
Received April 30, 2021, accepted June 4, 2021, date of publication June 15, 2021, date of current version June 25, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3089560

A Systematic Mapping of Introductory
Programming Languages for Novice Learners
PIUMI PERERA , GEETHYA TENNAKOON ,
SUPUNMALI AHANGAMA , (Associate Member, IEEE),
RANGANA PANDITHARATHNA , AND BUDDHIKA CHATHURANGA
Faculty of Information Technology, University of Moratuwa, Moratuwa 10400, Sri Lanka

Corresponding author: Supunmali Ahangama (supunmali@uom.lk)

This work was supported in part by the Faculty of Information Technology, University of Moratuwa, and in part by the Senate Research
Committee, University of Moratuwa.

ABSTRACT Delivery of core programming principles to novices is a challenging task andmany introductory
programming languages and platforms have been designed to support this process. Educational programming
languages generally focus on alleviating the syntax overhead enforced on novice learners by designing
languages with simple and concise keywords. Furthermore, only the most basic programming concepts
and principles are incorporated and many languages follow unique methods to provide more simplified
learning environments. However, considering the way programs are authored using these platforms, two
common contrasting approaches to program representation are identified as text-based and block-based
representations. Additionally, a hybrid approach of dual-modality interfaces, which combines the best of
both techniques has gained traction as a current trend in the development of educational programming
platforms. However, despite these extensive features, not all introductory programming languages can cater
to the exact requirements of novice learners and a dearth of comprehensive studies and literature reviews
have been conducted to investigate this context. This paper explores and presents a comprehensive review of
how different elements of educational programming languages and platforms contribute towards learning by
novices under the TechnologyAcceptanceModel (TAM). The review is conducted under twomain constructs
of TAM as (1) Perceived Usefulness (PU) and (2) Perceived Ease of Use (PEOU) and external factors
regarding the programming environment, language design, included programming concepts and supporting
features such as the target audience group, language extensibility, and availability of learning materials
are thoroughly investigated considering the typical behavioral patterns of novices concerning computer
programming education.

INDEX TERMS Computer languages, computer science education, introductory programming, novice
programmers.

I. INTRODUCTION
Computer programming is considered an important skill in
today’s society. However, it is widely accepted that learn-
ing programming in itself is a difficult task, especially for
novices who come from all manner of backgrounds and expe-
riences [1]–[6]. Beginners to programming often struggle
with the most basic tasks including predicting outputs, iden-
tifying the correct order of commands, and writing simple
programs that address real-world problems [6], [7]. More-
over, programming requires an adept knowledge of both the

The associate editor coordinating the review of this manuscript and

approving it for publication was Davide Patti .

syntax and semantics of the chosen programming language
which in most cases, does not relate well with normal spoken
English [8], [9]. Furthermore, the use of the English language
in coding and related learning materials itself can act as a
barrier to novices, as non-native English speakers must learn
both the programming language as well as English to prop-
erly understand basic programming principles [1], [2], [10].
Hence, even though there is a high interest in computer
programming, these barriers often deter novice programmers
from mustering up enough motivation to even begin learning.

Due to this situation, there are many educational pro-
gramming platforms today which target novice learners
of different age groups specifically. These platforms and

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 88121

https://orcid.org/0000-0002-2137-4090
https://orcid.org/0000-0002-3781-2577
https://orcid.org/0000-0001-8045-4958
https://orcid.org/0000-0001-6338-5655
https://orcid.org/0000-0002-6629-3526
https://orcid.org/0000-0003-0874-7793


P. Perera et al.: Systematic Mapping of Introductory Programming Languages

languages have been designed to build interest and lower the
barriers for novices to enter into programming by reducing
the frustrations caused by excessive focus on syntax and
semantics [11]. Many of these languages including Scratch,
Alice, and Blockly make use of rich multi-media content,
interactive environments, and predefined code blocks to elim-
inate syntax errors and engage users more actively [12]–[14].
Furthermore, the simplified syntax of these languages shows
greater support for the translation of the programming lan-
guages into different natural languages [12], [13], [15]. This
language extensibility has allowed computer programming
knowledge to become more accessible in countries where
native language education is more prominent as opposed
to education delivered in English (English is a secondary
language).

In comparison, the other approach of educational pro-
gramming platforms is to introduce a simplified text-based
programming language. These languages allow users to write
the code themselves and whilst they do not eliminate the pos-
sibility of syntactical errors, they provide the user with a more
realistic semblance as to what actual computer programming
entails [7], [16], [17]. However, it must be acknowledged
that novices may still find that this approach is too difficult
initially, as they must be aware of the simplified syntax and
semantics of the language. Furthermore, text-based languages
are markedly more difficult to translate due to the more
complex syntax and semantical constructs. Hence, there are
fewer opportunities to localize these languages to cater to
non-English speaking students.

Past literature has studied the various features exhib-
ited by these educational programming platforms as well
as the influence they have on supporting the learning of
basic programming concepts by novice programmers. Com-
parisons between visual-based programming environments
and text-based languages have identified that students are
inclined to show greater interest and motivation towards
learning to program when using visual and block-based
programming languages [7], [8]. However, it has also been
noted that students cannot grasp the concept of ‘real’ pro-
gramming with visual environments and that they feel it is
more discouraging when they begin to switch into text-based
programming languages after working in such illusionary
environments [5], [14], [15], [17], [18]. Furthermore, studies
have determined that visual-based programming environ-
ments are responsible for cultivating certain undesirable
habits among novice programmers that distort their under-
standing of basic programming concepts [19].

Many languages and platforms with numerous features
exhibiting different language representations have been intro-
duced to the existing field of programming education.
However, the factors directly affecting the user’s attitude
towards using a certain language, and thus the behav-
ioral intention to use the said language changes over time.
Therefore, the identification of factors that influences the
user acceptance of such languages and platforms is com-
plex and equally vital. Therefore, questions regarding the

user acceptance of these languages and platforms are an
ever-present problem domain [20], [21]. Hence, this study
seeks to identify the existing literature related to introductory
programming languages/platforms and systematically review
the factors affecting the novice user’s acceptance of them.

Drawing from Technology Acceptance Model (TAM) pro-
posed by Davis [21], the accumulated literature would be
reviewed to understand the learner behavior in acceptance
of educational programming platforms. TAM is one of the
most influential and used models in the field of research of
Information Technology (IT) [20]–[23]. Although many vari-
ations and modifications of the TAM exist, the original model
introduced by Davis [21] is used in this review. For a better
understanding of the motivations and requirements behind
the development of educational programming platforms, this
paper will provide an overview of the common distinguishing
features exhibited by such platforms and languages and the
effects they may have upon novice programmers.

Furthermore, both past literature and the authors’ own
experiences with various introductory programming lan-
guages and platforms will be considered when conducting
this systematic mapping. As programming languages and
platforms are constantly updating, it is possible that past
literature will not reflect the present situation clearly. Hence,
the authors’ personal experiences will also be considered
in identifying relevant and significantly permissible data to
be included in the review. Additionally, this paper will also
attempt to identify which language features should be ideally
included in similar platforms and languages in development,
to best support the learning of basic programming concepts
by novice programmers.

II. THEORETICAL FRAMEWORK
A. THE TECHNOLOGY ACCEPTANCE MODEL (TAM)
TAM is one of the most prominent models among academics
in the field of IT. Numerous literature reviews have been
conducted by using TAM as the basis of methodology in
several application domains. Therefore, a brief introduction
into TAM’s origin and the modifications done to the model
over time and several literature reviews following the TAM
model are discussed in this section.

In 1986, Davis [21] presented the original TAM which
included two variables ’Perceived Ease of Use’ (PEOU) and
‘Perceived Usefulness’ (PU). The term ’Perceived Useful-
ness’ can be defined as the extent to which a person believes
that using a particular system would improve one’s job per-
formance and ’Perceived Ease of Use’ can be defined as
the extent to which a person believes that using the said
system would be effortless. Davis hypothesized that both
these constructs directly influenced a person’s attitude to use
a certain system which in turn influenced the said person’s
intention to finally use it [21], [23]–[25].

Even though TAM is proposed to investigate how users
accept and use technology, some studies had extended its
applicability to construct systematic mappings related to
the introduction of technologies. For instance, Wirtz and

88122 VOLUME 9, 2021



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

Göttel [20] used TAM as the basis of the methodology to
do the literature review regarding social media acceptance.
Similarly, Al-Aulamie [26] used TAM as the reference model
to establish an enhanced TAM to investigate the learners’
behavioral intentions in using Learning Management Sys-
tems (LMS). Furthermore, TAM was selected as the theo-
retical basis as it can be used to evaluate the features of a
system based on the usefulness and ease of use, which are
the most critical features of a system that would drive users
to use it. In that background, this study too uses TAM as the
overarching model to do a systematic mapping to understand
the user preferences of educational programming platforms
based on features related to PEOU and PU.

B. RELATED STUDIES
Considering past literature, multiple studies have been carried
out to evaluate introductory programming languages, edu-
cational platforms, and associated coding tutorials available
to novice learners. In any systematic mapping, identification
and classification of the research material relevant for the
corresponding topic of research hold significant impor-
tance. Hence, specifying inclusion and exclusion criteria
for the paper selection process and declaring a set of
classification criteria to classify the papers into subsec-
tions should be completed before the evaluation process.
In the context of the introductory programming lan-
guages, researchers often classified the selected papers
using criteria such as pedagogy [11], [27]–[30], curriculum,
and the general-purpose programming language it caters
to [11], [27], [28], [31], language representation [7], [8],
method of assessment [28], [29] and the students [28].

