it overcomes the issue of the unbalanced
dataset and helps generalize the neural network for testing
dataset [14], [21].

Deep learning is also applicable for photoacoustic tomog-
raphy artifact removal [24]. This paper uses a Fully Dense
Unet (FD-Unet) for removing artifacts. DL can be used
to design an annotation tool, and it is more helpful for
multi-dimensional data like 3D CT scans or such time-series
data. It can help medical professionals to estimate the initial
annotations and make further corrections [25]. Additionally,
the corrections can train the DL model to get better for
the next use. D-UNet discusses the problems of computa-
tional resources for 3D CNN and demonstrates the com-
bined neural network of both 2D and 3D CNN for chronic
stroke lesion segmentation [31]. It uses four slices as both
2D and 3D context to apply them to its neural network and
achieves better results while combining 3D CNN. AUNet pro-
posed an attention-guided dense-upsampling network for an
alternative to deconvolution commonly used for the upsam-
pling [32]. It explained that the deconvolution was not as
effective as bilinear upsampling for their application of breast
mass segmentation in mammograms. The research [33] pro-
poses a multidimensional region-based fully convolutional
neural network and combines three views of 3D CT scan
to give the possible shape of the detected nodule and its
classification as malignant or benign. X-Net was developed
to effectively extract features with fewer trainable parameters
using depthwise separable convolution for brain stroke lesion
segmentation [34]. It also designed Feature Similarity Mod-
ule to extract a wide range of position-sensitive contextual
information. Thus, having a vast data dimension and given
computational resources, it is challenging to develop 3D CNN
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for achieving excellent performance. Furthermore, we pro-
pose our methods to overcome these problems and fulfill
expectations.

The artificial intelligence algorithms can be called trained
algorithms, and they are becoming more complex and sophis-
ticated to solve complicated problems. This requires algo-
rithmic regulation to systemically review them to prevent
unexpected harm without constraining the innovation. It is
essential to know how deep learning algorithms learn and
reason from their learning. It is required to know the met-
rics of algorithmic responsibility and how it can be traced.
Human responsibility plays a significant role in designing,
improving, and maintaining the algorithm [26].

Deep neural networks have limitations to represent the
learned knowledge to perform the assigned task explicitly.
In such an environment, medical diagnostic tools need to
be explainable, predictable, understandable, and transparent.
This helps medical professionals, regulators, and patient’s
confidence and trust to understand how Al systems can
be an integral part of routine diagnosis. Demonstrating the
domain-specific features that help predict the output initially
helps give an overview of a broader picture. Explainability
is a necessary tool towards a trustworthy and ethical solution
that is safe to use and has fairness in various aspects. It can be
demonstrated using different approaches. Local interpretable
methods give the reasoning for a single prediction, and the
global methods give the abstract knowledge about the model,
according to data [27]. The detailed analysis to understand the
importance of a neuron is not limited by knowing the activa-
tion function’s characteristics but necessitates its background
learning process [28].

The physicians experience an increasing number of com-
plex multi-dimensional visual readings, and this necessitates
speed up clinical workflow with the help of deep learning
and the technologies on top of that. While considering Al
in medical imaging, we anticipate collaboratively using such
technologies with physicians to decrease their burden, rather
than replacing them.

The rest of this paper is organized as follows — Section II
reviews the related work. Section III discusses details of the
proposed framework. Section IV reports the experimental
results, and Section V presents the evaluation of current
research. Finally, Section VI concludes and paves the way to
future work.

