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ABSTRACT A floating foundation vibration reduction system with an air spring as a vibration isolation
element has been widely used in the foundation of large ultra-precision instruments. With the excellent
vibration isolation performance of the air spring, its complex dynamic nonlinear behavior is always a
research difficulty. In this paper, a dynamic model of a floating foundation vibration reduction system based
on the restoring force of air spring is derived. The structure of the recurrent convolution neural network
(RCNN) is proposed based on combining the working characteristics of a convolution neural network
and a long short-term memory neural network, and the dynamic model of a floating foundation vibration
reduction system is established with the restoring force of the air spring calculated by the RCNN as the
input. Finally, a test experiment was designed to compare the dynamic characteristics of the traditional
numerical model and three deep neural network models in the floating foundation. The results show
that convolution neural network, long short-term memory, and RCNN models could predict the vibration
response of floating foundation vibration reduction system, and the RCNN model had better performance
for a floating foundation.

INDEX TERMS Floating foundation, dynamic nonlinear model, air spring, recurrent convolution neural

network.

I. INTRODUCTION
A floating foundation vibration reduction system (hereinafter
referred to as a floating foundation) is an efficient vibration
reduction technology, which is often used in the field of
precision instruments vibration reduction [1], [2]. A floating
foundation consists of an instrument foundation and vibration
reduction elements. The vibration reduction elements are
mainly composed of a steel spring with a viscous damper [3]
or an air spring with auxiliary chamber (hereinafter referred
to as an air spring) [4], as shown in Fig. 1. Compared with
a steel spring, an air spring has lower stiffness, and thus
it can better meet the vibration reduction requirements of
large ultra-precision instruments in the low-frequency micro
vibration stage.

With the expansion of floating foundations in applica-
tions and the complex and changeable working environment,
the accuracy of the dynamic nonlinear model of air springs
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is required to be increasingly higher for floating foundation
dynamic analysis. However, the stiffness and damping of air
springs have highly nonlinear characteristics, which is always
the difficulty in the study of an air spring constitutive model.

In the numerical modeling of an air spring, scholars decom-
pose it into different components, such as a rubber air bag
(main chamber) and a throttle device (orifice) connecting a
main chamber and an auxiliary chamber [5], [6]. Two aspects
should be considered in the modeling of an air spring rubber
airbag (main chamber): one is the stiffness caused by the
air pressure in the airbag [7], and the other is the stiffness
and damping caused by rubber deformation [8]. Two aspects
should be considered while modeling the orifice: one part is
the stiffness of the high-speed airflow caused by the air pres-
sure difference between the two air chambers while passing
through the orifice, and the other part is the friction damping
and inertia damping of air in the orifice [9].

In an experimental study on a semi-automobile air sus-
pension system, Zargar and Bahram [10] pointed out that
damping in the air spring will increase nonlinearly as the
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FIGURE 1. Structural diagram of a floating foundation vibration reduction
system.

natural frequency of the system increases, especially in the
4 to 6 Hz region. Suda et al. [11] established an air spring
suspension system model using A’GEM software and arrived
at a conclusion similar to that of Zargar. To investigate the
air suspension of high-speed trains, Docquier et al. [12] com-
pared and analyzed five air spring models and presented air
spring models that would be suitable below 8 Hz and above
8 Hz. Porumamilla et al. [13] further studied the character-
istics of the displacement transmission rate of air springs,
pointing out the variable frequency damping characteristics
of air springs and highlighting that the natural frequency
changes with the opening of the orifice. It can be observed
from the aforementioned literature that the air spring model
is related to the frequency and amplitude of the excitation.

The existing models ignore or simplify the nonlinear char-
acteristics of the air spring [14], which are the Helmholtz
resonance generated by the high-speed air flow in the gas
chamber [4] and the congestion of the gas in the throttle
device [15]. Moreover, the numerical model weakens the
coupling relationship between the interactions of each unit,
which leads to a big difference between the air spring model
and the actual measurement results in the nonlinear stage.

