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ABSTRACT This work addresses the problem of unmanned aerial vehicle (UAV) navigation in indoor
environments. Due to unavailability of satellite signals, the proposed algorithm takes advantage of terrestrial
radio measurements between the UAV and a set of stationary reference points, from which it extracts range
information, as well as odometry by means of inertial sensors, such as accelerometer. On the one hand, based
on maximum a posteriori (MAP) criterion, the range information and accumulated knowledge throughout
the UAV’s movement are employed to derive a generalized trust region sub-problem (GTRS), that is solved
exactly via bisection procedure. On the other hand, by using the UAV’s transform in relation to the world,
another position estimation is obtained by employing odometry. Finally, the two position estimates are
combined through a Kalman filter (KF) to enhance the positioning accuracy and obtain the final UAV’s
position estimation. The UAV is then navigated to a desired destination, by simply calculating the velocity
components in the shortest path. Our results show that the proposed algorithm is robust to various model
parameters for high precision (HP) UAV sensors, achieving reasonably good positioning accuracy. Besides,
the results corroborate that the proposed algorithm is suitable for real-time applications, consuming (on
average) only 21 ms to estimate the UAV position.

INDEX TERMS Generalized trust region sub-problem (GTRS), indoor environments, Kalman filter (KF),
maximum a posteriori (MAP) estimator, navigation, odometry, positioning, unmanned aerial vehicle (UAV).

I. INTRODUCTION
Unmanned aerial vehicles (UAVs) are a recent technology
that can be used in various applications [1], [2], for example,
in emergency situations response [3], [4] or in warehouse
inventory, and similar applications that are currently using
manual methods [5]–[11]. The key challenge in most appli-
cations is to guarantee accurate navigation of the UAV [12].

UAVs navigate mainly by relying on global navigation
satellite system (GNSS), such as global positioning system,
that offers global coverage and work relatively well in out-
door environments. However, there are many scenarios where
GNSS signal might be blocked (inside a building for exam-
ple) making this technique impractical. Therefore, in situa-
tions where GNSS signal may be weak or even non-existent,
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UAVs require alternative sources of navigation. Due to this
restraint, employing UAVs in indoor environments could
represent a challenge, despite the fact that flight in such
surroundings might be somewhat simpler due to absence of
wind, fog, and/or rain [13], for instance.

An alternative solution could be employing a virtual sen-
sor, comprised of an optical-flow sensor, an orientation sen-
sor, a range sensor, and a geometric camera [14]. The data
from all sensors could then be combined using a sensor fusion
algorithm. The main drawback of this approach is having to
install the above-mentioned sensors on the UAV,whichwould
likely increase its mass and expenses.

Another possibility might be employing ultrasonic posi-
tioning (ULPS) combined with a time-of-flight (TOF) cam-
era [15]. In this case, the ultrasonic emitter module is usually
installed in the ceiling of the room and the acoustic signals
emitted by this system are acquired by a portable receiver
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module on top of the UAV, while the TOF camera is layed
on the floor pointing upwards. A computer is used to collect
both acoustic signals acquired by the portable UAV receiver
and the range-image generated by the TOF camera, which
are used to compute the UAV’s position. This approach has
certain shortcomings like having to install the TOF camera,
the ULPS sensor on the UAV, and the use of the computer to
calculate the position of the UAV. There are other resembling
sensors such as visible light communication (VLC) [16] and
light detection and ranging (LiDAR) [17]–[19] that could also
be employed for indoor positioning of UAVs.

Moreover, exploiting received signal strength (RSS) at
the UAV together with a Q-learning algorithm could also
be a valid alternative [20]. This approach requires no exact
mathematical representation of the target nor mapping of the
environment to position the target. The UAV starts from an
initial position and measures the RSS at that position, assign-
ing a state label to the particular RSS value. Based on the fact
that no two grids have the same RSS value, each position is
mapped uniquely by a single state. Then, the UAV makes a
decision depending on the strategy of the algorithm in use and
navigates towards a new location. The main drawback of this
approach is that it assumes that the source of the radio signal
and the environment conditions are stationary, which restricts
its applicability.

Wireless fidelity (Wi-Fi) trilateration is another method
that could be used [21]. Trilateration is a simple geometric
approach in which one is interested in finding the intersection
points of the circles centered around a reference point with
radii equal to range observations extracted from a certain
property of the received radio signal (e.g., TOF, RSS, etc.).
Even though, this technique is very light in terms of com-
putational complexity, its main downside is that it is usually
based on low-noise assumption (usually required to linearize
the measurement model), making them highly erroneous in
surroundings where this assumption does not hold.

Algorithms based on time-difference of arrival (TDOA)
measurements [22]–[28] can also be used for indoor
autonomous flights. These algorithms are used in many areas
such as target tracking [29], [30], seismic exploration [31],
sensor networks [22], [32], and navigation [33]. Themain dis-
advantage of algorithms based on TDOA is that they require
additional (reference) devices than for instance RSS- or
TOF-based ones, and their performance might depend on the
choice of this reference sensor.