Il. RELATED WORK

The current progress in the deep learning algorithms and
available machine learning architectures provide neural
networks to perform complex feature extraction [8]. Deep
learning algorithms can be used to make computers ana-
lyze medical data accurately and generate multidimensional
results. The pixel-wise classification of an image into logical
related areas or volumes is called semantic segmentation.
Different neural networks have their abilities in manipulating
inputs and producing excellent results. Likewise, the deep
learning technique U-Net outperforms the other network
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architectures for biomedical image segmentation. It is accu-
rate and performs end-to-end semantic segmentation using
an encoder and a decoder. U-Net is the popular approach for
semantic medical image segmentation [7]. The first version
of U-Net helped to crop and copy the feature map from the
encoding unit to the decoding unit. It has significant advan-
tages for segmentation tasks: first, the model allows the appli-
cation of global location and context. Second, it gives good
performance for the segmentation tasks with fewer training
samples. It is using convolutional blocks and max-pooling
in the encoder. The number of convolutional filters doubles
at each level of the U-Net. The decoder uses de-convolution
for up-sampling. While increasing the depth of a deep neural
network, its accuracy may get saturated and degrades, and
this degradation does not result from overfitting [23]. The
residual learning makes the architecture less computationally
complex, having the shortcut connection allowing the propa-
gation of information without any degradation.

The deep Residual U-Net convolutional neural network
uses a residual unit to extract discriminative features and
overcomes the performance degradation by introducing a
shortcut connection, which is an easier technique. Studies
state that residual learning based neural network performs
better than the sequential neural network [16]. This work
applies data augmentation to generate synthetic data to
enhance invariance property, which is shaped and illumi-
nated. It applies online data augmentation that makes the
number of augmented data equal to the number of total train-
ing data. The data augmentation includes flipping, shifting,
rotation, and zooming. The analysis results state that shifting
gives better improvement compared to rotation and flipping.
This work applies post-processing to remove small areas
of false-positives using connected components and applying
thresholding. The publication has used a data dimension
of 128 x 128 and achieved a DSC of 99.62 for 2D lung
segmentation.

Multi-Scale Prediction Network gives predictions on mul-
tiple scales using single U-Net architecture. Using residual
convolution blocks in a deep neural network solves gradient
exploding and vanishing problems, providing the shortcut
connection between input and output. The authors selected
the lung CT scans from LUNA16 and NLST (National Lung
Screening Trial) Dataset [ 18], having the criterion of selecting
those CT scans that have interstitial lung disease and lung
nodules attached on the lung wall [17].

The extension of the U-Net architecture using Recurrent
Residual Convolutional Neural Networks called “R2U-Net”
was evaluated in different fields of medical imaging [5].
The experimental results demonstrated better performance
in 2D medical image segmentation. The residual units have
an important role while training the deep architecture. The
recurrent residual convolutional layers provide better feature
representation for the segmentation tasks.

The recent 3D lung segmentation method — Extension of
V-Net [6] is based on a modified version of the original
V-Net [9]. It is using the max-pooling layer, in the beginning,
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FIGURE 1. The overview of the proposed U-Net based R2U3D architecture for lung segmentation.

to reduce the dimensions of the input scan from 256 x 512 x
512 to 64 x 128 x 128. This method randomly divide the avail-
able data of LUNA16 [3] into 700 scans and 188 scans for the
validation of the neural network for 3D lung segmentation.
The data augmentation techniques include spatial shifting and
zooming along the depth axis.

lll. PROPOSED FRAMEWORK

A. R2U3D: RECURRENT RESIDUAL 3D U-NET

Inspired by the concept of volumetric image segmentation,
we have developed Recurrent Residual 3D U-Net (R?U3D)
so that the proposed architecture can efficiently process volu-
metric data. The convolutional neural network learns by con-
volving over multi-dimensional data. The convolution layer
represents the spatial features, and the higher the dimension,
the better the spatial features will be. Hence, a 3D convolu-
tional neural network extracts the features according to 3D
local and, ultimately, over the entire 3D volume.

The Recurrent Neural Network learns the spatial depen-
dencies over multiple steps, and the Residual Neural Net-
work increases the propagation of 3D features. Considering
these advantages, we have considered Recurrent and Residual
Neural Networks based R*U3D as a base architecture and
improved it by applying different neural network module
— Squeeze-and-Excitation Residual module, loss functions
— Soft-DSC and Exponential Logarithmic Loss, optimizers
— Adam, proper learning strategies, and appropriate hyper-
parameters. The analysis of deep neural networks becomes
crucial while having high-dimensional data.