In recent years, deep neural networks have been widely
used in the field of mechanical modeling and have shown
great potential for highly nonlinear dynamic behavior simula-
tion, for example, a convolutional neural network (CNN) [16]
with the ability to extract data features and a long short-term
memory (LSTM) [17] network with good performance in
time sequencing. Combined with the characteristics of the
above two neural networks, recurrent convolution neural
network (RCNN) has good performance for both feature
extraction and time sequencing [18]. Wang et al. [19] pro-
posed a new prognostics framework, named RCNN, for
remaining useful life prediction of machinery. Experimental
results show that the proposed RCNN has a clear advantage
in accuracy and convergence compared with some exist-
ing CNN-based prognostics approaches and other typical
machine learning models. Li et al. [20] used an LSTM to
model unsteady aerodynamics and aeroelasticity of the mul-
tiple Mach numbers for wings, and LSTM has a good sim-
ulation capability for unsteady and nonlinear aerodynamic
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models caused by high-speed airflow. Li et al. [21] proposed
an improved neural network based on LSTM to simulate the
flutter model of long-span bridge panels, and they verified
the effectiveness of the neural network through the designed
wind tunnel experiment. Zhang et al. [22] compared the full
sequence input data and the stacked input data to train the
LSTM and verified that the stacked input data could train the
LSTM more effectively by comparing the numerical model
analysis results and the earthquake response prediction of
a 3-story building. Chen er al. [23] combined CNN and
Bayesian estimation and proposed a new Naive Bayes CNN
(NB-CNN) with an identification rate of 99.9% for cracks.
Oh et al. [24] took ground motion (GM) as input and the
structural response as output, and they used a CNN for train-
ing. Their model was proved to be effective in predicting
the seismic response of reinforced concrete structures by
a shaking table experiment. Kim et al. [25] successfully
predicted the maximum response of a building structure by
using a CNN to extract the features in the restoring force
model of the building and the important features of the input
structure, soil, and GM. In another paper, Oh et al. [26]
designed four kinds of artificial neural networks based on
the average period, predominant period, duration, and the
acceleration peak value of input GM combined with the input
resonance area, the sum of resonance area, and the sum of
modal weighted resonance area. Eshkevari et al. [27] pro-
posed a dynamic neural network model (DynNet) to predict
the response of multi-degree-of-freedom systems. The model
tested two different four degrees of freedom shear structures:
one with plastic stiffness, the other with third-order nonlinear
elastic stiffness. It showed that the network can predict the
time history including displacement, velocity, acceleration,
and internal force.

Given the increasing application of air springs, it is difficult
for the existing constitutive models derived from numerical
equations to simulate the highly nonlinear behavior of air
springs, and thus it is urgent to establish a reliable dynamic
nonlinear model under the natural state. The deep neural
network model can capture the characteristics of highly non-
linear dynamic behavior caused by high-speed airflow in the
air spring chamber as well as the coupling effect of different
mechanical elements. In this paper, the vibration test of a
floating foundation with different frequencies and amplitudes
is designed, and then an RCNN is designed according to the
characteristics of the vibration test data of the floating foun-
dation vibration reduction system, and the RCNN model of
air spring’s restoring force is trained. The performance of the
CNN, LSTM and RCNN models was compared by training
experimental data. The results show that the CNN, LSTM and
RCNN models could predict the vibration response of float-
ing foundation vibration reduction system, and the RCNN
neural network had a higher prediction accuracy for the vibra-
tion response of a floating foundation.

This paper is organized as follows: Section 2 intro-
duces a numerical model of an air spring and a dynamic
model of a floating foundation vibration reduction system
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FIGURE 2. Structure diagram of an air spring.

based on which the restoring force of the air spring is
derived. Section 3 introduces the proposed RCNN architec-
ture for the restoring force of the air spring and prediction.
Section 4 introduces the algorithm of the numerical model
and deep neural network model. In section 5, the proposed
methodology is validated by comparing the dynamic response
of floating foundation calculated by the numerical model
with the predictions of the RCNN, LSTM, and CNN models
based on experimental data. Finally, Section 6 discusses the
limitations of the proposed approach and summarizes the
conclusions of this paper.

Il. DYNAMIC MODEL OF THE FLOATING FOUNDATION
VIBRATION REDUCTION SYSTEM
A. AIR SPRING MODEL
The numerical model of the air spring assumes that each
element of its structure is an independent mechanical model,
the material is isotropic, and the internal air satisfies the ther-
modynamic properties under an ideal state. Then, the momen-
tum conservation of the mass on the spring, the gas volume
equation of the main and auxiliary chambers, the mass flow
equation of the orifice, and the mass continuity equation of
the orifice are derived. Finally, the numerical model is simpli-
fied into series and parallel linear springs/linear or nonlinear
damping elements. The structure of an air spring is shown
in Fig. 2.