Since inclusion and exclusion criteria are defined based on
the context of the study, several frequently used conditions
can be noticed in the introductory programming literature.
Exclusive inclusion of the published papers (conferences
or journal papers) written in English and programming
tools/platforms catered specifically towards a certain level
of education were frequently observed in the literature of
introductory programming [28], [31], [32]. In the compre-
hensive review on introductory programming published by
Luxton-Reilly et al. [28], publications during the years from
2003-2007 were included, while Salleh et al. [29] used
publications from 2005-2011 inclusive. Additionally, par-
tially prototyped platforms, studies dedicated exclusively to
non-programming learners, and languages catered towards
other branches of programming such as data structures,
flowcharts, and database query languages were also observed
to be common exclusion criteria [28], [31]. Although there
are multiple systematic mappings conducted focusing on
the introductory languages and platforms catering to tertiary
education, a significant lack of literature concerning compre-
hensive reviews on primary and secondary education can be
noticed [11], [28], [31], [32]. Hence, the key focus of the
literature evaluated in the review presented in this paper is the
primary and secondary education levels. Additionally, factors
regarding the popularity of a language/platform such as the

number of users, modes of use (online or desktop solutions),
and open-source contributions are not considered in most
literature. In the analysis done by Kim and Ko [33] regard-
ing the pedagogical approach in different types of platforms
that provide online coding tutorials, the platforms were cho-
sen based on their popularity and website traffic generated.
Similarly, the current review considers the popularity and
research significance of the languages/platforms to ensure the
inclusion of the introductory programming languages with a
significant impact on the industry and the field of research.

The process of evaluation and interpretation of the
nominated publications is considered as the core of a sys-
tematic mapping. Kim and Ko [33] used four core principles
to evaluate thirty platforms providing programming tutori-
als, namely; (1) connecting to learners’ prior knowledge,
(2) organizing declarative knowledge, (3) practice and feed-
back, and (4) encouraging meta-cognitive learning. Although
most of the tutorials provided sets of exercises that gave
immediate feedback to the user, these methods lacked
goal-oriented learning and maturity. Therefore, Kim and
Ko [33] recommended that educators should use educa-
tional games and interactive tutorials that provide individ-
ualized support and context-sensitive feedback to aid the
learners effectively. Considering literature regarding intro-
ductory programming languages and educational platforms,
it can be noticed that factors such as user interface [12],
[26], liveness, and tinkerbility [12], making the execution
visible [12], [27], [31], [32], error messages and adaptive
feedback [12], [31], [33] are consistently used by researchers
to review and evaluate these systems.

In addition to the evaluation criteria, evaluation and inter-
pretation of an academic paper can be done by defining a set
of research questions in the study. Some of such formulated
research questions that are frequently used in introductory
programming literature are listed below [28], [29], [31].

1. What introductory programming aspect is the focus?
2. What developments have been reported in introductory

programming during a given period?
3. Which programming language is taught?
4. What types of supplementary features are incorporated

into the introductory programming language/platform?
5. What are the current issues related to the introductory

programming language/platform?
Although many studies have been conducted to review

introductory programming languages, only a few have
considered including factors relating to the audience
demographics such as gender, age, native language,
and educational background of a user [33]. Therefore,
Luxton-Reilly et al. [28] acknowledged that there is a
dilemma of choosing the most suited programming language
and paradigm to teach programming to learners and that it is
still a widely debated and open topic of research. Hence, how
the audience demographics such as age and native language
influences the novice learners’ learning experience with the
introductory programming language is also discussed in this
review. Furthermore, in the systematic review of Intelligent

VOLUME 9, 2021 88123



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

tutoring systems presented by Crow et al. [31], the primary
focus is on the evaluation of the system as a whole and
thus the effectiveness of individual features was not studied.
However, the focus of the review presented in this paper is
on the evaluation of the individual features of an introductory
programming language/platform and determining how they
affect the attitude of a novice learner.

III. METHODOLOGY
A. ARTICLE SEARCH METHOD
This review concerning the applications of introductory pro-
gramming language for novice learners is multidisciplinary
research that encompasses both the fields of education and
computer science. Therefore, selecting search phrases that
would encompass a broad and inclusive range of introductory
programming literature was found to be challenging. Phrases
that are too general resulted in a higher percentage of papers
that are irrelevant and out of scope. However, phrases that
are too specific tended to miss relevant and important papers.
Therefore, after a recursive trial and error process using
several databases, a combined search phrase that yielded the
highest percentage of relevant literature was selected.

‘‘Introductory programming language’’ OR ‘‘novice
programming’’ OR ‘‘Introduction to program-
ming’’ OR ‘‘novice learners’’ OR ‘‘localized pro-
gramming languages’’ OR ‘‘coding for beginners’’
OR ‘‘learn programming’’

To verify the pertinence of the selected search string, a trial
set of papers was tested against the search phrase, and the
outcome was then compared with a manual screening process
by the authors. 94 papers retrieved from the proceedings of
ITiCSE 2019 and ICER 2019 were included in this verifica-
tion process. As the first step, 4 members individually classi-
fied the papers into 3 categories; namely, relevant, irrelevant,
and undecided which depicted the level of relevancy of the
paper for the systematic mapping. Thereafter, two groups
consisting of two members were formed and the differences
of their categorizations were discussed and resolved. During
this step, papers that were classified into the ‘undecided’
group were also re-classified as relevant or irrelevant. The
authors used the title, abstract, and keyword fields of the
papers for the mentioned manual screening process.

The manual screening process included a fixed number
of raters (4 members) classifying multiple items (94 papers)
into a fixed number of categories (3 and 2 categories for
the individual and group screenings respectively). Therefore,
to measure the inter-rater reliability of the individual and
the paired screening process, Fleiss-Davies kappa [34] was
used, which measures the level of agreement between a set
of raters. The individual classification process resulted in a
Fleiss-Davies kappa of 58%, while the paired classification
process gave a 71% of Fleiss-Davies kappa. The increase in
the Fleiss-Davies kappa from the individual screening to the
paired screening can be attributed to the increased reliabil-
ity of the raters and the reclassification of the ‘undecided’

TABLE 1. Databases and the selected paper set.

category. According to Simon et al. [35], kappa values are
interpreted and categorized into three value ranges which
depict the degree of agreement of the raters. Kappa val-
ues greater than 0.75 represent excellent agreement beyond
chancewhile kappa values below 0.40 depict weak agreement
beyond chance. Similarly, kappa values between 0.40 and
0.75 represent a fair to a good level of agreement. Therefore,
it can be noticed that the paired screening agreement was
substantially greater than that of the individual screening.
Hence, the results of the paired screening were considered
for the verification process which resulted in a selection of 32
papers.

After the manual screening process, the search phrase was
then automatically applied to the title, abstract, and key-
word fields of the 94 papers, which resulted in a selection
of 38 papers. Out of the 38 papers selected, 29 were included
in the set of papers selected via the manual screening process,
resulting in a false positive of 9 papers. Since all the papers
selected by the automatic search phrase will be examined
by one of the members during the application of inclusive
and exclusive criteria, the papers that would be irrelevant for
the systematic mapping can be eliminated. Hence, the per-
centage of false positives was dismissed as a minor concern.
However, the impact of the false negatives on the integrity
of the review is substantial, since they represent the papers
that would be relevant for the review but were not chosen
during the selection process via the search phrases. However,
only three papers were given out as false negatives for the
above-mentioned search phrase. Therefore, the best combi-
nation of search terms was selected which gave the least
percentage of false negatives (10%).

The search terms were then applied to the title, abstract,
and the keyword fields of the ACM Digital Library,
IEEE Explorer, SpringerLink, and ScienceDirect. A total
of 1534 papers were acquired during the article search and
the number of papers selected in each database is available
in the following Table 1. To ensure that all articles relevant
to the research, including those that are not available in
the above-mentioned databases, are considered, a thorough
search has been conducted in google scholar as well.

B. INCLUSION AND EXCLUSION CRITERIA
All the papers that have been considered for this review are
in between the years 2010 and 2019. The starting year is
chosen as 2010 considering the availability of the papers.

88124 VOLUME 9, 2021



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

FIGURE 1. The popularity of introductory programming languages based
on the number of Google articles.

To expand the article search, literature reviews in the relevant
domain were also considered. As for the conferences that
are considered when searching for articles, Innovation and
Technology in Computer Science Education (ITiCSE) and
the ACM Technical Symposium on Computer Science Edu-
cation (SIGCSE) and the ACM Conference on International
Computing Education Research (ICER) was the conference
proceedings where the most number of research papers were
published related to the domain of the study. The research
papers and articles collected from each of the digital libraries
and the searches in google scholar were filtered based on four
main inclusion criteria,

1. Year of publication.
2. The popularity of the programming language or educa-

tional programming platform.
3. The relevance of the programming language to teaching

novice learners.
4. Target audience group of the programming language

The popularity of the chosen programming languages and
platforms were determined by taking into account the number
of google articles and research articles available for each
programming language at the time of writing. The numeric
results of these metrics are illustrated in Fig. 1 and 2.