Ultra-wideband (UWB) sensors can be combined with
TDOA [34] and particle filtering (PF) [35] to achieve higher
precision. Nonetheless, UWB sensors might not be as afford-
able as some other ones, while the performance of PF depends
on the number of particles used and its computational burden
can rapidly become extensive in applications that demand
high accuracy.

In [36], an indoor positioning system that localizes and
tracks a tag that broadcasts Bluetooth low energy (BLE)
beaconmessages to BLE receivers was proposed. The scheme
proposed in [36] first applies a Kalman filter (KF) to

preprocess collected RSS information in order to smooth the
fluctuated RSS data. Then, it applies a PF to approximate
the unknown location of a tag (by computing probabilities
of particles) and gradually reduce the location uncertainties
in a Gaussian belief space, and RSS gradient model for the
motion estimation.

This work proposes a new navigational algorithm, which
is mainly based on range measurements extracted from ter-
restrial radio signals. By following Bayes’ theory, we first
combine maximum likelihood (ML) estimation and prior
knowledge to form the problem as a maximum a posteri-
ori (MAP) estimator. Due to its non-convexity, we apply
certain approximations to the MAP estimator to formulate
another one, which we effortlessly convert into a general-
ized trust region sub-problem (GTRS) framework. The main
advantages of such an approach are that it allows us to
bypass the difficulties of the MAP estimator (no additional
approximations are required) and obtain an exact solution by
merely a bisection procedure, which results in linear compu-
tational complexity in the number of reference points of the
proposed solution. We then make use of odometry, which,
by means of a Kalman filter, we integrate together with
the solution obtained through the proposed GTRS estimator
to further enhance its positioning accuracy. Finally, by cal-
culating the direction from an obtained position estimate
towards a desired destination, we navigate the UAV according
to the shortest path criterion. Therefore, the main contri-
butions of this work are three-fold and are summarized as
follows:
• We propose a novel algorithm for UAV navigation in
indoor environments, which is based on GTRS frame-
work that allows for solving via a bisection proce-
dure. The proposed algorithm is very efficient in terms
of time consumption, and thus, suitable for real-time
applications;

• We use an open-source Gazebo 3D robotics simulator
environment to assess the quality of the proposed solu-
tion in near real-life conditions. This is an open platform
that allows the integration of different inputs and is used
to run multiple tasks, such as image processing, data
relaying, remote control of a UAV (and more);

• Further enhancement of the positioning accuracy of the
proposed solution through the use of a KF, which com-
bines the estimated solution with another one obtained
by means of odometry.

The remainder of this work is organized as follows.
Section II presents the overall architecture developed and
the system model proposed in this work. Section III for-
mulates the range-based indoor positioning problem, while
Section IV describes the proposed indoor navigation algo-
rithm. Section V describes the simulator used within
this work and how data are presented using the robot
operating system (ROS) framework, and evaluates the per-
formance of the proposed solution. Finally, the main findings
and possible future research directions are summarized in
Section VI.
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FIGURE 1. Architecture of the framework for indoor positioning with UAVs (based on [39]).

II. FRAMEWORK FOR INDOOR POSITIONING WITH
AUTONOMOUS UAVs
This work proposes the architecture depicted in Figure 1.
Even though the core of the work is related to positioning,
the Positioning Module is also implemented within the ROS
framework [37], [38]. The communication between blocks
is executed throughout ROS topics and services using the
publisher/subscriber paradigm. The cloud between the user
and the UAV can be performed through the Wi-Fi, Zigbee
and/or 4G protocols. In this way the user is able to remotely
communicate with/control the UAV.

After explaining the possible communication protocols
between the user and the UAV, it will be necessary to under-
stand the fivemain blocks implemented according to the ROS
framework (in Figure 1):

1) Communication Handler: The Commuication Handler
block is responsible for maintaining interoperability
between the user and the UAV. It is also responsible
for triggering the pre-saved UAV mission through the
topic ROS localization/start with the message type
std_msgs/EmptyMessage [40];

2) Plan Handler: This block is responsible for sending
each point of the total mission to the Positioning Mod-
ule block through a custom service in order to increase
the security of communication and the entire system
pipeline [41]. In this custom service, the Positioning
block asks the Plan Handler block for the next point
of the mission to be reached through the variable
std_msgs/Int32 indexPathRequest. In turn, the Plan
Handler block returns the next point through the vari-
able geometry_msgs/Pose serverPoseResponse, where
they contain the local coordinates of the intended
destination;

FIGURE 2. The proposed indoor positioning system model.