The numerical model is expressed as follows [28]:

Fo=Ki(z—y)+ (K2 + K3)z (D
and
Cﬂj)ﬁ =Ki(z—Yy) 2)
where,
KkAMAAy Py 1—A
1= ——; 2= Ki; K3 = (Py— Py)A;
Va
Cs = MRz(hpoAv)P; .
b PPV Va+ Vg

Here, F, is the force of the air spring; K; and Cg are the
stiffness and damping of the orifice, respectively; K3 is the
main chamber stiffness; K3 is the auxiliary chamber stiffness;
A is the effective area of the main chamber at the equilibrium
position; A, is the change rate of the effective area calculated
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FIGURE 3. Numerical model of the air spring.
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FIGURE 4. The computing diagram of the dynamic model of the floating
foundation.

by dA/dz; A, is the volume change rate of the main chamber;
V4 is the volume of the auxiliary chamber; Vp is the volume
of the auxiliary chamber; F, is the restoring force of the air
spring; Py is the initial pressure; P, is the atmospheric pres-
sure; y is the gas displacement in the orifice; pg is the initial
gas density; Rg is the damping coefficient; z is the vertical
displacement calculated from the equilibrium position; and
B damping optimization coefficient. The numerical model of
the air spring is shown in Fig. 3.

B. DYNAMIC MODEL OF THE FLOATING FOUNDATION
VIBRATION REDUCTION SYSTEM

To unify the numerical modeling and the deep neural network
modeling, the dynamic model of the floating foundation is
established by taking the time history restoring force of the
air spring under the external excitation as the dynamic input.
The computing diagram is shown in Fig. 4.

Suppose that the floating foundation is a rigid body.
According to the Euler angle definition, the transformation
from a floating foundation coordinate system to a ground
coordinate system can be realized by three consecutive rota-
tions around different coordinate axes. Therefore, the coor-
dinate system of the floating foundation supported by multi-
ple air springs can be transformed into a ground coordinate
system by rotating three times around the z-axis, y-axis, and
x-axis of the floating foundation as follows:

cosy —siny 0 cos® 0 sinf
Ry=|siny cosyy O |,Rg= 0 1 0 ,
0 0 1 —sin6 0 cos6
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and
1 0 0
Ry=|10 cos¢p —sing
0 sing cos ¢

Here, Ry, Rg. and Ry are the rotation angles around the
z-axis, y-axis, and x-axis, respectively. The floating founda-
tion can be transformed into a ground coordinate as follows:

cos 0 cos Wy sin ¢ sin 0 cos ¥ — cos ¢ sin Y
R=| cos O siny sin¢ sin 6 sin  + cos ¢ cos ¥
—sin 6 sin ¢ cos 0
cos ¢ sin 0 cos Y + sin ¢ sin Y
cos ¢ sin 0 sin Y — sin ¢ cos Y 3)
cos ¢ cos 0

According to Newton’s second law, the acceleration in each
direction is obtained by

"y R

m
2B | R )

m

in

ISHAEHER - H
I

- m -

Here, m is the mass of the floating foundation; Fy;, Fy;,
and F,; are the components in the x-, y-, and z-directions
of the i-th restoring force, respectively; X, ¥, and Z represent
the acceleration of the floating foundation in the x-, y-, and
z-directions, respectively. The moment of the air spring force
to the center of mass of the floating foundation can be
expressed as

M Z FiiLyi

X
My | =| > Fylyi )

M
) Z F ziin

Here, Ly;, Ly;, and L;; are the distances of the i-th restoring
force from the origin of the floating foundation coordinate
system in the x-, y-, and z-directions. According to the Euler
angle transformation matrix, the transformation between the
air spring force and the angular velocity of the floating foun-
dation can be obtained. This paper studies the micro-vibration
of the floating foundation, and thus, in the above matrix,
the sine equals 0 and cosine equals 1, which can be simplified
as follows:

M =

p 1 0 — sinf ¢> ¢>
qg|=10 cos¢ singcoso 0 |~|6 (6)
r 0 —sing cos ¢ cosH 1// 1//

The angular velocity of the floating foundation can be
obtained by the calculation method of the moment of
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momentum as follows:

(Y Fuili + (I — 1) 697 7]
I
9 _ Z FytLyt + (Iz - 1x)¢1// (7)
14 1y
Z inin + Uy — Iy)éé
L I, _

Here, Iy, Iy, and I, are the cross-sectional moments of
inertia of the x-axis, y-axis, and z-axis, respectively. Then,
the acceleration of the floating foundation in three directions
is as follows (8), as shown at the bottom of the next page:

Ill. DEEP NEURAL NETWORK MODEL OF AN AIR SPRING
A. RECURRENT CONVOLUTION NEURAL NETWORK
Convolutional neural network (CNN) has a good performance
in data feature extraction, which can clean the input data
and enhance the feature density of the input data. At the
same time, another important characteristic of a CNN is its
translation invariance. For earthquakes, a CNN can extract
features [25] (such as the GM parameter) in the vibration
wave, and the feature is independent of the position in the
wave. However, a CNN lacks memory when processing time
sequence data, which means that each information is input
into the network as an independent individual and the network
does not know the state of the previous information. Long
short-term memory network (LSTM) adds a method that can
transmit information at multiple time steps. The information
in each time sequence segment can be recorded and transmit-
ted, and the information transferred can be updated according
to the update of the time sequence to save and transmit the
important information (data features) in the past.

In the dynamic analysis of an air spring, the actual situation
is that the excitation of a vibration wave to the air spring is
in order. When the air spring encounters a strong amplitude
excitation in the vibration wave, the system will enter (or
temporarily enter) a nonlinear state, and thus the stiffness and
damping of the air spring will show nonlinear characteristics
in the subsequent vibration excitation. Therefore, in the pro-
cess of maintaining the stiffness and damping information,
the air spring system will be updated with the change of
vibration excitation.

The RCNN proposed in this paper is an artificial neural
network that combines the characteristics of a CNN for data
feature extraction and LSTM for time-sequence processing.
This neural network extracts the hidden information (data
features) of input data from CNN layers, transfers the data
features with higher quality and concentration to the LSTM
layer, then uses the function of storing and forgetting infor-
mation of LSTM to process the sequence relationship of
time sequence, and finally makes the network prediction and
the characteristics of input data highly mapped in the time
dimension. At the same time, a CNN can remove redundant
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data and reduce the amount of computation because it has
abstract feature ability. The RCNN is calculated as follows:

A feature chain with time series attribute is obtained by
a convolution layer of the ground vibration acceleration as
follows:

x=f (¥, @ W+ ) )

where x; is the extracted eigenvalue, X, is the input data
(ground vibration acceleration); ® is the convolution oper-
ation; W is the weight parameter; b is the bias; and f (-) is the
activation function. The time-dependent feature chain (9) is
introduced into the LSTM neural network as follows:

The forgetting gate:

fi = o (e Wl + h_ W) (10)

The input gate:

i = o (Wi +h_ W) (11)
and
Cy = tanh(x, WE + hy—1 Wy) (12)
The output gate:
or = o (W + b1 Wy) (13)

The memory unit:
Cr=0(f; x Ci—1 +ir x Cr) (14)
The output unit:
hy = tanh(Cy) X oy (15)

Finally, the full connection layer is connected with the
target data to calculate the loss value and feedforward. The
RCNN structure is shown in Fig. 5.
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FIGURE 5. Recurrent convolution neural network structure.

B. RECURRENT CONVOLUTION NEURAL NETWORK
MODEL OF AN AIR SPRING

The structure of the RCNN proposed in this paper is as
follows:

(1) Input data

The basic unit of input data is a 1 x x¢ dimensional vec-
tor (x¢ represents the total steps of the excitation wave),
and each vector represents a vibration acceleration time
history excitation wave. The input data is a combination
of multiple vectors (x1, X2...... Xi—1, X1) X Xx¢ dimension

> Fyi(cos Ocos Yrcos 6 sinyr — sin 0) n > (in + I — Iy)(bé/in)

m

21

> Fyi [sin ¢ sin 0 (cos ¥ + sin ) — cos ¢ (sin f — cos V)]

ISHECHIR - H
I

m

> Fyi[cos ¢ sin 6 (cos W + sin ) + sin ¢ (sin ¥ — cos ) + cos ¢ cos 6]