The proposed network architecture is illustrated in Fig. 1,
consisting of a contracting path (left side) and an expansive
path (right side). The left part is known as an encoder, and the
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right part is known as a decoder. The encoder consists of the
down-sampling module, 3 x 3 x 3 convolutions, Recurrent
Residual Convolutional Unit (RRCU) (shown in Fig. 2), and
the max-pooling layer followed by 1 x 1 x 1 convolution.
All of the convolutional units are followed by a Rectified
Linear Unit (ReLU). Note that we down-sample the data
in the beginning to avoid the hardware limitation. Instead
of using the max-pooling layer, we are using Inception-like
architecture for the down-sampling purpose. In particular,
it has three convolutional layers with one filter with different
kernel sizes. We either concatenate or add the output of each
of them. This stretches the values (histogram) of the data and
enhances the contrast. The decoder consists of 2 x 2 x 2
up-convolution, RRCU, and the concatenation of the feature
map from the encoder followed by 1 x 1 x 1 convolution.
The structure of R*U3D in terms of number of filters is 1 1
112134 €3f2f1 11 1. We have applied the dilation in
the encoder and the recurrent convolution unit. The sigmoid
activation function follows the final layer.

The Recurrent Residual Convolutional Unit (RRCU) is
an important representative module of our proposed archi-
tecture. The Recurrent convolutional unit accumulates the
features for different depths and gives better feature repre-
sentation. It ensures low-level feature accumulation over the
same levels of U-Net architecture.

B. R2U3D VARIANTS

1) R?U3D WITH DEFAULT PARAMETERS

Fig. 1 shows a typical R*U3D architecture with the filters
(f1, 2, {3, f4) = (40, 80, 160, 320). It has 20,306,691
parameters. The down-sampling network adds the outputs
of convolutional layers. It uses Adam Optimizer with the
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FIGURE 3. R2U3D architecture with Dynamic-Recurrent Residual Convolutional Unit (DRRCU).

learning rate of 0.001 and the loss function based on Dice
Loss.

2) R2U3D WITH DYNAMIC RECURRENT UNIT

The previous architecture has a less number of filters in
each layer. It is necessary to increase the filters to make the
deep neural network learn faster. To overcome this problem,
we have introduced a Dynamic-Recurrent Residual Convo-
lutional Unit (DRRCU). It primarily has a recurrent unit
of different depth, with the Squeeze-and-Excitation Resid-
ual module in between. The purpose of applying different
depth to the recurrent unit is to utilize the machine resources
by eventually increasing the depth with approaching to the
bottom layer of the architecture. That is less depth for the
layers having a higher spatial dimension. This architecture
has filters and depth of the recurrent unit {(f1, d1), (f2, d2),
(f3, d3), (f4, d4))} = {(20, 1), (60, 2), (120, 3), (240, 4)}.
It has 12,953,330 parameters. It uses Adam Optimizer with
a learning rate of 0.001, and the loss function is the same as
the previous architecture. We are using the Inception module,
naive version [12], with strides 2 x 2 x 2 as a down-sampling
network. It has three convolutional layers with one filter with
different kernel sizes, along with a max-pooling layer. This
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architecture learns much faster than previous architectures.
Fig. 3 shows the structure of R*U3D with the dynamic recur-
rent unit.

Inspired by Squeeze-and-Excitation Networks [10],
DRRCU is having the Recurrent Neural Network followed
by the Squeeze-and-Excitation Residual module. Fig. 4 rep-
resents the DRRCU at different depths. This unit helps to
accumulate the low-level features for higher depth and uti-
lizing the available machine resources. As shown in Fig. 5,
the Squeeze-and-Excitation Residual module proposes the
channel interdependencies and nonlinear interactions among
the channels. It uses the global information of each of the
channels and feeds it to two Fully Connected Networks
(FCN). The first layer has the activation function ReL U, and
the second has Sigmoid to normalize the output values from
zero to one. The output of FCN is then multiplied with the
input and generates the scaled input. The input is then added
to the scaled input, followed by ReLU activation.