3) Positioning Module: This module is the core block of
the presented architecture, as shown in Figure 1. It is
here where all calculations regarding the indoor posi-
tioning of the UAV are made. Through the acceleration
sensor, the laser-based sensor [42] and the algorithm
proposed in Section IV, it is possible to estimate the
UAV’s position. Figure 2 presents more details on how
this module works.
In order to enhance the positioning accuracy, a Kalman
filter (KF) [43] is applied in order to merge the position
estimated by the proposed algorithm and the informa-
tion obtained through the use of Odometry.
The estimated position of the UAV, together with the
desired destination, are then sent to the Velocity Con-
troller block that navigates the UAV to the desired
destination;

4) Velocity Controller: In order to navigate the UAV
through the ROS mavros package [44], this block com-
bines the two pieces received from the Positioning
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Module block.With this information, the Velocity Con-
troller block calculates the velocity required to reach
the desired destination. In order to avoid dependency
on proportional–integral–derivative (PID) controllers,
where the variables change depending on the type of
UAV, the UAV’s velocity calculation on the three axes
were based on [45], where:

eP(t)
= gP(t)

− cP(t) (1)

and

eD(t)
= ||(eP(t))|| (2)

where eP(t) represents the error position, gP(t) the goal
position, cP(t) the current position at time instant t , and
eD(t) is the distance error position eP(t).
With Equations 1 and 2 it is possible to normalize the
error as shown in Equation 3.

eN (t)
=

eP(t)

eD(t) (3)

where eN (t) is the error normalized.
If the distance is lower than a certain threshold, τ (in
this work, the threshold value is set to τ = 4 meters),
Equation 4 is activated.

vP(t)
= eP(t)

·

(
eD(t)

τ

)SF
(4)

where vP(t) is the velocity vector and SF is the Smooth
Factor (the SF was set to 2 [45]).
If the distance is higher than 4 meters (threshold),
Equation 5 is then used.

vP(t)
= eN (t)

· PMV (5)

where PMV is the Param Max Velocity and is equal
to 2.
In this way it is allowed to dynamically vary the UAV
speed depending on the UAV distance in relation to
the desired destination without any sudden changes
regarding the UAV’s acceleration;

5) Command Multiplexer: Prioritizing safety and control
topics is a mandatory precaution in nowadays UAVs.
Safety requires one to be able to automatically switch
from autonomous behavior to manual control when
pushing any button of a remote controller. Therefore,
all input sources must be multiplexed into a single con-
vergence point that communicates with the hardware
controller.
The Command Multiplexer (CM) block subscribes to
a list of topics, which are publishing commands and
multiplexes them according to a priority criteria. The
input with the highest priority controls the UAV by
mavros package [44] with the mavlink protocol [46],
becoming the active controller. The active controller
can be changed by timeout (no response from an input)
or topic locking (some inputs might be locked, being

discarded). In practice, the nodewill takemultiple input
topics from different issuers and output the messages
of the issuer with the highest priority (blocking the
others). This is particularly useful when the UAV is
flying autonomously and the pilot wants to take control
of the UAV. Any command of the pilot will make him
the active controller if the pilot is set with the highest
priority.

III. PROBLEM FORMULATION
Let us consider a 3-dimensional wireless network comprising
N fixed reference points, whose (known) true positions are
denoted by ai, i = 1, . . . ,N , and a moving target (UAV),
whose (unknown) true position at time instant t is denoted
by x(t). It is assumed that the target is moving according to a
nearly constant velocitymotionmodel. Therefore, its velocity
elements in each direction at time t are given by

v(t) = v(t−1) + r(t)v , (6)

where r(t)v represents the noise perturbations (due to wind
gusts or slight speed corrections, for instance). Hence,
according to the equations of motion [47], the position of the
target at time instant t is given by

x(t) = x(t−1) + v(t−1)1+ r(t)x , (7)

with 1 and r(t)x being the sampling interval among two suc-
cessive time steps and position process noise respectively.
Thus, by describing the target state at time instant t by both

its position and velocity, i.e., θ (t) =
[(
x(t)
)T
,
(
v(t)
)T ]T

∈ R6,
from (6) and (7) it follows that

θ (t) = S θ (t−1) + r(t), (8)

where

S =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


denotes the state transition matrix, whereas r(t) =

[(r(t)x )T , (r(t)v )T ]T stands for the state process noise [48], [49],
assumed to be a zero-mean Gaussian random variable with
covariance matrix Q, i.e., r(t) ∼ N (0,Q). The covariance
matrix of the state process noise is given by

Q = q



13

3 0 0 12

2 0 0

0 13

3 0 0 12

2 0

0 0 13

3 0 0 12

2
12

2 0 0 1 0 0
0 12

2 0 0 1 0
0 0 12

2 0 0 1


,

where q represents the intensity of the state process
noise [49], [50].
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FIGURE 3. Median d (t)
i,k calculation for one ai .

Moreover, it is assumed that the target sends a radio signal
at each time instant to the reference points, which are assumed
suitably equipped to withdraw the distance quantity from the
received signal (e.g., from RSS, TOF, TDOA, etc.). The k-th
sample of the distance between the i-th reference point and
the target at time instant t is simply modeled by:

d (t)i,k = ‖x
(t)
− ai‖ + n

(t)
i,k , (9)

with ‖ • ‖ and n(t)i,k representing respectively the Euclidean
norm and measurement noise, modeled as a zero-mean
Gaussian random variable with standard deviation σ

(t)
i,k ,

i.e., n(t)i,k ∼ N
(
0, σ (t)

i,k

)
, k = 1, . . . ,K . It is worth men-

tioning that σ (t)
i,k is inversely proportional to signal-to-noise

ratio, i.e., to the quality of the radio measurement. Although
we employ the median of the K measurements as shown
in Fig. 3, for the sake of notation simplicity and without loss
of generality, we assume that K = 1 in order to remove the
subscript k in the following derivations.

