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ABSTRACT The tillering period of rice is the crucial phenological period for the cultivation of high-quality
and high-yield rice. Currently, human inspection is mainly used for identification, but it is time-consuming,
laborious, and prone to mistakes. To efficiently and accurately identify the start date of rice tillering in the
monitoring area, this paper proposed a new algorithm called rice tiller period recognition combining principal
component analysis (PCA) and a support vector machine (SVM) (RTR-CPS). This algorithm characterizes
the problem of identifying the rice tiller stage as a binary classification problem of rice either entering or
not entering the tiller stage. To improve the image segmentation quality of traditional visual segmentation
methods, the algorithm was designed to extract five image feature values to describe the rice tiller stage
in a multi-featured way, reducing the impact of single feature value bias on the identification of the rice
tiller stage. To improve the performance of the rice tiller stage recognition model, the algorithm selects ideal
principal features in limited sample data by the PCA algorithm and optimizes SVM classification model
hyper-parameters by combining 5-fold cross-validation. The experimental results showed that the accuracy
of the algorithm for identifying the tillering date of potted rice was as high as 97.76%, which is significantly
higher than other competitive methods, and the maximum error between the detection results and human
inspection of potted rice tillering period was no more than 2 days. The rice tillering stage recognition
model was applied to the field, and the images of field rice planted by two different methods were tested,
which verified that the algorithm proposed in this paper is generalizable. These results fully demonstrate the
feasibility and superiority of the algorithm in this paper.

INDEX TERMS Tiller recognition, rice phenology, machine learning, principal component analysis, support
vector machine.

I. INTRODUCTION
The improvement of rice yield and quality has always been
the focus of strategic agricultural development. Observation
of the rice development period is significant to effectively
improve the growth management of rice. Each development
period’s time record can guide farmers to engage in fertil-
ization, irrigation, pest control, and other agricultural activi-
ties to cultivate high-yield and high-quality rice [1]. Among
them, the rice tillering period is accompanied by the growth
stages of roots, stems, and leaves. It is the main period of
rice vegetative growth and a critical development period that
determines the number of rice panicles [2]. According to the
‘‘Regulations for Agricultural Meteorological Observations’’
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(hereinafter referred to as the ‘‘standards’’), a plant is con-
sidered to have entered a developmental stage when a devel-
opmental feature appears. The morphological feature that
defines the tillering stage of rice is the leaf sheath revealing
the tip of the newly formed tiller, and the tip of the leaf
is approximately 0.5-1.0 cm in length. The rice population
enters the developmental period, determined by the observed
total number of plants entering the developmental stage as
a percentage of the number of plants, recorded as a whole
number, the decimal rounded off, the first time greater than
or equal to 10% for the beginning of development [3].

The observation of the tillering stage of rice has been
mainly achieved by human inspection. Du et al. [4] and
Chen [5] indicated that the observation and recording of rice
developmental stages requires the observer to follow ‘‘stan-
dard’’ criteria carefully and to have some basic knowledge
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of agriculture, but because there is no fixed reference sam-
ple, the actual observation is somewhat subjective, and the
recording of developmental stages often varies from person
to person. Huang and Huang [6] and Jiang et al. [7] revealed
that the total number of plants to be observed at the rice
tillering stage should be 100, that is, 25 plants per site, and
that observations are generally made every two days, on alter-
nate days or on both days. According to the ‘‘standards’’
and related literature, the human inspection method is based
on visual and instrumental measurements (e.g., the cursor
caliper to measure the leaf tip length) in the field to calculate
the percentage of plants reaching the developmental period
as defined and described in the ‘‘standards’’. In long-term
observation practice, human inspection methods are time-
consuming, labor-intensive and prone to large human errors.
Human inspection also causes contact damage and results
in discontinuous observations. Therefore, traditional human
inspection methods barely meet the needs of agricultural
modernization, and there is an urgent need to study automatic
observation methods of the rice tillering stage to reduce
labor costs, improve accuracy and real-time observations, and
avoid damage to the plant.