However, when considering educational programming
platforms, the entire scope of all educational program-
ming platforms would be too large to be addressed in this
paper alone. Hence, for this review, mainly two categories
of educational programming platforms have been selected
depending on the program language representation. These
are namely, block-based and text-based educational program-
ming languages. While there are many different types of
educational programming languages and platforms, the two
categories noted above are the most predominant when used
in delivering key programming concepts to novice learn-
ers [15], [36], [37]. A comparison between the various plat-
form and language features exhibited by both block-based
and text-based introductory programming languages, includ-
ing the programming environment, programming language,
and other supporting features such as the target audience

FIGURE 2. The popularity of introductory programming languages based
on the number of research articles.

TABLE 2. Comparison of platform and language features.

and language extensibility is described in Table 2 below
[2], [13], [16]–[18], [36], [37]. Furthermore, due to the high
availability of these educational programming platforms,
especially in the block-based category, it was decided to
exclude any block-based programming language which did
not have its own stable programming environment from this
review.

However, when considering educational programming
platforms, the entire scope of all educational program-
ming platforms would be too large to be addressed in
this paper alone. Hence, for this review, mainly two cat-
egories of educational programming platforms have been
selected depending on the program language representation.
These are namely, block-based and text-based educational

VOLUME 9, 2021 88125



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

programming languages. While there are many different
types of educational programming languages and platforms,
the two categories noted above are the most predominant
when used in delivering key programming concepts to novice
learners [15], [36], [37]. A comparison between the various
platform and language features exhibited by both block-based
and text-based introductory programming languages, includ-
ing the programming environment, programming language,
and other supporting features such as the target audience
and language extensibility is described in Table 2 below
[2], [13], [16]–[18], [36], [37]. Furthermore, due to the high
availability of these educational programming platforms,
especially in the block-based category, it was decided to
exclude any block-based programming language which did
not have its own stable programming environment from this
review.

Hence, the languages which adhered to the above-
mentioned criteria and displayed a relevant number of Google
and research articles were analyzed and it was decided to
select Scratch and Alice to represent block-based program-
ming languages and Logo, Karel, and Kojo to represent
text-based programming languages. Hence, the research arti-
cles collected were further filtered to give greater inclusion
priority to those discussing these languages. The relevance
of the stated programming languages to teaching novice
learners including factors such as the programming platform
and availability of learning materials and resources was also
considered in further filtrations.

Additionally, it was noticed that many educational pro-
gramming languages and platforms targeted users of specific
age groups, though they are accessible and used by others
as well. Following such observations, target audience groups
could be broadly categorized into two groups as those from
primary to secondary education level and those of college
education level or higher. Highly visual programming lan-
guages such as Scratch, Alice, Snap, and Blockly fall into
the former category where their audience often ranged from
those between 8 – 16 years of age [12]–[14], [38], [39].
In contrast, text-based learning environments such as Kojo,
Hackety Hack, Oz, and Curry were seen to target older audi-
ences while typically covering more advanced concepts as
well as basics [40], [41]. For this review, the main focus was
given to languages targeting audiences of the primary educa-
tion level as most novices are introduced to programming at
this time as per many school curriculums [42]–[44]. Hence,
languages including Scratch andAlice which fall into this cat-
egory were given priority among the block-based languages,
and Logo, Karel, and Kojo were given priority among the
text-based languages as they best fit the criteria considered.

C. RESEARCH METHODOLOGY
Following the initial selection of relevant papers and articles
based on the filtered query string, the research was then
carried out under the following steps on the 1534 papers thus
acquired.

1) CATEGORIZATION OF STUDIES
In this stage of the systematic mapping, the focus was given
towards identifying the studies that would be most relevant to
forming the basis of the current review. As such, studies relat-
ing to different introductory level programming languages
were divided based on three broad categories as (1) The
programming environment, (2) The Programming Language,
and (3) Supporting Features for programming ecosystems
which were decided upon after considering both past lit-
erature and the authors’ opinions following several brain-
storming sessions. Therefore, for this classification, the entire
result set from the initial search query was divided among
the authors for an initial screening where the titles, abstracts,
and keywords of each study were referred to, and used to
deliver the correct categorization. Papers that were found to
refer to or compare between multiple categories were added
to all relevant groups accordingly while studies that could
not be classified were grouped separately to be considered in
more detail during the latter stages. Additionally, compliance
of the studies to criteria concerning the year of publication,
relevance, and popularity of the subject programming lan-
guage was also evaluated during this initial screening, and
those papers showing significant deviation were eliminated
from the outset. Additionally, it was identified that a majority
of these eliminations were attributed to papers gathered from
ScienceDirect and Springerlink databases, as the more gener-
alized nature of content allowed studies from different fields
to also be captured by the search string (For example in Sci-
enceDirect a majority of papers captured using the keywords
‘‘novice learners’’ referred to studies supporting novices in
multiple fields such as medicine and healthcare rather than
programming). Hence, the overall contribution to the review
by the papers from generalized databases was observed to be
significantly less than those of the more specific IEEEXplore
and ACM digital libraries.

2) ELIMINATIONS BASED ON INCLUSION CRITERIA
Based on this categorization, the two groups on the program-
ming environment and language were divided among two
groups of authors with twomembers each for a second screen-
ing. Hence, each paper was further evaluated in depth by
considering the remaining inclusion criteria and the relevance
of the content to the subject of this review. For this purpose,
separate summaries illustrating the various research areas and
gaps indicated by each paper were considered to support
the filtration process. The remaining two categories cited as
‘Supporting features’ and ‘Unspecified’ were given special
consideration by all the authors partly due to the low number
of papers available as well as the ambiguity of some of the
paper content in terms of relevance to the review conducted.
Subsequently, several field experts including two lecturers for
undergraduate level programming students and two teachers
handling the same subject at the school level were also con-
sulted regarding the validity of each classification. Hence,
this methodology was used to limit the scope of papers to

88126 VOLUME 9, 2021



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

TABLE 3. Categorization of selected papers by group.

be considered and several more papers were eliminated for
failing to meet the set inclusion criteria.

As stated previously, particular priority was set to papers
subjecting the languages Alice, Logo, Karel, Kojo, and
Scratch as they were selected based on their popularity
among users. However, the main papers subjecting other
introductory programming languages such as Blockly, Hack-
ety Hack, and Snap! were also considered to better capture
common features of introductory programming languages
and platforms. Hence, a final total of 473 studies passed
the second screening and were selected to act as the basis
of this systematic mapping paper. The distribution of these
papers among the previously specified categories is indicated
in Table 3 below.

3) EXTRACTING DATA AND SYNTHESIZING RESULTS
Consequently, the data thus gathered during the previous
stageswas synthesized to present the findings regarding intro-
ductory programming languages and educational program-
ming platforms as per PU and PEOU in TAM [20]–[22],
[26] as described in Fig. 3. Hence, the categorically classified
papers were now reviewed in full detail while referencing the
dedicated summaries created during the previous screening.
These summaries were further updated at this time to be used
in all future referrals required during this review. Addition-
ally, several more papers were eliminated from the review
process after considering the full content and also due to the
unavailability of access to the full paper.

Furthermore, the inclusion of several sub-features with
regards to the different platform components including the
programming environment, the programming language, and
other supporting features of the platforms were decided as the
main topics to be explored during this review. The selection
of these sub-features was carried out by referring to past
literature to identify the components likely to have the great-
est impact on novices’ acceptance towards an introductory
programming language [12] and authors were able to indicate
which sub-categories were discussed under each paper in
their assigned group.

The sub-features selected were classified as PU and PEOU
according to the intended goal of identifying the language
features having the greatest impact on novice learners. Hence,
when considering PU and PEOU in this context, it was identi-
fied that ‘usefulness’ referred to the ability of the introductory
programming platform to deliver key concepts and principles

FIGURE 3. Technology acceptance model (TAM).

TABLE 4. Categorization of language features.

effectively to novices [21]. Similarly, it was noted that ‘ease
of use’ signified the effort required by novices to understand
and use the programming platform at the initial stages [21].
Accordingly, the sub-features, programming principles and
concepts, language extensibility, liveness and tinkerbility, and
execution visibility were included under PU while the gram-
mar of the programming language, user interfaces, and the
availability of resources was allocated under PEOU as stated
in Table 4.

The following observations were considered to support the
basis of this categorization [2], [7], [13], [16], [18], [45].

1. The inclusion of basic theories plays a direct role
in delivering required concepts to novice learners.
Hence, the programming principles and concepts show
a greater inclination towards PU.

2. Language extensibility allows novices to bypass the
language barrier and focus solely on grasping key con-
cepts and thus tends towards PU.

3. ‘Liveness’ and ‘Tinkerbility’ allow users to learn
by constantly changing the computer programs and
observing their results. As this feature supports greater
flexibility in delivering concepts to novices, it is more
relevant to PU.

VOLUME 9, 2021 88127



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

4. Visualization of the program flow execution provides a
more enhanced learning experience to novices and thus
tends towards PU.

5. A novice programmer should prioritize the learning of
basic principles and concepts over memorizing syntax
and grammar rules of a programming language. As the
keywords, syntax patterns and representation depicts
the ease of understanding the language, they are con-
sidered under PEOU.