By following Bayesian philosophy, knowledge accumu-
lated through the state transition model in (8) during time,
combined with observations in (9), results in a marginal
posterior PDF, p(θ (t)|d (1:t)). The reason for interest in the
marginal posterior is that it quantifies the belief one has in
the values of the state, θ (t), given all prior observations (from
all reference points), d (1:t), from which an estimate at any
time instant can be obtained. We sum up the key parts of the
Bayesian philosophy in the following [47].

• Initialization: Set the marginal posterior PDF at t = 0
equal to the prior PDF, p(θ (0)), of θ (0).

• Prediction: Follow the state transition model in (8) and
use themeasurements up to t−1 to obtain the predictive
density of the state at t as

p(θ (t)|d (1:t−1))

=

∫
p(θ (t)|θ (t−1))p(θ (t−1)|d (1:t−1))dθ (t−1). (10)

• Update: Apply Bayes’ rule [49], [51], to get

p(θ (t)|d (1:t)) =
p(d (t)|θ (t))p(θ (t)|d (1:t−1))

p(d (t)|d (1:t−1))
, (11)

where p(d (t)|θ (t)) represents the likelihood and

p(d (t)|d (1:t−1)) =
∫
p(d (t)|θ (t))p(θ (t)|d (1:t−1))dθ (t)

is just a normalizing constant; it does not depend on θ (t) and
is required to assure that p(θ (t)|d (1:t−1)) integrates to 1 [47].
According to (11) and theMAP criterion [47], an estimator

of θ (t) can be obtained as

θ̂
(t)
= argmax

θ (t)
p(θ (t)|d (1:t))

= argmax
θ (t)

p(d (t)|θ (t)) p(θ (t)|d (1:t−1)). (12)

Note that the density in (10) cannot be calculated in ana-
lytic form in general, since the analytical solution to the
posterior PDF at t − 1 is not available, and, if the state model
is not linear, the integral in (10) has no closed-form solution.
Thus, some approximations are usually necessary to find
p(θ (t)|d (1:t)). In the following section, we will show how to
bypass the difficulties in solving (12) directly, by converting
it into GTRS, that will allow us to efficiently estimate θ̂

(t)
by

just a bisection procedure.
In this work, not only do we aspire to determine the target’s

position, but our goal is to navigate it towards a desired
destination, xdestination.

IV. THE PROPOSED NAVIGATION ALGORITHM
This section describes the proposed algorithm for UAV navi-
gation. Naturally, in order to navigate the UAV, we first need
to determine its position. Hence, for the sake of a better flow
of presentation, we first present the algorithm to determine
the position of the target, after which, we show how to
navigate it to the desired position. More precisely, we divide
this section into three parts: in the first part, we present the
proposed GTRS algorithm for determining UAV’s position
by employing radio measurements only; in the second part,
we show that the UAV’s position estimation can be enhanced
by also integrating the UAV’s estimate obtained through
Odometry only, via a KF; finally, the ultimate part describes
and summarizes the proposed algorithm for UAV navigation.

A. DETERMINING UAV’s POSITION VIA
RADIO MEASUREMENTS
The problem in (12) is composed of the maximum likeli-
hood (ML) part, which is non-convex due to the norm term
in the measurement model, and the prior PDF part. Hence,
tackling it directly might be very strenuous since several local
optimas might be available.

Here, we take a different approach, where we start by
approximating the ML part. By introducing weights, w(t)

=

[w(t)
i ]T , where w(t)

i =
(d (t)i )

−1∑N
i=1 (d

(t)
i )
−1 , to assign more trust to
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closer links and resorting to (9), the ML part of (12) can be
approximated by another non-convex estimator as

minimize
x(t)

N∑
i=1

wi
(
(d (t)i )

2
− ‖x(t) − ai‖2

)2
, (13)

by simply applying the weighted least squares criterion.
Developing the squared-norm term allows for the problem
in (13) to be rewritten in vector form as

minimize
y(t)

‖A(t)y(t) − b(t)‖2

subject to

(y(t))
T
Dy(t) + 2f T y(t) = 0, (14)

where y(t) =
[
(x(t))T , ‖x(t)‖2

]T
∈ R4 and

A(t)
=


...

...√
w(t)
i 2aTi −

√
w(t)
i

...
...

 ∈ RN×4,

b(t) =


...√

w(t)
i

(
‖ai‖2 − (d (t)i )

2)
...

 ∈ RN ,

and

D =
[
I3 03×1

01×3 0

]
∈ R4×4, f =

[
03×1
−1/2

]
∈ R4,

with IG and 0p×q denoting the identity matrix of size G
and the matrix of all-zero entries of size p × q. The above
optimization problem consists of a quadratic objective func-
tion and a quadratic constraint; this class of optimization
problems is known in the literature as a GTRS [52], [53], and,
even though non-linear in general, it is possible to calculate
an interval within which it is a monotonically decreasing
function. Thus, GTRS is suitable for solving exactly bymeans
of bisection procedure [54].