Modern agricultural production relies on automatic obser-
vation of crop development. Automatic observation methods
are mainly divided into two categories based on the sen-
sor platform used. The first category is the remote sens-
ing (RS)monitoringmethod, including satellite platforms and
unmanned armed vehicle (UAV) platforms. Remote sensing
techniques are suitable for macroscopic monitoring of crop
growth status [8] and crop classification identification [9].
at large scales. Several studies have demonstrated the poten-
tial of multi-temporal remote sensing data for monitoring
the phenology of crops, such as rice [10]–[14], wheat [15]
and forests [16]. The second category uses digital cameras
to monitor and continuously obtain sequential images of the
ground. These platforms use image processing methods to
reflect the phenotypic characteristics of vital crop develop-
mental periods [17], [18].

Although there has been some research on RS for detecting
crop development, there is no substitute for ground-based
observations of crop development; for example, observing
gradual crop development, such as rice tillering, is difficult
to achieve using remote sensing technology. RS technol-
ogy has a long imaging distance and low resolution and
is suitable for large-scale analysis of crop growth; how-
ever, RS technology is unsuitable for continuous observa-
tion. In contrast, daily ground observations can continuously
observe the growth status of crops in a small area [19].
In the crop growth process, key crop development periods
can be determined by observing changes in the phenotypic
characteristics of the crop. For example, Yu et al. [20] used
a novel crop segmentation method to automatically detect
the seedling and three-leaf corn stages. Hufkens et al. [21]
and Zhu et al. [22] used smartphones to take farmland images
and used computer vision technology to detect when wheat
heading began. Guo et al. [23] used a time series (every

5 minutes from 8:00 to 16:00) of RGB images obtained in
the field to automatically characterize rice flowering dynam-
ics. Bai et al. [24] used a support vector machine (SVM)
and diffusion-convolutional neural networks (DCNNs) to
distinguish image patches of rice ears. The number of
spikes detected determined the heading date of the rice.
Han et al. [25] used images from a handheld camera to detect
rice phenology in real time through convolutional neural
networks (CNNs).

Accurately distinguishing the rice in the monitored area
from the background before the phenotypic features of the
rice tillering stage are translated into image features is
a key aspect of effectively identifying the tillering stage.
Vision-based segmentation of green crop images is mainly
based on thresholding [26], [27] clustering [28], [29] and
edge [30], [31] segmentation algorithms. Although traditional
vision image segmentation algorithms do not have the uni-
versality of deep learning segmentation algorithms, they can
reduce the cost of data annotation and are simpler to design
for specific problems.

After rice leaf segmentation was completed, the pheno-
typic characteristics of the rice tillering stage were trans-
formed into image features to determine whether the rice
had reached the tillering period. Currently, the essence of
identifying the rice tillering period is that the rice has not
entered the tillering stage or the binary classification problem
under the mode of entering the tillering stage. Therefore, it is
appropriate to characterize the rice tillering stage identifica-
tion problem as a binary classification problem.