IV. EXPERIMENTAL SETUP

We have implemented R?U3D using Keras deep learning
library, with TensorFlow [35] as backend and Nvidia GeForce
RTX 2080 Ti having 12 GB graphics memory.
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A. DATASET DETAILS

We used publicly available datasets — LUng Nodule Analy-
sis 2016 (LUNA16) and VESsel SEgmentation in the Lung
2012 (VESSEL12) [3], [4]. LUNA16 consists of 888, and
VESSELI?2 consists of 20 three-dimensional lung CT scans,
along with the segmented ground truth. We have considered
876 CT scans in our analysis, out of which 700 CT scans are
for training, and 176 CT scans are for testing. Some of the
ground-truth of LUNA16 scans are having holes inside lung
areas, and most of them represent nodules. We have used CT
scans from LUNAI16 for both training and testing, and CT
scans from VESSEL12 for testing.

B. DATA PREPARATION AND TRAINING SETTINGS

The spatial resolution of data is 256 x 512 x 512. The
training and testing of 3D CT scans vary in the number of
slices. Hence, to down-sample and up-sample 3D CT scans
into 256 x 512 x 512 dimension, we repeat the slices if
actual available slices are less than 256 and select equally
over the available slices if they are more than 256. This is
performed with the proper number of steps over the z-axis
so that, the sampled data preserve the actual shape. We are
normalizing each CT scan in the range from O to 1. We are
not applying any data augmentation technique. Our training
strategy is based on the random selection of training data
from a certain part of the dataset. We are selecting five
scans randomly from the set of first 100 scans, train them
for five epochs, and repeat the procedure for 500 iterations.
This strategy helps the model to overcome the problem of
overfitting, particularly over the local set of training data.
We used the learning rate of 0.001 and 0.0001 for 400 and 100
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iterations, respectively. We kept batch-size one according to
the available computational resources.

V. EVALUATION

A. PERFORMANCE METRICS AND LOSS FUNCTIONS

For the evaluation, we adopt the Dice Similarity Coefficient
(DSC) as below.

23N pigi
psc = =l g
Zi pi+ Zi 8i
We consider Soft-DSC for the evaluation:
2SN o
20 Pit i g

where N is the number of voxels in each image, p; € Pis a
voxel of predicted segmentation P, and g; € G is a voxel of
binary ground-truth G.

The Exponential Logarithmic Loss [11] is computed as
below:

Lossgrr = wpscLosspsc + WcrossLOSS Cross 3)
Losspsc = (—In(DSC))YPsc 4)
LosSCross = WCELYWCEL 5)

The loss is calculated with the addition of DSC and
Weighted Cross Entropy with Logits (WCEL) [36], with a
ratio. WCEL is first applying the Logit function, which is the
inverse of Sigmoid function, to the prediction, and then calcu-
lated the Weighted Cross Entropy. Logit is used to calculate
the values before the Sigmoid Activation. Here, wpsc = 0.8,
Wcross = 0.2 and ypsc = ywcer = 0.3.
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TABLE 1. Comparison of Soft-DSC of the results from proposed
architecture with [6], for VESSEL 12 and LUNA16 (last 176 scans) as testing
sets. The best results are marked as bold-faced.

V-Net Extended R?U3D R*U3D
[10] V-Net [6] (Default) (Dynamic)

Training 700 700 100 100
scans
Training 8400 8400 15650 12500
iterations
Soft-DSC 0.972 0.987 0.9881 0.9920
(VESSEL12)
Soft-DSC - - 0.9831 0.9859
(LUNA16)

Ground-truth R2U3D (Mefault) R2U3D (Dynamic)
FIGURE 6. Visualization of 3D CT scan, ground-truth, and segmentation
results using the proposed methods. The first row and second row show

the dissected and entire lungs, respectively.