0

2
+ 3" Fyisin ¢ cos 6 N

in"‘

m

m

Z <F xi +
in
+ -
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21, ®)
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Algorithm 1 Numerical Model of the Floating Foundation
Vibration Reduction System

Algorithm 2 Deep Neural Network Model of the Floating
Foundation Vibration Reduction System

1: Input: X,, Ky, K3, K3, Cg, c, B, tolerance
2: for (i=0; i<step-1;i++)
3 =g+ zne+ (4 - ) Eiar

ﬁc n —J(n ﬂ71

L ) = 552 (MRPR)T 4K
2 if abs (f" (y(n+1))) > tolerance
new _ yold fOw+1)
“ Yot TVt T Fme)
. else );l’(;v_:ﬁl) = Yot 1)
© Y= Yot

9: pz=7zit1
10: Calculation of the restoring force of the air spring:
11: F;=K(pz—y)+ (K2 + K3)pz
12: Calculation of dynamic response of floating foundation:
13: 5 = " Fiilcos ¢sin 6(cos Y+sin Y)+sin ¢(sin Y —cos y)+cos ¢pcos 6]

m
Z(in+ (Ix —L’z.)““ﬁ ) Z(Fvi"‘ (’z—lj}x.)é‘/} )
1 ‘X1 + - ¥

1y

© 3 o w»n oA

+ X
14: Return 7;, z;, 7;

vector (x) represents the number of samples of the exci-
tation wave), and x¢ and xj change according to the input
data.

(2) Convolution layer

The convolution kernel of each layer is (1,3) and has 32 fil-
ters. There is one pooling layer, and the maximum pooling
calculation is used.

(3) LSTM layer

The model uses two layers of the LSTM structure, and each
layer contains 30 units.

(4) Full connection layer

There are two layers of the full connective layer with 30 neu-
rons in each layer.

In this study, the deep neural network model training envi-
ronment was as follows: Windows Server 2019, Anaconda 3,
Python 3.7, TensorFlow 2.2, Keras 2.4.2, CPU E5-2609, and
GPU GTX TITAN.

IV. ALGORITHMS OF THE DYNAMIC MODEL OF A
FLOATING FOUNDATION VIBRATION REDUCTION
SYSTEM

In this study, only the vertical motion was considered. The
numerical model calculation was programmed in C++ lan-
guage, and deep neural network model calculation was pro-
grammed in Python language. The two algorithms are given
below.

V. EXPERIMENTAL VERIFICATION

A. PARAMETERS OF THE FLOATING FOUNDATION
VIBRATION REDUCTION SYSTEM

The physical parameters of the air spring are given
in Table 1, and the physical parameters of the float-
ing foundation vibration reduction system are given in
Table 2.
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1: Train model
2: Input: batch_size = 10, Adam (Ir=0.001, decay=0.0001),
epochs = 50000
: Input data X; x X, Target data y,
: Scaler data to [—1,1]: Scaler_X; x X, Scaler_y;
: Deep neural network model:
: model.add(Conv1D(filters=32, kernel_size=3,
activation="relu’), input_shape= (X; x X))
7: model.add(Conv1D(filters=32, kernel_size=3,
activation="relu’, dropout(0.5)))
8: model.add(MaxPooling1D(pool_size=2))
9: model.add(Flatten())
10: model.add(LSTM(30, return_sequences=True,
stateful=False), Activation(’relu’))
11: model.add(LSTM(30, return_sequences=True,
stateful=False), Activation(’relu’))
12: model.add(Dense(30), Activation(’relu’))
13: model.add(Dense(30), Activation(’relu’))
14: model.add(Dense(1))
15: model.compile(loss="categorical_crossentropy’,
optimizer="adam’, metrics=["accuracy’])
16: separate X; x X; and y; into training data and test data:
X_train, y_train, X_test, y_test
17: model.fit(X_train, y_train, batch_size=batch_size,
validation_data=(X_test, y_test))
18: model.save
19: Prediction restoring force of the air spring:
20: model_best = load_model
21: Input data X for predict
22: y¥ = model_best.predict (X!')
23: F; =y’

24: Calculation of dynamic response of floating foundation:
25 5 = " F.ilcos ¢ sin 6(cos Y+sin y)+sin ¢(sin ¥ —cos ¥)+cos ¢ cos 6]

m
> (inJr Ux=l)00 21;,)M ) > (E bit Ge=l)dv llf oy )
y— +

o v AW

i i

+ X
26: Return?Z;, z;, z;

y

TABLE 1. Physical parameters of the air spring.