Image classification is a basic task in computer vision.
With the development of computer vision technology, image
classification using traditional machine learning and deep
learning algorithms has become a popular research focus.
This is because compared with earlier traditional image clas-
sification methods [32], [33], image classification methods of
traditional machine learning and deep learning use computers
to analyze data, find rules from known data, and analyze
unknown data using these rules [34]. The difference is that
deep learning image classification algorithms use convolu-
tional neural networks (CNNs) to automatically extract image
features [35]–[37], while traditional machine learning algo-
rithms require prior knowledge to self-construct and extract
image features and then use the classifier to obtain classifi-
cation results [38]–[41]. However, the deep learning model
with a small amounts of data is very easy to over-fitting and
performs poorly. This is because the deep learning algorithm
can be regarded as a feature learner, which requires a large
amount of data to adequately learn the features contained in
the image [42]–[44]. The number of rice images obtained
in this paper is limited, and no publicly available data have
been found; thus, to a certain extent, application research of
the deep learning model is difficult. Therefore, this study
proposes a new method to identify rice tiller period based
on domain knowledge for feature modeling, which enables
high-precision identification of the rice tiller period with a
limited number of samples.
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This article is organized as follows: This paper introduces
the image acquisition method and automatic recognition
algorithm of rice tillering period in section II (materials and
methods). This section introduces a two-stage rice leaf image
segmentation method based on the visual image segmenta-
tion technique. Based on this, multiple image features were
extracted to describe the rice tiller period, and data dimen-
sion reduction was performed through the PCA algorithm to
reduce the number of features and select the best features.
Then, the best features and optimized SVM model were
integrated to construct the rice tillering period identification
model. In section III, based on the image sequence before and
after the rice tillering period, the constructed rice tilling stage
recognition model was tested and analyzed. Experiments had
fully proved the superiority and generalization of the algo-
rithm proposed in this paper. Finally, the summary and the
outlook for future research work in section IV.

II. MATERIALS AND METHODS
A. IMAGE DATA ACQUISITION
In this paper, the selected rice variety was ‘Jinnongsimiao’.
Rice was planted in pots with a diameter of approximately
40 cm. Seedlings were planted in three holes in each pot,
and the seedlings were separated by approximately 10-12 cm.
A total of 18 pots of rice were planted in the experiment,
with the same interval and density of planted rice in each pot.
However, the pots were divided into two areas and monitored
by two cameras on the left and right. The 9 pots of rice in
each monitored area were arranged in 3 rows and 3 columns,
simulating a block of real rice fields.

The nitrogen level of rice in both monitoring areas was
N180, which is within the normal range for rice grown at
nitrogen levels. The video camera model was a Hikvision
DS-2DC4420IW-D smart dome (the camera can adjust the
scope of the monitoring area by adjusting the focus), both
fixed on a beam 2.5 m above the ground. Only 9 pots
of rice were placed in the field of view of each camera
for monitoring because more pots would be beyond the
field of view. There were basically no differences between
the images captured by the two cameras, which were set
up to increase the data set and help improve the perfor-
mance of the training model. In addition, when testing,
capturing images on two cameras is equivalent to repeat-
ing the experiment during the same period, which can ver-
ify the reliability of the results and reduce experimental
error. The specific laboratory equipment and site layout are
shown in Figure. 1.

Time-lapse shooting of the above-potted rice before and
after the late rice tillering period was carried out for the two
phases in 2020 (July 22nd-August 02 for the first phase,
October 23rd-November 3rd for the second phase). The cap-
ture time was set to take an image on the hour between
8:00-17:00 every day, and images were automatically saved
to the network hard disk. The size of each captured image
was 1920 × 1080 pixels, stored in JPG format. During the
experiment, four time series images were obtained (the first

FIGURE 1. The laboratory equipment and site layout in this study.

phase of the left camera was sequence 1, the second phase of
the left camera was sequence 2, the first phase of the right
camera was sequence 3, and the second phase of the right
camera was sequence 4). There were 120 images in each
phase, with a total of 480 images.

B. RTR-CPS ALGORITHM DESCRIPTION
Rice tiller period recognition combining PCA and SVM
(RTR-CPS) algorithmmainly includes four stages: a two-step
method to accurately segment rice leaves, extraction of
tillering stage feature values, construction of rice tillering
stage detection models, and identification of the rice tillering
period. The RTR-CPS algorithm flow is shown in Figure. 2.

Stage 1: A two-stage image segmentation method based
on color features was designed. First, the original image was
roughly segmented to eliminate the background area with
a large color difference from the rice leaves to obtain an
image with only rice leaves andmoss. Second, the image with
only rice leaf was obtained by further fine segmentation to
eliminate moss.