I OVID-19 3D lun; ntation 1 COV 19 3D lung

FIGURE 7. Visualization of lungs infected by COVID-19 and the
corresponding 3D lung segmentation.

B. RESULTS AND DISCUSSIONS

The deep neural network that is the extension of V-Net
(Extended V-Net) [6] is trained with 700 CT scans of
LUNA16. Whereas, we have considered the first 100 CT
scans from LUNA16 for the training set, tested our archi-
tecture with VESSEL12, and compared the results with
Extended V-Net and V-Net as shown in Table 1. The R*U3D
(Default) and R2U3D (Dynamic) provides the results of
Soft-DSC as 0.9881 and 0.9920, respectively. Since the train-
ing data are enough, the testing data should be more than
20 number of 3D CT scans. Testing on less data does not
guarantee the generalization and may overfit the model even
if we observe a good testing accuracy. Therefore, we have
tested our architecture with the last 176 CT scans of LUNA16.
The R2U3D (Default) and RZU3D (Dynamic) give Soft-DSC
of 0.9831 and 0.9859, respectively.
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While testing all the remaining 776 scans of LUNA16,
R2U3D (Dynamic) gives the Soft-DSC 0.9828. While train-
ing one variant of R?U3D (Default) with the rest of 700
LUNAI16 CT scans in seven phases having 100 CT scans
each and 700 CT scans in total, it shows an increment in the
result for testing 176 CT scans of LUNA16. By training in
batch of 100: 1 — 100, 100 — 200, 200 — 300, 300 — 400,
400 - 500, 500 — 600, by applying transfer learning, and
testing on 700 — 876 (176 scans), the DSC is 0.9813, 0.9815,
0.982, 0.982, 0.9818, 0.9822. After that, training scans
1 — 700, further improves the DSC to 0.9827. Thus, the test
results on 176 scans improve with more training data.

C. APPLICABILITY FOR COVID-19 DIAGNOSIS

The deep learning model is trained on LUNA16. While apply-
ing it on 3D CT scans having COVID-19 infection, the seg-
mentation predictions are imperfect and fail at infected areas.
3D CT scans in Fig. 7 are selected from COVID-19 CT Lung
and Infection Segmentation Dataset [22]. Lung infectious
diseases are having diverse patterns of infections and lesions.
It is necessary to train the deep neural network on infected
lungs based data to get better results on such a testing dataset.
This problem can be solved by training DNN on COVID-19
CT scans having lung masks or generating synthetic data
and applying a generative adversarial network (GAN) to help
segment infected lungs.

VI. CONCLUSION AND FUTURE WORK
In this paper, we have proposed the RZU3D network with

its variants. We developed 3D deep neural network architec-
ture of Dynamic-Recurrent Residual Convolutional Neural
Network with a suitable down-sampling module and a
Squeeze-and-Excitation Residual module, and trained with
the Exponential Logarithmic Loss and Adam Optimizer.
We trained our neural network on LUNA16 and tested it on
both VESSELI12 and LUNA16 datasets. We have achieved
better accuracies with less number of training data, and
observed the improvement while training with the additional
data.

Future work includes the application of medical imag-
ing for diseases like lung cancer, chronic obstructive pul-
monary disease (COPD), acute respiratory distress syndrome
(ARDS), and pulmonary embolism (PE). These diseases
damage the lungs and make imaging based tasks challenging.
In addition, we aim to apply our methods for the segmentation
of nodules from the segmented lungs, and classify them
as malignant or benign. Furthermore, Coronavirus Disease
2019 (COVID-19) shows the regions having Ground-Glass
Opacities (GGO) inside the lungs [13]. R2U3D can segment
the lungs and be applied further to segment the GGO region
from the segmented lungs using an appropriate dataset. The
lungs infected by COVID-19 show diverse types of infec-
tion patterns other than GGO. It is essential to segment the
infected lungs properly, and we plan to train the proposed
deep neural network on COVID-19 based datasets. Thus we
plan to employ data augmentation techniques that have shown
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promising results for this modality and design novel methods
for robust lung segmentation.
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