With (14), we are able to determine the UAV’s position at
any time instant, by resorting merely to radio observations.
This estimation can, however, be significantly improved by
combining the measurements with the accumulated knowl-
edge from the prior estimations, as described in Section III.
Nonetheless, to do so, certain approximations are required
regarding the posterior distribution.

The posterior distribution p(θ (t−1)|d (1:t−1)) can be approx-
imated by a Gaussian one,1 i.e., p(θ (t−1)|d (1:t−1)) ∼

N
(
θ̂
(t−1|t−1)

, P̂
(t−1|t−1))

, the mean and the covariance

matrix of which can be obtained by resorting to GTRS. Then,

1Naturally, it should be noted that these approximations introduce certain
errors, which are particularly important in the case when the posterior density
cannot be well-approximated by a Gaussian distribution (for instance, when
the posterior density is multi-modal).

according to (10), we have that

p(θ (t)|d (1:t−1)) ≈ c

× exp
{(
θ (t) − θ̂

(t|t−1))T (
P̂
(t|t−1))−1 (

θ (t) − θ̂
(t|t−1))}

,

(15)

where c is a normalizing constant, and θ̂
(t|t−1)

and P̂
(t|t−1)

are respectively the mean and the covariance of the one-step
predicted state, calculated as

θ̂
(t|t−1)

= Sθ̂
(t−1|t−1)

, (16a)

P̂
(t|t−1)

= SP̂
(t−1|t−1)

ST + Q. (16b)

By using (14) and (15), we can then approximate (12) as

minimize
z(t)

‖Ã(t)z(t) − b̃(t)‖2

subject to

(z(t))
T
D̃z(t) + 2̃f T z(t) = 0, (17)

where z(t) =
[
(θ (t))

T
, ‖x(t)‖2

]T
∈ R7,

Ã(t)
=



[√
w(t)
1 2aT1 , 01×2

]
−

√
w(t)
1

...
...[√

w(t)
N 2aTN , 01×2

]
−

√
w(t)
N

(P̂
(t|t−1)

)
−1/2

04×1


∈ R(N+6)×7,

b̃(t) =



√
w(t)
1

(
‖a1‖2 − (d (t)1 )

2)
...√

w(t)
N

(
‖aN‖2 − (d (t)N )

2)
(P̂

(t|t−1)
)
−1/2

θ̂
(t|t−1)

 ∈ RN+6,

and

D̃ =
[
I3 03×4

04×3 04×4

]
∈ R7×7, f̃ =

[
06×1
−1/2

]
∈ R7.

The problem in (17) is a GTRS, and similarly as (14), it can
be solved exactly via a bisection method.

B. ENHANCING POSITIONING ACCURACY VIA ODOMETRY
Another way to obtain an estimate of the UAV’s position is
through odometry. Through the ROS framework it is possible
to get a position estimation by using the UAV transform
in relation to the world using the UAV sensors, such as
accelerometer, represented by (18).

x̂(t)Odom = h(acc(t), gy(t)) (18)

where acc(t) is the 3-axis accelerometer, gy(t) is the 3-axis
gyroscope and h represents the transform [55] in order to dis-
cover the local position of the UAV (in this work, it is known
that the x̂(t)Odom is equal to 0 when the positioning algorithm is
launched).
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It is worth mentioning that relying solely on odometry
might become precarious in practice, since any external force
(for example, wind gusts) acting on the UAV is likely to
result in erroneous position estimation. Nevertheless, this
information can be exploited in order complement and further
enhance the accuracy of the proposed GTRS algorithm, as it
is shown in the following.

In order to take advantage of these two pieces of informa-
tion and enhance the positioning accuracy of the proposed
algorithm, a Kalman filter [56] is applied to determine the
final UAV’s position at time instant t as

x̂(t) = KF .predict(x̂(t)GTRS, x̂
(t)
Odom) (19)

C. NAVIGATING UAV TOWARDS A DESIRED DESTINATION
Having the UAV’s position estimate, x̂(t), and the desired des-
tination, xdestination, at hand, the task of navigation becomes
practically trivial. To navigate the UAV, we start by calcu-
lating the estimated direction in which we would like it to
navigate to as

φ(t) = arctan

(
xdestination,y − x̂

(t)
y

xdestination,x − x̂
(t)
x

)
, (20a)

α(t) = arccos

(
xdestination,z − x̂

(t)
z

‖xdestination − x̂
(t)
‖

)
, (20b)

where φ(t) and α(t) are the azimuth and the elevation angles
at time instant t from the estimated position, x̂(t), with gs
denoting the s-th coordinate of the vector g.
Hence, the succeeding position of the UAV is obtained

according to

x(t+1) = S
[
(x(t))T , (u(t))T

]T
, (21)

with

u(t) = vP(t)
·

cos(φ(t)) sin(α(t))sin(φ(t)) sin(α(t))
cos(α(t))

 ∈ R3

where the second factor represents the unit vector (with
vP(t)

= (4) ∨ (5)).
To conclude this section, we summarize the proposed algo-

rithm for navigation in Algorithm 1.