Stage 2: Multiple feature values characterizing the rice
tillering stage were extracted. Extraction of multiple feature
values was performed based on binary images of all rice
leaves: leaf coverage, maximum connected area, number of
connected points and number of trigeminal points and end-
points of the skeleton. These feature values were prepro-
cessed together to form sample data that were used to train
or test the model.

Stage 3: An effective useful rice tiller stage detectionmodel
was established by combining principal component analy-
sis (PCA) and the SVM algorithm. The necessary steps of
the detection model were as follows:

• The normalized raw sample data were randomly divided
into training and test sets, with 70% of the images
(336 images) being randomly selected as the training set
and the remaining 30% (144 images) being randomly
selected as the test set.

• PCA dimensionality reduction was performed on the
sample data to calculate the principal component matrix
and the principal component contribution rate.
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FIGURE 2. The algorithm flow chart.

• The principal element feature combinations were
selected according to the principle of increasing cumu-
lative contribution rates to optimize the SVM classifica-
tion model hyper-parameters.

• Ideal principal element combinations were selected
using the training set to build a rice tillering stage detec-
tion model.

• Testing was performed using the test set, and the results
were analyzed and evaluated.

Stage 4: Online continuous acquisition of time-series-based
rice images was conducted. The average feature value of all
images per day was calculated and fed into the rice tiller stage
detector for rice tiller period identification, and the start date
of the rice tiller stage was the output.

C. THE TWO-STAGE IMAGE SEGMENTATION METHOD
1) COARSE SEGMENTATION WAS PERFORMED BASED ON
THE IMPROVED EXCESS GREEN FEATURE
When segmenting crop plants from the background, differ-
ences in color characteristics can be used. Under different
lighting conditions, the R, G, and B values of each pixel of
the RGB image will also change accordingly, so the RGB
component values cannot be used directly for segmentation.
Using simple linear combinations, such as the excess green
(ExG=2G-R-B) feature to form relative color factors, can sig-
nificantly reduce the impact of light intensity or shadows and
is often used to segment green crops and backgrounds [45].

In this study, the background of rice leaves included the
ground, the flowerpot, soil, the water surface, shadows, and
moss. Except for moss, the color information of other back-
ground objects and the leaf surface are quite different. The
threshold segmentation method of the excess green feature is
considered to eliminate other background objects. However,

because the rice leaf surface is thin and the background infor-
mation is complex, the traditional ExG feature segmentation
effect is not ideal. The segmentation result is much larger than
the rice area in the original image. Many experiments have
revealed that when the G coefficient is different, the results
of image segmentation are very different, so segmentation
effect analysis shows that if the segmentation result is larger
than the rice area in the original image, it is under-segmented.
The coefficient should be reduced until a particular area of
the rice leaf surface in the original image disappears or is
divided into two or more areas (red circle mark), which is
called over-segmentation. The results show that the third test
is the best, and the G coefficient is 1.6. As shown in Figure 3,
the improved ExG feature image can sufficiently suppress the
background information and preserve the foreground rice leaf
surface details.

2) FINE SEGMENTATION WAS PERFORMED BASED ON
K-MEANS CLUSTERING
The region of the original image after rough segmentation
contains background moss and the rice leaf surface in the
foreground (Fig. 4a), which needs further fine segmentation
to extract the rice leaf surface. In this study, a method of
rice leaf surface extraction in LAB color space was pro-
posed. The image was transformed from RGB space to LAB
space (Fig. 4b), and A-B components were extracted. The
K-means clustering algorithm combined with the histogram
peak number was used to segment the image, which can seg-
ment the moss (Fig. 4e) and the rice leaf (Fig. 4f) to achieve
more accurate image segmentation. In this study, the default
Euclidean distance of the K-means clustering algorithm was
used as the similarity calculation method. The peak partition
method of the A-B component histogram (Fig. 4c) was used

86846 VOLUME 9, 2021



Y. Zhang et al.: Automatic Identification Algorithm of Rice Tiller Period Based on PCA and SVM

FIGURE 3. Coarse segmentation for removing background.