6. User interfaces of an introductory programming
platform should aid the learning process and not cause
added complexity. Hence, it is more relevant to PEOU.

7. Availability of tutorials and user guides for program-
ming platforms supports users in familiarizing them-
selves with the system for more efficient learning and
thus tends towards PEOU.

The identification and classification of these sub-features
were carried out predominantly by reference to past liter-
ature and the authors’ own experiences with the subject
programming languages. While the authors’ experience was
sufficient to make the necessary allocations, it was identified
that this same experience may cause unwarranted biases in
the observations as the paper focuses on the effect of such
features on novice programmers. Hence, greater significance
was given to the reasoning cited in past literature to sup-
port the classification process. However, it was further noted
that complete reliance on past literature alone could not be
accepted as there was a high possibility of systems changing
and updating between the time of publication and the time
of review. Hence, as reliance on such obsolete data would
severely undermine the quality of the review results, initial
findings obtained through referring to past literature were
screened a third time by the authors to remove and update
irrelevant data. Thus, a few papers whose content was iden-
tified to be completely obsolete were further eliminated as
there was no useful information that could be used to support
the review conducted.

Subsequently, based on the identification of these sub-
features and their classification under the three main lan-
guage features considered in this review, it was identified
that certain papers needed to be reclassified based on the
more detailed inspection of sub-feature content discussed.
Furthermore, few more studies which had previously passed
the screenings were eliminated due to a lack of appropriate
content following this more detailed analysis. Subsequently,
upon the conclusion of all elimination and categorization
processes, a total of 442 papers were considered for this
review with some falling under multiple categories. distri-
bution based on the sub-features selected is also presented
in Table 4 below.

IV. RESULTS
Considering the categorization of language features observed
in Section 4, the following section describes the significance
of PU and PEOU towards behavioral intention in different

TABLE 5. Languages and their programming paradigms.

introductory educational programming languages as per past
literature [7], [12], [13], [17], [18], [46].

A. PERCEIVED USEFULNESS (PU)
Perceived usefulness is one of the two key factors in TAM
which directly influences attitude and the behavioral inten-
tion towards the system use. Programming principles incor-
porated in the language, Language extensibility, Execution
visibility, and Liveness and tinkerbility are considered as
the key factors in determining the significance of ’Perceived
Usefulness’. Considering the past literature, the selected
introductory programming languages are reviewed under
the above-mentioned factors to determine the behavioral
intention.

1) PROGRAMMING CONCEPTS AND PRINCIPLES
As stated in Table 5, most of the educational programming
languages are catered towards one or more programming
paradigms. Although the underlying paradigms and teach-
ing objectives are different, almost all of the educational
languages have incorporated the most basic programming
concepts such as those of variables, data types (e.g.: Boolean,
Number, String), control structures, decision-making con-
structs, concepts of recursion, functions/procedures and oper-
ators. The main aim of introductory programming languages
and educational platforms is to enable novice learners to
learn and practice programming concepts. Due to the inclu-
sion of the most basic programming concepts and princi-
ples, it can be deduced that these platforms have fulfilled
their perceived usefulness of delivering core programming
concepts to novice learners. Thus, this creates a positive
attitude among the novices and tutors towards using such
languages/platforms since they deliver the intended use.

However, due to the design nature of the languages and
features of its inherent type systems, some of these pro-
gramming concepts are not properly understood by the
students [15]–[17]. In some languages including Scratch,
Logo, Kojo, variables are implicitly typed [12], [16], [36].
Additionally, the drag and drop system in block-based lan-
guages would not allow function blocks with incompatible
return types to be inserted into parameter slots. Furthermore,

88128 VOLUME 9, 2021



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

automatic data type conversions between number and string
types are common in most visual-based languages. Although
these types of syntactic sugar have been incorporated to
unburden novices of type errors, they might not be able to
grasp the concepts of data types and data typing constraints
successfully [47]. Therefore, some of these languages occa-
sionally fail to convey their main intended use of delivering
the most basic programming concepts and principles suc-
cessfully. Although the use of syntactic sugar may create a
short-lived positive attitude to use among novice program-
mers, the behavioral intention would be impacted negatively
in the long run. However, visualizing certain programming
concepts and their structures have proven to be more effective
for novices [13], [48]. In Scratch and Alice, variables are
visualized as concrete objects by using variable monitors and
this enables the novices to see and manipulate them through
tinkering. Additionally, animations are used to display the
effects of list operations. These visualizing concepts will
assist the novices to generate mental maps on how variables,
arrays, and lists work instead of regarding them as abstract
concepts [12], [15], [49]. Therefore, it can be noticed that the
usage of visualization to depict and convey the programming
concepts/principles in the forms of different shapes, colors,
objects, and animations can create greater ease of use for the
novices and hence deliver the programming concepts more
successfully.

In visual-based languages, shapes of blocks and embed-
ded slots are designed to characterize different programming
constructs [15]. Therefore, to add a new data type, a new
parameter slot shape and function block shape must be intro-
duced. Hence grammar extensions to add more data types
or functionalities in visual languages are complex compared
to text-based languages. Additionally, more categories and
shapes on the block palette may lead to visual clutter on
the platform and thus confusion to novices [12]. Although
an extensive block palette and advanced user modifications/
features increase the overall perceived usefulness of the sys-
tem, they may decrease the ease of use and thus create a
negative attitude towards using these languages/platforms.

Students have often shown enthusiasm in learning pro-
gramming concepts using visual-based languages and plat-
forms [17], [47]. While using only text-based languages,
novices have shown signs of inability to apply the program-
ming concepts and ideas used in coding to other domains that
are outside of the programming context [16]. For example,
the novices may think the variables learned in programming
are different from the variables used in algebra. Since the
context in which they have been used is different, they find it
difficult to realize the concept and purpose of the use is the
same and the lack of a visualization aspect in text-only lan-
guages tomap the concepts into real-world objects may be the
reason for this [13]. Hence, to address this issue, languages
such as Alice and Logo tend to incorporate both text-based
and visual-based aspects into their language designs to give
the ‘best of both worlds’. Hence, the inclusion of both the
text-based and visual-based components increases both the

perceived usefulness and the perceived ease of use of these
languages, thus creating a positive attitude and behavioral
intention towards them. However, for languages that are
only-text-based, simply the exposure to programming for a
significant period will not be adequate to deliver the basic
programming concepts to novices successfully [13], [16].
Hence, a meticulously structured set of exercises that would
gradually introduce the use of syntax and complexity of
programming concepts, would help novice learners to grasp
the principles more effectively. The existence of a set of
exercises to guide novice learners will increase the perceived
ease of use of the text-based languages, thus influencing
the perceived usefulness. Furthermore, since these exercise
guides will enable novice learners to learn the concepts with-
out the supervision of a tutor, it will increase the usefulness
of the text-based languages and create a positive attitude
and behavioral intention towards using them. ‘Introduction
to programming’ documentation [36], [50] prepared by the
developers of Kojo is a successful attempt in using a struc-
tured set of exercises that gradually introduces the language
and its concepts to novices.

Additionally, the tasks can be presented as a set of
scenario-based exercises that will follow a common story-
line [15], [49]. This will encourage the novices to follow the
programming tasks and learn basic concepts and principles
more effectively. Therefore, using scenario-based exercises
combined with a storyline will increase the perceived useful-
ness of the introductory language. For example, Scratch and
Alice both have multiple environments and actors with some
recurring themes from popular movies and stories. Many
visual-based programming languages and platforms focus
on maintaining their respective micro-worlds and actors that
function within that world. Hence, presenting the program-
ming concepts according to a storyline and using the concepts
of micro-worlds and actors may create a positive attitude
among the novice learners towards using these introductory
programming languages. However, they should also focus
on delivering the core programming concepts at the same
time. Encouraging the activities such as world and charac-
ter building as per different storylines is more in line with
computer game designing than programming which is the
focus of this paper. Thus, it can be considered that influencing
the novices to create different environments for their projects
may indirectly distract them from their learning goals [15].
Therefore, although the usage of micro-worlds and actors
may create a positive attitude towards using, overusing these
concepts may result in deterring these languages from fulfill-
ing their intended overall use. This may impact the behavioral
intention to use among both novice learners and programming
tutors negatively.

2) LANGUAGE EXTENSIBILITY
For the context of this paper, language extensibility is
considered as the availability of localizations of a given
programming language, thus providing users with oppor-
tunities to code in their native language. However, it was

VOLUME 9, 2021 88129



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

observed that this is a very limited feature with only a few
large-scale visual-based languages such as Scratch and Alice
maintaining complete translations to different natural lan-
guages [2], [12], [13]. In text-based languages, this feature is
even less accessible, and there are no successful completed
translations available [2], [10]. Unfortunately, localization
is an important feature that would be extremely useful for
novice students since it would eliminate the language barrier
in understanding and applying programming concepts. Past
studies have shown that younger audiences, especially those
completely new to programming, respond better when being
taught concepts in their native language [2], [3]. However,
other studies have proven that this observation does not apply
to older students or those who already have some basic
understanding of computer programming. Nevertheless, the
overall outcome remains that localization is a valuable addi-
tion to educational programming platforms [1]. Furthermore,
language extensibility would also make computer program-
ming more accessible to students who have completed their
education thus far in their mother tongue. However, the high
cost involved in facilitating such translations, as well as
the technical difficulties that arise in attempting to translate
high-level languages with already well-established ecosys-
tems has halted these efforts for many platforms, thus depriv-
ing students of a critical opportunity [1], [2].