Parameter Value

Effective area 0.4185 m?
Rate of change rate in the effective area 0.248 m
Rate of change in the volume of the main chamber 0.284 m?
Initial air pressure 658 KPa
Initial gas density 7.5 kg/m?
Initial volume of the main chamber 0.103 m*
Initial volume of the auxiliary chamber 0.35m?
Variable index 1.4

Damping coefficient 1.42 x 106 N/m*(s/kg)?

B 1.65

B. EXPERIMENTAL TRAINING DATA SET
The test equipment used included the ENDEVCO 86 con-
stant current source accelerometer from the United States,
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TABLE 2. Physical parameters of the floating foundation vibration
reduction system.

Measurement Point

—  E———

=

Parameter Value
Floating foundation quality 239t
Size 8 x 11 x3m’
Number of air springs 12 T
Vertical design frequency 0.8 Hz
Horizontal design frequency 0.8 Hz

TABLE 3. Vibration test conditions.

Number Vibration test conditions
Project 1 Environmental vibration as the vibration source
Project 2 Electric drill as the vibration source
The low-frequency vibration as the vibration source from
Project 3
the vibrator
The low-frequency vibration as the vibration source from
Project 4
the vibrator
The medium-frequency vibration as the vibration source
Project 5
from the vibrator
The medium-frequency vibration as the vibration source
Project 6
from the vibrator
The high-frequency vibration as the vibration source from
Project 7
the vibrator
The high-frequency vibration as the vibration source from
Project 8

the vibrator

B&KG6 channel vibration and acoustic input module equip-
ment from Denmark, B&K vibration analysis software
PULSE OMA from Denmark, several signal transmission
wires, and a Sony notebook computer. Two measuring points
(A and B) were arranged in the positive center of the upper
platform of the floating foundation and the ground beside
the floating foundation. Each measuring point had three
accelerometers to measure the vibration acceleration in the
horizontal and vertical directions. At the same time, the inter-
nal air pressure time history data of the air spring was output
through the air spring pressure stabilizing system, and the
restoring force of air spring was calculated according to the
following formula:

Faz(PA_Pal)Ae (16)

where F, is the restoring force of air spring; P, is the air
pressure of main chamber of air spring; P, is the standard
atmospheric pressure; and A, is the effective area.

As shown in Table 3, vibration tests were carried out at
a certain distance from the floating foundation under eight
test conditions using the vibrator as the excitation source for
sampling. The test site is shown in Fig. 6.
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FIGURE 6. Vibration test site of the floating foundation vibration
reduction system, where the red line is the outline of the floating
foundation.

C. DATA PREPROCESSING

The 40 ground motions (GMs) recorded in the vibration test
and their corresponding air spring pressure time histories
were divided into five categories. The first category and
the second category were environmental vibration and elec-
tric drill vibration, respectively; the third to fifth categories
were low frequency vibration, medium frequency vibration,
and high frequency vibration respectively. These GMs and
their corresponding air spring pressure time histories were
preprocessed by normalization. Five GMs were selected from
each of the five categories of vibration test data, and a total
of 25 GMs were selected as the input and the corresponding
air spring pressure time history as the target output. These
25 samples were used as training sample sets. The other three
GMs in the first and second categories and two GMs from
the third to the fifth categories were selected as the input
and the corresponding air spring pressure time history as
the target output. These 12 samples were used as validation
sample sets. Finally, the remaining GMs from the third to the
fifth categories were used as the input, and the correspond-
ing air spring pressure time history was used as the output
validation. These three samples were used as the prediction
sets, and the low frequency (Sample 1), medium frequency
(Sample 2), and high frequency (Sample 3) were used as the
sample labels, respectively. Table 4 shows the details of the
RCNN.

D. NUMERICAL MODEL AND DEEP NEURAL NETWORK
MODELS OF THE FLOATING FOUNDATION
The floating foundation vibration reduction system was mod-
eled and analyzed, which was based on the numerical model
of the air spring and deep neural network models (includ-
ing the CNN, LSTM, and RCNN models, and the details
are shown in Table 5) trained with the experimental data
sets.