FIGURE 4. Fine segmentation processing. (a) RGB image after rough segmentation; (b) LAB image after rough segmentation; (c) A-B
component histogram; (d) image marked with clustering index; (e) background moss after fine segmentation; (f) foreground rice leaf
surface after fine segmentation.

to select the cluster number k as 3, and the pixels were
marked with a cluster index (Fig. 4d). Figure 4 shows the
K-means clustering segmentation process based on the A-B
color space.

D. EIGENVALUE EXTRACTION FOR THE RICE TILLERING
STAGE
Rice tiller means that new tiller leaf tips emerge in the leaf
sheath after the rice turns green. The most apparent feature
of rice entering the tillering period is the increase in stems
and leaves caused by tillering. Through comparative anal-
ysis of the rice leaf image segmented before and after rice
tillering, the coverage of the rice leaf surface in the image
will roughly increase with the growth and development of the
rice, especially when it enters the tillering period. This is a

relatively intuitive rice tiller characteristic. However, the rice
image segmentation algorithm proposed in this paper cannot
eliminate illumination, which makes the rice leaf coverage
fluctuate. Therefore, this paper selected more image features
to describe rice tillers and has reduced the influence of the
deviation of a single feature on rice tiller identification.

The specific methods of image feature extraction were as
follows. First, the connected regions of the finely segmented
binary image were labeled. Then, the area threshold method
was used to remove the smaller area of the noise to obtain
the final image segmentation result. Moreover, the maxi-
mum connected region area and the number of connected
regions were calculated as the rice tiller stage feature values.
These two feature values can reflect the adhesion between
plants during rice growth. Conversely, to compensate for the
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FIGURE 5. Pearson correlation coefficient heat map.

influence of illumination changes on under-segmentation or
over-segmentation of the edge of rice leaves in the image,
the skeleton binary image of the final segmentation result
was extracted using the classic thinning algorithm [46]. Then,
the number of trigeminal points and the number of endpoints
in the skeleton binary image were calculated, which were also
used as the feature values for detecting the rice tiller stage.
The trigeminal point refers to the point on the skeleton that
satisfies the 3 × 3 neighborhood with two or more bending
points, which can reflect the intersection of rice leaves. The
endpoint refers to a pixel point on the skeleton branch, which
is the tip and tail of the rice leaf, reflecting the number of
leaves.

E. CONSTRUCTING A RICE TILLER DETECTION MODEL
1) FEATURE VALUE PREPROCESSING AND CORRELATION
ANALYSIS WERE CONDUCTED
In this paper, the detection problem of the rice tillering period
is transformed into a two-classification problem, and five fea-
ture values of trigeminal points, endpoints, coverage, maxi-
mum connected area, and connected number are extracted for
each rice image before and after the tillering period. To reduce
the impact of rice planting density and image subtitles on the
classification algorithm, we divided the feature values of the
subsequently obtained rice images by the feature values of
the first collected image for preprocessing.

In general, the number of training samples increased
exponentially with increasing feature dimensions. Otherwise,
over-fitting occurred. However, the number of samples for
rice tillering period detection based on four time series
images was limited. When the number of features exceeds
a certain threshold, the performance of the model may be
affected. Figure 5 shows the correlation detection matrix
diagram of the feature values extracted from the rice image.
The Pearson correlation coefficients in the graph were all
higher than 0.8, and the feature information contained from
the high correlation feature values was also highly similar.
Although the features herein were related to class labels, there
was noise and redundancy. In this case, a data dimension

reduction method was needed to reduce the number of fea-
tures, reduce noise and redundancy, and reduce the possibility
of over-fitting.