Furthermore, language extensibility adds immense worth
to the existing programming languages since the availabil-
ity of introductory programming languages/platforms cater-
ing specifically towards non-English languages is scarce.
Considering these features of language extensibility, it can
be noticed that the availability of one’s native language to
introduce the programming concepts to novices contributes
towards increasing the perceived usefulness of the intro-
ductory language/platform. Hence, this creates an approving
attitude towards using these languages which consequently
influences the behavioral intention of usage positively. The
immense popularity of the programming languages such as
Scratch and Alice can be attested to this.

3) LIVENESS AND TINKERBILITY
The term ‘Liveness’ refers to whether a distinction exists
between the editing mode and running mode of a com-
puter program, i.e., if a compilation stage exists. In contrast,
‘Tinkerbility’ refers to the ability of the users to experi-
ment with commands and code snippets to gain hands-on
experience [12]. Block-based languages such as Scratch and
Blockly have high tinkerbility as users can arrange blocks in
numerous ways and still observe the associated visual output.
Scratch also demonstrates high liveness as the program can
be edited while the program is being executed and running.
However, languages like Alice, Karel, and even Logo require
code to be syntactically correct and compiled before execu-
tion, which leads to limited tinkerbility as the knowledge of
the syntax and semantics of the language is required to get
a correct output [17]. To teach programming, both liveness
and tinkerbility are key aspects as they allow users to gain

knowledge of writing programs. It is further identified that
students indicate greater interest and activeness when they
can experiment with code without being concerned about
syntax and semantics [17].

Therefore, features such as Liveness and Tinkerbility make
it easier for novice learners to adapt to the platform and hence
create a positive attitude towards learning programming.
Since ‘Tinkerbility’ allows the novices to focus on learning
by making constant changes to the program and see how
those changes affect the outcome, the perceived usefulness
of the introductory programming language is also increased.
These in turn will act as catalysts in increasing the behavioral
intention of the novices to use that particular introductory pro-
gramming language/platform. However, it is also noted that
this carefree environment is ill-equipped to shift beginners
to more advanced languages like Python, C, and Java where
basic knowledge regarding syntax and semantics is required
to try out even basic simple concepts.

4) EXECUTION VISIBILITY
Most of the learning platforms provide visual feedback for
the programs in execution by presenting the output of each
line of code. Languages such as Scratch, Alice, and Karel
provide visual feedback by allowing the relevant actors to
perform the actions depicted in the program. Languages such
as Logo and Kojo that employ turtle graphics, visualize the
result as a graphical illustration embodying each command.
However, the extent of this visualization varies from platform
to platform. For example, Scratch can illustrate which line of
code is causing the current actions of the actor, while Karel
has no direct indications as to whether the program being
executed is even the one that was last written [17].

The approach of visualizing the program flow step by step
has been adopted by many modern learning platforms due
to its effectiveness in educating novice learners on simple
program structures and principles. Being able to see each
command executed allows users to gain a better understand-
ing of the meaning behind each step and construct logical
relationships between instructions. Furthermore, it allows
better insight into mistakes in program logic as even a wrong
output is carefully illustrated [12], [45]. Therefore, execution
visibility of an introductory programming language/platform
directly affects novice learners’ intention in using them since
it is a useful concept in aiding the beginners to learn the
concepts more effectively. Additionally, since novice learn-
ers often prefer the learning methodologies to be in visual
mode, visualization of the program flow execution will con-
tribute towards generating a positive attitude towards these
platforms.

B. PERCEIVED EASE OF USE (PEOU)
To identify the perceived ease of use of a programming
language, three main factors as the Grammar of the Pro-
gramming Language, User Interfaces, and Availability of
Resources have been considered. Hence, the programming
languages that have been selected according to the inclusion

88130 VOLUME 9, 2021



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

criteria previously noted are reviewed under these factors to
perceive the behavioral intention to use.

1) THE GRAMMAR OF THE PROGRAMMING LANGUAGE
The grammar of a language consists of two main features,
the syntax and the inherent programming conventions of the
language that should be followed during the coding process.
To master these attributes, a novice learner may require con-
stant practice and effort spanning over a considerable time.
During the early stages of programming, novice learners
struggle to understand, use and memorize the keywords and
other elements of the syntax. Subsequently, these compli-
cations will demotivate the programmers in applying the
concepts to solve problems. This will inevitably act as an
obstacle when learning basic programming principles of the
language [3], [18]. Hence, syntax-based coding issues act
as an immense barrier to programming for most novices.
Therefore, to minimize the overhead of the language syntax
for the novices, most educational programming languages use
simple and short keywords in their language design [5], [36].

There are two types of programming languages depending
on the way the programs are written, i.e., text-based lan-
guages and visual-based languages. Although the majority
of the general-purpose languages are text-based, most of
the educational programming languages tend to lean more
towards visual-based programming [7], [8].

Visual-based languages like Scratch, Blockly, and Alice
use drag and drop functionality on pre-defined build-
ing blocks to create programs. Different attributes of the
blocks like shapes and colors build up the visual grammar
of the language which would play the role of syntax.
Blocks are snapped together to make statements, expres-
sions of the programs [15]. Due to the additional context
regarding the commands and the parameters, most of the
block-based programming language commands can be read
as sentences [18]. It would help novices to better under-
stand what the commands dictate and identify the program
flow.

In text-based languages, programs are generated by typing
the syntax into a code editor. Logo, Karel, and Kojo are
examples of these languages and their syntax is lightly similar
to existing general-purpose text-based languages[13], [36].
However, the keywords used in those languages are concise
and often explicitly state their use in the programming as
well as in general context. However, each line of code typed
by the students must adhere to syntactic constraints of the
corresponding language [18]. Hence, during the initial stages
of coding in text-based languages, constant syntax errors may
become frustrating to the novices. Therefore, to alleviate the
above-mentioned issue faced by students, most text-based
languages introduce a handful of primitive commands con-
taining limited and concise instructions to be used at the
initial stages [49]. Additionally, some of these text-based lan-
guages have introduced twomodes of syntax practices to help
novices gradually transit from simple one-line commands to
complex syntactical programs. In Logo, ‘Immediate mode’

enables the novices to use the primitive set of commands
like Forward, Back, Right, Left, and Clear screen as a single
line and execute them. Once a student masters this level of
complexity, ‘Program mode’ is introduced which enables the
novices to program using a series of commands and execute
the corresponding program [38].

Furthermore, most of the educational language designs are
based on a ‘real’ general-purpose programming language,
hence similarities in the syntax can be noticed. Although
Alice is language independent, as it is built on top of
Python, the grammar is interleaved with several Python
syntax. Alice’s ‘if’ statements are directly drawn from
Python. Similarly, Karel’s syntax is highly identical to that
of Pascal, and Kojo’s grammar is directly derived from
Scala [13], [17], [36].

Syntax of educational text-based languages is composed
of keywords and symbols such as parentheses, curly braces,
and semicolons. However, most of the block-based languages
often forgo the use of these symbols and provide the students
with pre-defined blocks to drag-and-drop [12]. Additionally,
meaningless block connections will not be allowed by the
drag-and-drop system itself, eliminating the possibility of
syntactical errors [15], [49]. Therefore, the novices can solely
focus on resolving semantic errors, logical errors, and grasp-
ing the basic programming concepts. Unfortunately, while
this does seem appealing initially, having no error messages
at all presents its problems as users find it muchmore difficult
to shift into other high-level languages afterward [16], [17],
[36]. Even though error messages often intimidate novices,
their importance is also recognized as debugging and error
handling are important skills to learn for any programmer [3],
[47]. In text-based languages like Karel and Kojo, syn-
tax errors and compile error messages are indicated. This
enables novice programmers to gain a clearer insight into
advanced learning opportunities and concepts in computer
science. Therefore, although visual-based languages strive
to unburden the novices from the syntax errors, educational
text-based languages may assist beginners better when trans-
ferring to ‘real’ programming languages in later stages of
their learning [17], [36].

Considering these language features of the grammar and
syntax of each of the selected programming languages, it can
be noticed that block-based languages show greater support
to delivering key programming concepts and thus, creates
a positive attitude towards the usage of these languages by
beginners. However, block-based languages also omit some
major concepts related to computer programming to increase
the perceived ease of use which creates a negative attitude
towards advanced learning of computer programming and
contradicts the intended behavior of the user to learn basic
programming concepts and principles. In contrast, text-based
languages have lower perceived ease of use due to the possi-
bility of syntax errors and complicated grammar but create
a positive attitude towards learning over time as it fully
supports the long-term intended behavior of delivering key
programming concepts.