V. PERFORMANCE RESULTS
This section validates the performance of the proposed algo-
rithm through numerical results. It is organized in two parts,
where the first one describes the considered simulation envi-
ronment and the second one presents a set of simulation
results to assess the performance of the proposed algorithm
from both accuracy and operational time point of views.

A. SIMULATION ENVIRONMENT
In order to simulate the algorithms proposed in this article,
the open-source Gazebo 3D robotics simulator was chosen
due to three important factors [57]–[59]:

Algorithm 1 The Proposed GOK-JRSM Algorithm

Require: ai, d
(t)
i , i = 1, . . . ,N , 1, q, S

//Find initial UAV location
1: x̂(0|0)← (14)
//Initialization

2: θ̂
(0|0)
←

[
(x̂(0|0))

T
, 0, 0

]T
3: P̂

(0|0)
← I4

4: t ← 1
5: while ‖xdestination − x̂

(t)
‖ ≤ τ do

//Prediction

6: θ̂
(t|t−1)

← (16a)
7: P̂

(t|t−1)
← (16b)

//Update

8: θ̂
(t|t)
← (17)

9: P̂
(t|t)
←

(
θ̂
(t|t)
− θ̂

(t−1|t−1))(
θ̂
(t|t)
− θ̂

(t−1|t−1))T
//Position estimation via GTRS

10: θ̂
(t|t)
1:3
//Position estimation via Odometry

11: x̂(t)Odom← (18)
//Final position estimation

12: x̂(t)← (19)
//Navigation

13: x(t+1)← (21)
14: t ← t + 1
15: end while

1) Its realistic environment renderings;
2) Its high-performance physics engine with a high accu-

racy and a wide variety of sensors like cameras, GNSS
sensors, IMUs, and LIDARs;

3) The Gazebo has ROS plugins in order to be able to
communicate with all simulated models.

In this way, the UAV model and the simulation environ-
ment, represented as a warehouse, were designed in Gazebo
simulator as can be seen in Fig. 4. The dimensions of the
simulated warehouse are set as: length: 200 meters, width:
100 meters, and height: 20 meters.

In order to be able to view all simulated UAV information
by topics, services, actions (for example, acceleration sen-
sors, odometry) in real time, a 3D visualization tool for ROS,
known as RViz, was used [60].

After understanding the 3DGazebo simulator and the RViz
tool to visualize the data, the indoor navigation algorithm can
be performed.

With a given set of mission points that will be sent to
the UAV, represented by arrows in Fig. 5, three results are
obtained for σ (t)

i = 1 meter, ∀i,∀t , shown in Fig. 6. The
results denoted by the blue solid line is used to represent the
ground truth position of the UAV, whereas the red solid line
and the green solid line represent respectively the prediction
of the navigation algorithm throughout the mission and the
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FIGURE 4. Gazebo Simulator: (a) Unmanned Aerial Vehicles (UAV) model;
and (b) warehouse model - Top view.

FIGURE 5. Gazebo simulator with the mission’s waypoints to be executed.

combination of Odometry with the response of the navigation
algorithm using KF.

FIGURE 6. RViz visualization for mission performed with σ (t)
i = 1 meter,

∀i,∀t : (a) Front view; and (b) side view.

From Fig. 6, it can be observed that the proposed algorithm
performs well in the considered setting, given that its perfor-
mance matches closely the path of the ground truth. Even so,
it is necessary to highlight that in certain areas (such as when
abrupt turns are made by the UAV), the gap between the true
and the estimated paths are observed, as expected. This is
mainly due to the fact that the accumulated prior knowledge
somewhat pulls the estimate towards a new expected position
(based on the prior knowledge). Nevertheless, it can be seen
that the proposed algorithms recovers quickly from these
imperfections, making them insignificant in comparison with
the whole path.

In order to get a better comprehension of the performance
of the proposed algorithm, a set of simulations is performed in
order to make the conditions as close as possible to practical
environments, and we present the results in Section V-B,
based on Monte Carlo (Mc) criterion.

B. NUMERICAL RESULTS
Extensive simulations have been carried out in order to study
the robustness of the proposed algorithm on a laptop with
NVIDIA GeForce GTX 1060, 16GB RAM and Intel Core
i7-9750H. In this way, it is necessary to take into account
certain parameters that were used in order to evaluate this
process. The number of Mission waypoints (Mw) is Mw =
52, the number of Monte Carlo (Mc) runs is Mc = 100,
and, at most N = 8 reference points are employed whose
distribution is shown in Table 1, where B = 100 meters with
the goal that all reference points remain inside the warehouse.
It is worth mentioning that first N reference points from
Table 1 are always employed in all simulations presented
here.
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TABLE 1. True locations of the reference points in the simulation
environment.

FIGURE 7. Simulation results for three types of positioning: GOK-JRSM,
Odom and Kalman Filter for N = 4, K = 10, σ (t) = 1 meters ∀i,∀t .