2) DATA DIMENSIONALITY REDUCTION PROCESSING WAS
CONDUCTED BASED ON THE PCA ALGORITHM
The purpose of using PCA dimensionality reduction in this
paper was to map the original 5-dimensional feature variables
into new orthogonal k-dimensional features (where k<5).
The new feature data obtained after the PCA dimension-
ality reduction process reduced the information relevance
and redundancy of the original feature variables. The new
k-dimensional features are called principal elements and take
the form shown in the system of linear Eq. (1).

F1 = a11X1 + a12X1 + . . . a15X5
F2 = a21X1 + a22X1 + . . . a25X5
. . . . . .

Fk = ak1X1 + ak2X1 + . . . ak5X5

(1)

where F1 represents the first principal component formed by
the first linear combination of the original feature variables
(X1...,X5). Generally, the first principal component contains
the largest amount of information. If the first principal com-
ponent is not sufficient to represent the information of the
original 5 feature variables, then the second principal com-
ponent is considered, and so on. The principal components
are independent of each other. The determination of k in F1,
F2...Fk is determined by the cumulative contribution rate of
variance in Eq. (2). Generally, when G(k) > 85%, it can suf-
ficiently reflect the information of the original characteristic
variable, corresponding to the first k principal components.

G(k) =
∑k

i=1
λi

/∑5
j=1 λj

(2)

where λi (i=1...,k) is the eigenvalue of the first k principal
components of the equation system, and the corresponding
eigenvector matrix is called the dimensionality reduction
transformationmatrix. Then, the new k-dimensional principal
element features are the left multiplication of the original
sample matrix by the reduced dimensional transformation
matrix.

3) THE SVM CLASSIFICATION MODEL AND EVALUATION
INDICATORS WERE
SVM was formally proposed in 1995 to solve the binary
classification problem of small-scale sample training and is a
classic representative of supervised learning. SVM has good
robustness and strong generalization ability for unknown
data. Additionally, SVM has better performance than other
traditional machine learning algorithms for small amounts of
data. Therefore, this paper used the SVMalgorithm as the rice
tiller classification model.

The performance of the classification model in machine
learning can be characterized by the confusion matrix
between the predicted result of the model and the real result.
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TABLE 1. Confusion matrix of binary classification results.

The confusion matrix definition of the two classification
results is shown in Table 1. TP is the number of positive
classes judged as positive classes. FP is the number of neg-
ative classes judged as positive classes. FN is the number of
positive classes judged as negative classes. TN is the number
of negative classes judged as negative classes.

The main diagonal position element of the confusion
matrix corresponding to a good recognition model is as large
as possible, and the other position elements are as small as
possible. Based on the statistical results of the confusion
matrix, the accuracy was calculated by Eq. (3) to character-
ize the overall performance of the classification model. The
Kappa coefficient [47] was calculated by Eq. (4) to measure
the classification accuracy and characterize the classification
ability of the model. Larger values are an indication of better
classification performance.

Acc =
TP+ TN

TP+ FP+ TN + FN
(3)

K =
N ·

∑r
i=1 xii −

∑
(xi+ · x+i)

N 2 −
∑

(xi+ · x+i)
(4)

where K is the Kappa coefficient, r is the number of rows of
the confusion matrix, xii is the value on the i-th row and i-th
column (diagonal), xi+ and x+i are the sum of the i-th row
and i-th column, respectively, and N is the total number of
samples.

4) A PCA-SVM-BASED MODEL WAS GENERATED FOR
DETECTING THE RICE TILLERING STAGE
The rice tiller stage detection model is a model that combines
PCA and SVM. The framework of the rice tiller detection
model is shown in Figure 6.

First, five feature values characterizing the tiller stage were
extracted from all the rice leaves in the image, and these
were preprocessed together to form sample data. In this paper,
27 rice plants were planted in the monitoring area. If 3 or
more rice plants were tillering (the tiller percentage reached
10%), the rice in the image had entered the tiller stage, and the
sample was marked as ’1’; otherwise, the sample was marked
as ’0’. The sample data with labels were randomly divided
into a training set and a test set. Seventy percent of the images
(336 images) were randomly selected as the training set, and
the remaining 30% (144 images) were randomly selected as
the test set.