VOLUME 9, 2021 88131



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

2) USER INTERFACES
The UI was observed to deliver different approaches to teach
programming in each platform and language. However, many
of these interfaces followed a common structure of support-
ing two main windows for code editing and displaying the
output. Some languages including Scratch, Logo, and Karel
presented this output in the form of graphics and animations
while others like Kojo and Alice presented both a visual com-
ponent and an output terminal for displaying either results
or error messages. Many languages, especially those that
were reliant on visual and block-based coding were noted
to maintain their environment as a micro-world with actors
(entities such as the Scratch Cat, Karel the Robot, and Logo’s
Turtle) that would carry out the commands defined within
each program [17]. The use of actors to visualize the flow of a
computer program has been extremely effective in delivering
concepts, especially to younger audiences [13]. Furthermore,
novices to programming find their fear of coding elimi-
nated by the attractive interfaces and are often encouraged
to explore the micro-world for themselves. However, when
compared with text-based coding environments, it can also
be argued that the visual and block-based components distract
users from the task of ‘real’ programming [18], [19].

With consideration to these factors, it can be noted that
the highly visual nature of the user interfaces and program-
ming environment creates an overall positive attitude towards
the learning of basic programming principles and concepts.
Furthermore, the use of actors and micro-worlds also sup-
ports this and promotes the expected behavior of encouraging
novice learners to participate in computer programming.

3) AVAILABILITY OF RESOURCES
Another important feature to be considered is the avail-
ability of language resources such as active communities
and proper documentation that could support new users to
correctly adopt the language. It is noted that the presence
of detailed beginner-friendly documentation and learning
materials as is available with languages like Scratch, Alice,
and Kojo greatly influence the performance and interest of
novice programmers attempting to self-learn concepts. Many
languages maintain learning materials in the form of wikis,
lessons, textbooks, curriculums, and online videos. Particu-
larly, Scratch, Alice, Kojo, and Logo have a very high repos-
itory of learning materials where some are even available in
multiple languages. Discussion forums and active communi-
ties are also important supporting features towards learning
by novices and these are particularly well-maintained by
popular languages like Scratch and Kojo. Others may have
relatively inactive communities, but the lack of such commu-
nication groups is often compensated by good documentation
in most cases.

Additionally, schools play a major role in programming
education, with many countries introducing basic program-
ming concepts to students at early levels. For example,
in Japan and Singapore, computer programming is a fixed
component of the national school curriculum [44]. The

subject material involved typically covers basic program-
ming concepts including variables, constants, data types and
sequence, selection, and iteration control structures. In oth-
ers, programming is often not integrated at the national
level, but it is optionally taught using the same subject
matter. In many countries including Japan, China, and
Singapore, there is no compulsory programming language
included in the curriculum to deliver concepts [42]–[44].
Hence, the programming environment used can greatly dif-
fer among student groups. However, many schools make
use of various introductory programming environments such
as Scratch, Logo, and Karel to deliver basic concepts to
novice learners [15], [17], [18]. Support for such educational
programming platforms from school curriculums has also
contributed to the popularity of these platforms among novice
programmers.

Hence, it can be determined that the availability of resource
materials to support the learning of a particular programming
language directly supports the goal of easing the delivery
of key programming concepts. Furthermore, it can be noted
that the high availability of such support materials creates a
positive attitude among users with regards to the usage of
the language and promotes the intended behavior of using
the programming language for learning basic concepts and
principles.

V. DISCUSSION
This paper aims to review existing educational program-
ming languages and platforms targeting novice learners and
to identify the main features of those languages that may
affect the learning of key programming principles. Hence,
for the context of this paper, such introductory languages are
broadly categorized into two groups as visual/ block-based
and text-based according to the approach presented to users
for writing computer programs. Furthermore, it was decided
to consider the common language features of program-
ming languages/platforms belonging to these two categories.
As such, several notable features were identified as the
programming concepts and principles included in the lan-
guage, execution visibility, language extensibility, liveness
and tinkerbility, the grammar and syntax of the language, user
interfaces, and the availability of resources.

Each of these noted language features was reviewed under
TAM to identify the effect on the attitude of users and the
behavioral intention to use the programming language in
question. Hence, it was observed that each language feature
differently influenced novice programmers towards the goal
of learning basic programming principles and concepts to var-
ious degrees. A summary of these observations is discussed
in Table 6.

While each language followed its unique approaches to
deliver key concepts to users, each aspect was seen to have
been incorporated to support learning by novices in some
way or another. Hence, the following behaviors of novice
programmers were seen to be considered in the design of
these languages to support ease of learning [1], [4], [45].

88132 VOLUME 9, 2021



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

TABLE 6. Summary of language features according to TAM.

1. Preference for a visually appealing coding environment
for coding over regular text editors.

2. The desire for visual and understandable outputs
regarding familiar scenarios or objects.

3. Preference for simplified syntaxes as opposed to
the complex structures of mainstream programming
languages.

4. Favor minimum interaction with cryptic error mes-
sages, especially syntax errors.

5. Preference for new or complex theories to be taught
in their native language, particularly for non-native
English speakers.

6. Preference to use languages or platforms that have
many learning resources or active communities.

In consideration of these behaviors commonly exhibited
by novice programmers, it was observed that many languages
incorporated highly visual environments, with elements such
as graphics, animations, and storylines to support the teaching
process. Even those languages that expected the user to write
the code themselves were seen to include some form of

visual output to support this behavior. Furthermore, almost all
introductory languages provided extremely simplified syn-
taxes and semantics with limited functionalities [18]. As these
languages and platforms are targeting novice programmers,
it was noted that extensive documentation and reference
materials were also often freely available. Among the fea-
tures considered localization of the languages was noted to
have positive impacts on learning by novices. However, this
concept was not seen to be implemented effectively by many
of the languages considered by this paper.

Additionally, it was noted that some of these tendencies
shown by novices, were further encouraged by these learning
platforms and may have some long-term negative effects
on the users’ learning abilities. For example, users who
grow used to visual environments are often seen to strug-
gle when attempting to shift to high-level mainstream pro-
gramming languages. Their reduced understanding of syntax,
semantics, and error handling was seen to contribute to this
result [17]–[19].

Therefore, considering the observations of this review as
well as past literature, the inclusion of the following language
features in the design of introductory programming languages
and platforms is suggested to capture the advantages and
mitigate the risks thus identified [7], [8], [15], [17]–[19].

1. Text-based language representation as a compulsory
feature (with a block or visual representation depending
on the target audience)

2. Visualize outputs and maintain high execution
visibility.

3. Interaction with errors and debugging with descriptive
error messages suited for the target audience.

4. Simplified syntax and limited functionalities suitable
for the main goal of the language.

5. Language localization support.
6. Beginner-friendly documentations tutorials

A. TRENDS AND RECOMMENDATIONS FOR
FUTURE RESEARCH
The previously discussed results are observed to have direct
implications towards current trends and potential areas of
research in the field of introductory programming languages
and platforms. The existing trends displayed during the devel-
opment of the introductory programming languages and the
possible future areas of research thus identified are further
discussed below.

1) MODERN TRENDS IN INTRODUCTORY
PROGRAMMING LANGUAGES
Considering previous literature, various pros and cons of
both block-based and text-based educational programming
languages have paved the way for the emergence of several
trends with regards to the future directions of these learn-
ing platforms [37], [51], [52]. Two of the more prominent
trends in this area will be further discussed in this section as
follows.

VOLUME 9, 2021 88133



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

FIGURE 4. A simple frame-based program in Greenfoot 3.

2) FRAME-BASED PROGRAMMING
Multiple studies have revealed that the use of block-based
visual languages enhances the delivery of programming
concepts to novice programmers [17], [47]. As a result of
the immense popularity and the positive research results
of block-based programming tools, ‘frame-based program-
ming’, which incorporates the basics of block-based pro-
gramming has emerged [51], [52]. As shown in Fig. 4,
although frames are conceptually similar to blocks, they
provide a better structure to the program than block-based
languages. Furthermore, features such as the ‘frame cursor’
and the single-keypress frame insertion mitigate the over-
head related to the block palette and the drag-and-drop func-
tionality of the block-based languages. Hence, scrolling and
selecting a block category, selecting the desired block out of
the category, and dragging it to the accurate position of the
code can be done using a single keypress. Frame-based pro-
gramming is currently incorporated in Greenfoot 3 [52]. With
future improvements on keyboard support, frame manip-
ulation, frame navigation to enhance program readability,
and structuring, frame-based programming can transcend
text-based programming [52].

3) DUAL MODALITY ENVIRONMENTS
Despite high preference and widespread use, novice pro-
grammers often display reluctance to perceive block-based
languages as ‘real’ programming languages [16], [17].
Hence, novices may struggle to transit from block-based
to conventional text-based languages [36]. To address these
issues and deliver programming concepts more fluently, dual-
modality environments are introduced. They encompass the
interface design features of both block-based and text-based
languages. The novice programmers can choose to program
in either block-based or text-based interfaces depending on
their preference [8], [51]. Languages such as Alice and Logo
have incorporated the dual-modality concept into their lan-
guage designs to give the ‘best of both worlds’ [13], [16].
In programming environments such as Pencil Code, novice
learners are allowed to convert their block-based program into
textual formats and vice-versa [8].

4) RECOMMENDATIONS FOR FUTURE RESEARCH
The field of programming languages is a heavily researched
area. However, the areas concerning educational program-
ming languages and introductory programming platforms to

assist novice learners are emerging topics of research under
this domain. Some of these potential areas and topics of
research are listed below.