The main performance metric is the root mean square error
(RMSE) [61], which is defined as

RMSE =

√√√√ Mc∑
i=1

‖xi − x̂i‖2

Mc

where x̂i represents the estimate of the true source location,
i.e., xi, in the i-th Monte Carlo run for a specific noise
realization. An RMSE is also calculated for each intermediate
mission point in order to know the impact of each block
of the system at every time instant. In addition, the average
RMSE (ARMSE) defined as

ARMSE =

√√√√√Mw∑
j=1

Mc∑
i=1

‖xij − x̂ij‖2

MwMc
,

is also employed as a performance metric in order to get an
insight on the overall performance of the algorithm.

Fig. 7 shows the RMSE versus mission waypoints perfor-
mance for σ (t)

i = 1 meters, ∀i,∀t . From Fig. 7 it is possible to
conclude that the simulated Odometry has a somewhat higher
ARMSE than the proposed positioning algorithm relying on
radio measurements, but shows a more stable performance
throughout the trajectory. This can be explained to some
extent by the fact that the information obtain through Odom-
etry within the simulator might represented an oversimplified
view of the realistic conditions, which is the most likely
reason for the observed behavior. It is questionable whether
this kind of result could be obtained in real-life scenarios.
Nevertheless, it is also important to note that the combina-
tion of the two positioning schemes improves the overall

FIGURE 8. Simulation results for the proposed GTRS based algorithm
with σ (t) = 1 meters ∀i,∀t and N values between 4 and 8, with
increments of 1.

position output (observed by the Kalman filter’s RMSE and
ARMSE calculations), obtaining a final error of 1.17 meters
of ARMSE, between the Kalman Filter output and the ground
truth positioning, in a trajectory length of 481 meters.

Since the main contribution of this work is related to
GTRS, the robustness of this algorithm was studied in more
detail. In this way, 4 processes were studied:

1) Number of reference points, N , variation;
2) Different noise power, σ (t)

i , values;
3) The number of measurement samples, K , impact and

the median itself for calculating the distances from the
anchors to the UAV;

4) GTRS-based algorithm behaviour with and without the
presence of UAV sensors.

Starting with the number of reference points, the influence
of the N on the GTRS-based algorithm was studied in Fig. 8.
It should be noted that in this figure, the value of σ (t)

= 1
meters ∀i,∀t was maintained constant in all simulations and
only the number of reference points was varied from 4 to 8.

From Fig. 8 it is possible to conclude two aspects:
• As expected, the overall trend of the proposed algo-
rithm is to improve its accuracy with the increase of N ,
in general. This behaviour is natural, since the greater
number of reference points allows for a higher quantity
of radio measurements in the network, and thus, higher
positioning accuracy can be achieved;

• The positioning error is somewhat correlated with the
symmetry of reference points employed in the study
environment (please refer to Table 1 for the network
topology), since the figure reveals better performance of
the GTRS algorithms for the setting where N = 4 and
N = 8, in comparison with those where N = 5, 6 or 7.

Studying the impact that the σ
(t)
i value has on the

GTRS-based algorithm, 3 different values of σ (t)
i were used

for the sameN , as it can be seen in Fig. 9. The figure confirms
that the higher the noise power is, the worse positioning
accuracy is obtained, as foreseen. Nonetheless, it is also
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FIGURE 9. Simulation results for the proposed GTRS based algorithm
with N = 4 and σ (t) = 1, 2 and 3 meters.

possible to conclude that the algorithm, even with σ (t)
i equals

to 1 and 2 meters, still presents an ARMSE error of less than
2meters, while for σ (t)

i = 3meters, the ARMSE performance
is somewhat above 2 meters.

Moving on to the third process studied, it is important to
know what will be the impact of different K values on the
GTRS based algorithm. Thus, simulations were carried out
for different K values with a σ (t)

i = 2 meters ∀i,∀t (to
further emphasize this effect), as can be seen in Figure 10.
From the figure, it is possible to conclude that the higher
the value of K is, the lower the positioning error is. This is
due to the simple fact that the distance will be the result of
a 3-D median. With this value, the central value of the noise
is chosen. This becomes an advantage since the probability
of equating a high σ (t)

i value is less when compared to an
average of K values. A clear disadvantage is that the noise
value may also never be the lowest value obtained, which
could decrease the performance of the UAV position esti-
mation. Naturally, the large values of K (e.g., K = 50 or
100 leading to ARMSE = 1.72 and 1.55 meters, respec-
tively) are preferred than lower ones (e.g., K = 1 or 5,
leading to ARMSE= 2.23 and 2.01 meters, respectively) for
σ
(t)
i = 2 meters.
Finally, it was necessary to know what impact the UAV

sensors have on the algorithm proposed in this article. In this
way, two types of distinct tests were performed: the first test
was made for a case of High Precision (HP) sensors and the
ARMSE was measured; the second test, the ARMSE values
of the positioning algorithm were measured in case of Low
Precision (LP) UAV sensors (accelerometer and gyroscope
sensors have an important impact on UAV velocity output).
Table 2 shows the results obtained.