Figure 7 shows the dynamic response of the floating
foundation obtained by four simulation analysis models.
Fig. 8 shows the error rate of peak acceleration (PA) between
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FIGURE 7. Comparison of the calculation results between the numerical model and the deep neural network

models.

the test results and the calculated results of the four mod-

defined as

els. The error distribution is shown in Fig. 9. To bet-
ter illustrate the prediction error, the probability density
function (PDF) of the normalized error distribution 7; is
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TABLE 4. Configuration of RCNN. TABLE 5. Details of deep neural network models.
Parameter Value Models RCNN LSTM CNN
The size of input vector for training model 7680%25 Epochs 50000 50000 50000
Filter size 32 Number of parameters 39,927 36,961 43,141
Pooling size 2 Number of layers 7 6 6
Kernel size 3 Number of training data sets 25 25 25
Activation function ReLu Number of validation data sets 12 12 12
Learning rate 0.001 Number of prediction sets 3 3 3
Weight decay 0.0001 Sample length 7680 7680 7680
The probability of dropout 0.5 Sample | ~ Sample I  Sample 1
Number of layers 7 Sample labels Sample 2 Sample 2 Sample 2
Epochs 50000 Sample 3 Sample 3  Sample 3

Besides, the mean absolute scaled error (MASE) is defined

as
T
MASE = =7 :
T Z;:z [yt — ye—1l
86116

(18)

where é%t is the mean squared error. The MASE is shown
in Fig. 10.

Figure 7 and Fig. 8 compare the acceleration time history
and PA of the floating foundation between the calculated
values of the numerical model and the deep neural network
(RCNN, LSTM, and CNN) models and the experimentally
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measured values. As shown, the predicted values of deep
neural network models were very close to the experimental
values, and the minimum error of PA was only 1.14% in
RCNN, 4.5% in LSTM, and 2.7% in CNN. Compared with
the experimentally measured value, the minimum error of
the calculated value of the numerical model was 8.79%.
Figure 9 is the probability density distribution of the error
between the calculated value of the deep neural network
models and the experimentally measured value. As shown,
more than 90% of the errors in Sample 1 and Sample 3 were
concentrated in the range of —10% to 10%, and more than
80% of the errors in Sample 2 were concentrated in the range
of —10% to 10%. Compared with LSTM and CNN, the error
of RCNN was more concentrated in the range of —10%
to 10% in the three samples. Figure 10 shows the MASE
between the calculated value of the deep neural network
models and the experimentally measured value. The MASE
distribution of the sample points of Sample 1 and Sample 3
was relatively uniform, and the sample points of 2500 to
4500 in Sample 2 had relatively large error values. The main
reason for the large error of Sample 2 in Fig. 9 and Fig. 10 was
that there is a large baseline drift in the vibration test of
the floating foundation, and thus there was a lot of noise
interference. Based on the above analysis, compared with the
numerical model, the deep neural network models could more
accurately simulate the test results of the floating foundation,
and the RCNN model had higher prediction accuracy for the
experimental data.

VI. CONCLUSION

Based on the working characteristics of a CNN and an LSTM
neural network, an RCNN structure was established to train
the restoring force model of an air spring isolator. Taking the
restoring force of the air spring as the input of the floating
foundation, a dynamic model of the floating foundation is
derived. The main contributions of this work can be summa-
rized as follows:

(1) The dynamic model of the floating foundation based on
the restoring force of the air spring was derived.

(2) According to the correlation between the vibration
frequency and mechanical model of the air spring, a vibration
test of the floating foundation was designed, and a dynamic
model of the floating foundation was constructed based on
the test data as the training data set.

(3) The predicted results of the recurrent convolution neu-
ral network were very close to the actual vibration test results.
Compared with LSTM and CNN, the error of RCNN was
more concentrated in the range of — 10% to 10% in the three
samples. The MASE distribution of Sample 1 and Sample
3 was relatively uniform, while the MASE of Sample 2 was
larger at the sample points of 2500 to 4500.

This paper validates the feasibility of RCNN for predicting
the dynamic characteristics of a floating foundation vibration
reduction system. In the future, more accurate experiments
will be designed to obtain a general constitutive model of an
air spring in a natural state and use it in structural dynamic

VOLUME 9, 2021

analysis and prediction to completely replace traditional
numerical modeling.
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