1. The effectiveness of using text-based programming
languages with simple and short syntax patterns to
teach core programming concepts to novice learners.

2. The effectiveness of integrating competitive-based
learning techniques and game theory principles to teach
core programming concepts.

3. The effectiveness of using a localized programming
language to deliver core programming concepts.

4. An approach to design a simplified and translatable
introductory programming language.

5. The effectiveness of incorporating a storyline-based
exercise set to enhance the learning experience of
novice programmers.

6. The effectiveness of using interactive program-
ming platforms to promote self-learning in novice
learners.

7. The use of automated feedback of exercises and error
messages in introductory programming languages and
platforms.

VI. LIMITATIONS
One of the major limitations of this review is most of
the reviewed and analyzed literature revolve around the
pre-selected 5 introductory programming languages and plat-
forms, namely Scratch, Alice, Kojo, Karel, and Logo. Since
there are many other introductory programming languages
and platforms available, there may be other educational pro-
gramming languages that were not included in this analy-
sis which may have had important information. However,
to address this issue, the five languages and platforms were
selected based on the popularity among the users and the
number of google articles and research articles available
for these languages. Even though many languages and plat-
forms were excluded in the review, the two metrics used
ensured the languages with the most impact were considered.
Additionally, to counter this limitation, some of the litera-
ture on languages such as Pencil Code, Blockly, Hackety
Hack, and Flowgorithm which displayed interesting simi-
larities to the main five languages were also included in
the review. Therefore, the writers are satisfied with the
inclusion criteria for this article since the most effective lan-
guages and their features which encompass a diverse range
of introductory programming languages were empirically
analyzed.
Additionally, due to the exclusive inclusion of five intro-

ductory programming languages and platforms and the exis-
tence of multiple different keywords associated with the topic
of review, there may be articles and publications that were
excluded. To counter this limitation, only the most recent
published literature was chosen for the process of review.
Therefore, both the past and the most recent findings regard-
ing the topic of introductory programming languages were
analyzed and reviewed.

88134 VOLUME 9, 2021



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

VII. CONCLUSION
At present, many students from various backgrounds and
knowledge levels attempt to learn computer programming
and many introductory level programming languages that
have been designed to support their learning process. This
paper reviews the different language features incorporated
within such languages and how they affect the learning rates
of novices and their acceptance towards the usage of an intro-
ductory programming language according to TAM. Hence,
the following conclusions were arrived upon, following the
observations of the review conducted.

1. Visual-based coding environments are more suitable
for teaching concepts to beginners of younger age cat-
egories, but text-based representation is necessary to
support long-term learning and shifting to mainstream
high-level programming languages.

2. Simplified syntax and limited functionality are opti-
mal for better understanding. However, simplification
should maintain some semblance of logical constructs,
syntax, semantics, and error management.

3. Writing computer programs in one’s native language is
favorable for delivering concepts to novices effectively,
but knowledge of English keywords is also necessary
for long-term sustainability.

4. The presence of beginner-friendly documentation and
user guides as well as an environment that supports
self-learning by novices is highly influential to effec-
tive learning interest building.

Further work of this study will entail more in-depth anal-
ysis into the approaches to design a simplified and translat-
able introductory programming language aimed at novices,
the integration of competitive learning theories in delivering
basic programming concepts, and the effectiveness of sim-
plified and localized programming languages to learning by
novices.

REFERENCES
[1] A. G. S. Raj, K. Ketsuriyonk, J. M. Patel, and R. Halverson, ‘‘Does native

language play a role in learning a programming language?’’ in Proc. 49th
ACM Tech. Symp. Comput. Sci. Educ., Feb. 2018, pp. 417–422.

[2] S. Dasgupta and B. M. Hill, ‘‘Learning to code in localized programming
languages,’’ in Proc. 4th ACM Conf. Learn. Scale, Apr. 2017, pp. 33–39.

[3] P. K. Sevella and Y. Lee, ‘‘Determining the barriers faced by novice
programmers,’’ Int. J. Softw. Eng., vol. 4, no. 1, pp. 10–22, 2013.

[4] P. Denny, A. Luxton-Reilly, E. Tempero, and J. Hendrickx, ‘‘Understand-
ing the syntax barrier for novices,’’ in Proc. 16th Annu. Joint Conf. Innov.
Technol. Comput. Sci. Educ. (ITiCSE), Jul. 2011, pp. 208–212.

[5] C. Malliarakis, M. Satratzemi, and S. Xinogalos, ‘‘CMX: The effects of an
educational MMORPG on learning and teaching computer programming,’’
IEEE Trans. Learn. Technol., vol. 10, no. 2, pp. 219–235, Apr. 2017.

[6] W. S. Burleson, D. B. Harlow, K. J. Nilsen, K. Perlin, N. Freed,
C. N. Jensen, B. Lahey, P. Lu, and K. Muldner, ‘‘Active learning envi-
ronments with robotic tangibles: Children’s physical and virtual spatial
programming experiences,’’ IEEE Trans. Learn. Technol., vol. 11, no. 1,
pp. 96–106, Jan. 2018.

[7] L. Moors, A. Luxton-Reilly, and P. Denny, ‘‘Transitioning from block-
based to text-based programming languages,’’ inProc. 6th Int. Conf. Learn.
Teach. Comput. Eng. (LaTICE), Apr. 2018, pp. 57–64.

[8] D. Weintrop and N. Holbert, ‘‘From blocks to text and back: Programming
patterns in a dual-modality environment,’’ in Proc. Conf. Integr. Technol.
Into Comput. Sci. Educ. (ITiCSE), Jan. 2018, pp. 633–638.

[9] A. Black, K. B. Bruce, and J. Noble, ‘‘Panel: Designing the next edu-
cational programming language,’’ in Proc. ACM Int. Conf. Companion
Object Oriented Program. Syst. Lang. Appl. Companion (SPLASH), 2010,
pp. 201–203.

[10] P. J. Guo, ‘‘Non-native english speakers learning computer programming:
Barriers, desires, and design opportunities,’’ in Proc. CHI Conf. Hum.
Factors Comput. Syst., 2018, pp. 1–14.

[11] E. Mehmood, A. Abid, M. S. Farooq, and N. A. Nawaz, ‘‘Curriculum,
teaching and learning, and assessments for introductory programming
course,’’ IEEE Access, vol. 8, pp. 125961–125981, 2020.

[12] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
‘‘The scratch programming language and environment,’’ACMTrans. Com-
put. Educ., vol. 10, no. 4, pp. 1–15, Nov. 2010.

[13] R. Pausch and W. Dann, ‘‘ALICE: A 3-D tool for introductory program-
ming concepts,’’ J. Comput. Sci. Colleges, vol. 15, no. 5, pp. 107–116,
2000.

[14] J. Cardenas-Cobo, A. Puris, P. Novoa-Hernandez, J. A. Galindo,
and D. Benavides, ‘‘Recommender systems and scratch: An integrated
approach for enhancing computer programming learning,’’ IEEE Trans.
Learn. Technol., vol. 13, no. 2, pp. 387–403, Apr. 2020.

[15] A. Ebrahimi, S. Geranzeli, and T. Shokouhi, ‘‘Programming for children:
Alice and scratch analysis,’’ in Proc. 3rd Int. Conf. Emerg. Trends Comput.
Inf. Technol. (ICETCIT), Nov. 2013, pp. 106–115.

[16] D. H. Clements and J. S. Meredith, ‘‘Research on logo: Effects and
efficacy,’’ J. Comput. Child. Educ., vol. 4, no. 4, pp. 263–290, 1992.

[17] A. Ruf, A. Mühling, and P. Hubwieser, ‘‘Scratch vs. karel: Impact on learn-
ing outcomes and motivation,’’ in Proc. 9th Workshop Primary Secondary
Comput. Educ. (WiPSCE), 2014, pp. 50–59.

[18] C.M. Lewis, ‘‘How programming environment shapes perception, learning
and goals: Logo vs. scratch,’’ in Proc. 41st ACM Tech. Symp. Comput. Sci.
Educ. (SIGCSE), 2010, pp. 346–350.

[19] O. Meerbaum-Salant, M. Armoni, and M. Ben-Ari, ‘‘Habits of program-
ming in scratch,’’ in Proc. 16th Annu. Joint Conf. Innov. Technol. Comput.
Sci. Educ. (ITiCSE), 2011, pp. 168–172.

[20] B. W. Wirtz and V. Göttel, ‘‘Technology acceptance in social media:
Review, synthesis and directions for future empirical research,’’ J. Elec-
tron. Commer. Res., vol. 17, no. 2, pp. 97–115, 2016.

[21] F. D. Davis, ‘‘Perceived usefulness, perceived ease of use, and user accep-
tance of information technology,’’ MIS Quart. Manage. Inf. Syst., vol. 13,
no. 3, pp. 319–339, 1989.

[22] W. M. Al-Rahmi, N. Yahaya, A. A. Aldraiweesh, M. M. Alamri,
N. A. Aljarboa, U. Alturki, and A. A. Aljeraiwi, ‘‘Integrating technology
acceptance model with innovation diffusion theory: An empirical inves-
tigation on students’ intention to use E-learning systems,’’ IEEE Access,
vol. 7, pp. 26797–26809, 2019.