From Table 2 it is possible to conclude that the algorithm
based on GTRS is robust when the UAV has HP sensors.
Regardless of the noise power (σ (t)

i = 1, 2 and 3), the worst
ARMSE result in the case of HP sensors is 0.179meters while
in the case the UAV has LP sensors the error increases for the
worst case of 2.505 meters.

FIGURE 10. Simulation results for the proposed GTRS based algorithm
with σ (t) = 2 meters ∀i,∀t and K values equal to 1, 5, 10, 50 and 100.

TABLE 2. Simulation results - HP sensors vs LP sensors.

Regarding the influence of σ (t)
i , it is anticipated that the

positioning error increases with the increase of σ (t)
i . However,

when the sensors are from HP, although the growth in the
positioning error is significant, it actually does not reach
1 meter of ARMSE, while in the LP sensors the error exceeds
2 meters of ARMSE.

Fourth, even with the decrease in positioning error in the
2 cases from the increase in theK value, it turns out that in the
worst case (K = 1) the positioning resolution of HP sensors
is 1 meter, while, for the same conditions of K , σ (t)

i and N ,
the error is doubled and it decrease much more slowly than
when the HP sensors are available.
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TABLE 3. Processing time at each stage.

Thus, it is concluded that the proposed GTRS-based algo-
rithm is quite robust when the UAV sensors have a good
measurement resolution. If the sensors are of LP the precision
error can vary between 1 to 2 meters, which seems reasonable
in several practical cases.

Finally, it is extremely important to validate whether or not
an algorithm can be applied in real-time applications. Hence,
we also study the running time of the proposed algorithm.
In this way, the processing time of the algorithm based on the
GTRS was measured and in each position estimation it took
about 21 ms on average which is equivalent to approximately
47 fps; this study is a strong indicator that the proposed
solution is suitable for real-time applications in terms of its
running time. Table 3 shows the details of the processing time
in several stages of the proposed system.

It is possible to conclude in Table 3 that the phase that uses
less processing time is in the GOK-JRSM stage. It is also
important to emphasize that the estimation error also depends
on the time of the information coming from the sensors, as is
the case of the Velocity (256.76ms). As the execution time of
theGOK-JRSMalgorithm is less than theVelocity processing
time, the velocity estimation will have an increased error
because it is not updated faster comparing with GOK-JRSM
algorithm (21ms).

In addition to studying the performance of the proposed
algorithm in various scenarios, it is very important to val-
idate its performance against the existing methods as well.
Here, considering its close relationship with the proposed
approach and very recent date of publication, the PF method
presented in [36] is used as the state-of-the-art (reference)
approach. It is worth mentioning that, in all simulations
presented here, the PF method is implemented with 1000
particles. Fig. 11 below illustrates the ARMSE (m) versus the
number of measurement samples,K , comparison between the
proposed work and PF in [36], when σ = 2m. As foreseen,
both approaches improve their localization accuracy with the
increase of K. The figure also exhibits that the proposed
algorithm evidently outperforms the PF one for a wide span
of K (K ≥ 5), which can be explained to some extent
by the fact that the new solution relies more on the quality
of the measurements, whereas PF gives more trust to the
measurement model and not the measurements themselves.

Table 4 below summarizes the performance comparison
between the PF in [36] and the proposed solution, both in
terms of localization accuracy and time consumption. The
table generally shows superior localization accuracy of the
proposed solution over the PF in various settings. It is also
possible to observe the difference between the PF algorithm
and the proposed system regarding to their time consumption:
The proposed algorithm, running at 21.33ms, is roughly 10×
faster than PF algorithm. These results clearly justify the

FIGURE 11. ARMSE (m) versus K.

TABLE 4. ARMSE (m) performance for different set of parameters and
time consumption of PF and the proposed work.

use of GTRS method for the considered problem, which is
possible to run it in real time.

VI. CONCLUSION AND FUTURE WORK
This work considered the problem of UAV navigation in
GNSS-less environments, where terrestrial radio signals were
employed, together with Odometry. By following the MAP
principle, we managed to apply favorable approximations to
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the MAP estimator in order to effortlessly convert it into a
GTRS framework. Its accuracy was further enhanced by inte-
grating the positioning information acquired through Odom-
etry, by means of a KF. After having the position estimation
at hand at any time instant, the UAV’s navigation was per-
formed by simply calculating the shortest direction towards
a desired destination. The simulation results corroborate the
effectiveness of the proposed algorithm, both in terms of posi-
tioning accuracy and execution time, allowing it to function
in real-time (21ms to estimate the UAV position).

It was also concluded in this work that the positioning
algorithm is robust when the UAV sensors have a good mea-
surement resolution, obtaining an ARMSE error that does
not exceed 1 meter. However, when the UAV measurement
sensors do not have a good precision, e.g. Low precision (LP)
sensors, the error can reach to 2.5 meters. In this way, future
work implies the study of robustness for these cases.

A possible extension of the current work might to consider
the effect of obstacles, causing non-line of sight between
the UAV and a (set of) reference point(s). Another interest-
ing direction for future work might be to consider a hybrid
positioning system that could merge two radio measurements
together, such as RSS and TOA.
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