[23] S. A. Salloum, A. Q. M. Alhamad, M. Al-Emran, A. A. Monem, and
K. Shaalan, ‘‘Exploring students’ acceptance of E-learning through the
development of a comprehensive technology acceptance model,’’ IEEE
Access, vol. 7, pp. 128445–128462, 2019.

[24] V. Venkatesh and H. Bala, ‘‘Venkatesh_et_al-2008-decision_sciences,’’
J. Decis. Sci. Inst., vol. 39, no. 2, pp. 273–315, 2008.

[25] V. Venkatesh and F. D. Davis, ‘‘A theoretical extension of the technology
acceptance model: Four longitudinal field studies,’’ Manage. Sci., vol. 46,
no. 2, pp. 186–204, Feb. 2000.

[26] A. Al-Aulamie, ‘‘Enhanced technology acceptance model to explain and
predict learners’ behavioural intentions in learning management systems,’’
Univ. Bedfordshire, London, U.K., Tech. Rep., 2013, pp. 1–124.

[27] A. N. Pears et al., ‘‘A survey of literature on the teaching of introductory
programming Arnold,’’ in Proc. 12th Annu. Conf. Innov. Technol. Comput.
Sci. Educ., Dundee, Scotland, vol. 1846, 2018, pp. 204–223.

[28] A. Luxton-Reilly, I. Albluwi, B. A. Becker, M. Giannakos, A. N. Kumar,
L. Ott, J. Paterson, M. J. Scott, J. Sheard, and C. Szabo, ‘‘A review
of introductory programming research 2003–2017,’’ in Proc. 23rd Annu.
ACM Conf. Innov. Technol. Comput. Sci. Educ., Jul. 2018, pp. 342–343.

[29] S. M. Salleh, Z. Shukur, and H. M. Judi, ‘‘Analysis of research in pro-
gramming teaching tools: An initial review,’’ Procedia-Social Behav. Sci.,
vol. 103, pp. 127–135, Nov. 2013.

[30] A. Gomes and A. Mendes, ‘‘A teacher’s view about introductory program-
ming teaching and learning: Difficulties, strategies and motivations,’’ in
Proc. IEEE Frontiers Educ. Conf. (FIE), Oct. 2014, pp. 1–8.

[31] T. Crow, A. Luxton-Reilly, and B.Wuensche, ‘‘Intelligent tutoring systems
for programming education: A systematic review,’’ inProc. 20th Australas.
Comput. Educ. Conf. (ACE), 2018, pp. 53–62.

VOLUME 9, 2021 88135



P. Perera et al.: Systematic Mapping of Introductory Programming Languages

[32] J. Sorva, V. Karavirta, and L. Malmi, ‘‘A review of generic program visu-
alization systems for introductory programming education,’’ ACM Trans.
Comput. Educ., vol. 13, no. 4, pp. 1–64, Nov. 2013.

[33] A. S. Kim and A. J. Ko, ‘‘A pedagogical analysis of online coding tuto-
rials,’’ in Proc. ACM SIGCSE Tech. Symp. Comput. Sci. Educ. (ITiCSE),
Mar. 2017, pp. 321–326.

[34] M. Banerjee, M. Capozzoli, L.McSweeney, and D. Sinha, ‘‘Beyond kappa:
A review of interrater agreement measures,’’ Can. J. Statist., vol. 27, no. 1,
pp. 3–23, Mar. 1999.

[35] S. Simon, A. Carbone, M. de Raadt, R. Lister, M. Hamilton, and J. Sheard,
‘‘Classifying computing education papers: Process and results,’’ in Proc.
4th Int. Workshop Comput. Educ. Res. (ICER), 2008, pp. 161–171.

[36] B. Regnell and L. Pant, ‘‘Teaching programming to young learners using
Scala and Kojo,’’ LTHs Pedagog. Inspirationskonferens, vol. 8, p. 17,
Dec. 2014.

[37] D. Weintrop and U. Wilensky, ‘‘How block-based, text-based, and hybrid
block/text modalities shape novice programming practices,’’ Int. J. Child-
Comput. Interact., vol. 17, pp. 83–92, Sep. 2018.

[38] B. Pardamean, E. Evelin, and H. Honni, ‘‘The effect of logo programming
language for creativity and problem solving,’’ in Proc. 10th WSEAS Int.
Conf. E-Activities, Jun. 2014, pp. 151–156.

[39] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and
Y. Kafai, ‘‘Scratch: Programming for all,’’ Commun. ACM, vol. 52, no. 11,
pp. 60–67, 2009.

[40] M. Hanus, H. Kuchen, J. J. Moreno-Navarro, J. Votano, M. Parham, and
L. Hall, ‘‘Curry: A truly functional logic language,’’ inProc. Workshop Vis.
Future Log. Program. (ILPS), Mar. 2013, pp. 95–107.

[41] P. Van Roy, S. Haridi, C. Schulte, and G. Smolka, ‘‘A history of the OZ
multiparadigm language,’’ Proc. ACM Program. Lang., vol. 4, pp. 1–56,
Jun. 2020.

[42] S. Çapuk, ‘‘ICT integration models into middle and high school curricu-
lum in the USA,’’ Procedia-Social Behav. Sci., vol. 191, pp. 1218–1224,
Jun. 2015.

[43] W. Guo and Z. Yang, ‘‘A study of integration ICT into curriculum in
China’s developed areas—A case of Foshan city,’’ in Proc. 4th Int. Conf.
Manage., Educ., Inf. Control (MEICI), 2016, pp. 594–598.

[44] L. Sturman, ‘‘International comparison of computing in schools,’’ Nat.
Found. Educ. Res., Slough, U.K., Tech. Rep., 2011.

[45] C. Piech, M. Sahami, D. Koller, S. Cooper, and P. Blikstein, ‘‘Modeling
how students learn to program,’’ in Proc. 43rd ACM Tech. Symp. Comput.
Sci. Educ. (SIGCSE), 2012, pp. 153–158.

[46] M. S. Farooq, A. Abid, S. A. Khan, M. A. Naeem, A. Farooq, K. Abid,
and M. Shafiq, ‘‘A qualitative framework for introducing programming
language at high school,’’ J. Qual. Technol. Manage., vol. 8, no. 2,
pp. 135–151, 2012.

[47] M. Hjorth, ‘‘Strengths and weaknesses of a visual programming language
in a learning context with children,’’ School Comput. Sci. Commun.,
Sweden, Tech. Rep., 2017.

[48] M. Jancheski, ‘‘Improving teaching and learning computer programming
in schools through educational software,’’OLYMPIADS Informat., vol. 11,
no. 1, pp. 55–75, Jul. 2017.

[49] S. M. Biju, ‘‘Taking advantage of Alice to teach programming concepts,’’
E-Learn. Digit. Media, vol. 10, no. 1, pp. 22–29, Feb. 2013.

[50] L. Pant, ‘‘Introduction to programming with Kojo,’’ Tech. Rep., Aug. 2018.
[51] N. C. C. Brown, J. Mönig, A. Bau, and D. Weintrop, ‘‘Panel: Future

directions of block-based programming,’’ in Proc. 47th ACM Tech. Symp.
Comput. Sci. Educ., Feb. 2016, pp. 315–316.

[52] M. Kölling, N. C. C. Brown, and A. Altadmri, ‘‘Frame-based editing:
Easing the transition from blocks to text-based programming,’’ in Proc.
Workshop Primary Secondary Comput. Educ., vols. 9–11, 2015, pp. 29–38.

PIUMI PERERA is currently a Research Scholar
with the Faculty of Information Technology, Uni-
versity of Moratuwa, Sri Lanka. She is a published
author at a reputed international conference and
represented the faculty in several international
programs, including the Huawei Seeds for the
Future program in her student years. Her current
research interests include visual-based educational
programing environments and native language
programing education.

GEETHYA TENNAKOON is currently a Research
Scholar with the Faculty of Information Tech-
nology, University of Moratuwa, Sri Lanka. She
is also acting as a Software Engineer with the
Graduate Program offered by the London Stock
Exchange Group. Her research interests include
compiler theory and programing languages.

SUPUNMALI AHANGAMA (AssociateMember,
IEEE) received the Ph.D. degree in informa-
tion systems from the National University of
Singapore. She is currently a Senior Lecturer with
the Department of Information Technology, Uni-
versity of Moratuwa, Sri Lanka. She also holds the
position as the Director of undergraduate studies,
Faculty of Information Technology, University of
Moratuwa. Her research interests include data sci-
ence, design science, information systems, and

e-education. She has presented her work and served as a Reviewer in
numerous top-tier forums, including e-Service Journal, Information Sys-
tems Frontiers, International Conference on Information Systems (ICIS),
Pacific-Asia Conference on Information Systems (PACIS), the Workshop on
Information Technologies and Systems (WITS), and HCI International.

RANGANA PANDITHARATHNA is currently
a Researcher with the Faculty of Information
Technology, University of Moratuwa, Sri Lanka,
focused on game theory, competitive learning, and
education.

BUDDHIKA CHATHURANGA is currently a
Research Scholar with the Faculty of Informa-
tion Technology, University of Moratuwa, Sri
Lanka. He participated in GSoC 2020 contributing
to Jenkins and presented at the DevOps World
2020 conference. His current research interests
include compiler theory and theory of programing.

88136 VOLUME 9, 2021