In the training set, each standardized sample data point
was subjected to principal component extraction to generate
principal element features with decreasing principal compo-
nent contribution in order. Then, the principal component
feature combination was selected according to the principle

FIGURE 6. Rice tiller stage detection model.

of increasing the cumulative contribution rate. Furthermore,
the SVM classification model with different kernel functions
was used to classify the principal component feature com-
bination to determine whether the rice was tillering and to
determine the ideal principal component feature according to
the classification effect.

After the ideal principal component features were deter-
mined, the training data were randomly divided into five
disjoint subsets of the same size. Using the data of the four
subsets as the training set and the remaining subset as the
verification set, we obtained five groups of training sets and
verification sets. The SVM model was optimized by the
grid search method to return the optimal hyper-parameter
combination that minimized the average error of the five sets
of verification results under the two kernel functions.

Finally, a rice tiller detector was constructed by fusing
the ideal principal component features and the optimized
SVM model. After preprocessing the new test data, the ideal
principal component characteristic parameters were extracted
as the test set of rice tiller detection to test the classification
effect of the trained rice tiller detection model on the new
data.

F. IDENTIFYING THE RICE TILLERING PERIOD
This study was based on a time series of rice images to iden-
tify the rice tillering period. Specifically, the feature values
of the rice images at all times of day were used as the input
of the rice tiller stage detection model. Once the detection
results of the day and the previous day occurred with a 0-1
("0" means not in rice tillering stage, "1" means entering rice
tillering stage) positive jump, then the output date of the day
was the tillering date.
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TABLE 2. The eigenvalue and principal component contribution rate
calculated by PCA.

TABLE 3. A 4-dimensional principal component matrix is obtained by
PCA.

III. RESULTS AND DISCUSSION
A. PRINCIPAL COMPONENT ANALYSIS RESULTS
The PCA algorithm was used to reduce the dimensional-
ity of the preprocessed 5-dimensional data. The eigenval-
ues (arranged in descending order) and the corresponding
principal component contribution rates of the 4-dimensional
data are shown in Table 2. Table 3 shows the corresponding
matrix composed of 4 eigenvectors, called the 4-dimensional
principal component matrix. The number of rows is the num-
ber of original features, and the number of columns is the
number of principal elements after dimensionality reduction.
The data reduced to 4 dimensions are the original sample
matrix multiplied by the 4-dimensional principal component
matrix. After principal component analysis, the sample data
reduced the correlation of feature information and improved
the model efficiency.

B. FACTORS AFFECTING THE DETECTION EFFECT
OF RTR-CPS
1) THE EFFECT OF THE NUMBER OF PRIMARY ELEMENT
FEATURES ON THE DETECTION ACCURACY OF THE RICE
TILLERING STAGE MODEL WAS DETERMINED
After the principal components were extracted by PCA,
the appropriate principal component features were selected
as the input of SVM. To evaluate the influence of the number
of principal component features on the classification per-
formance of SVM, four principal component combinations
were evaluated in which the number of principal compo-
nent features was selected as 1, 2, 3, and 4 according to
the principle of increasing the cumulative variance contribu-
tion rate. Different principal component combinations were
input into two types of SVM models of linear kernel func-
tion (LKF) and radial basis function (RBF) under the default
hyper-parameters for classification detection. According to
the classification effect, the relationship between the number
of principal component features and the detection accuracy
of the default hyper-parameter model was initially estab-
lished. The red triangle mark indicates the detection accuracy
of SVM without PCA dimension reduction. As shown in

FIGURE 7. The relationship between the number of principal components
and the accuracy of the detection model.

TABLE 4. Test results of the rice tillering stage model.

Figure 7, when the number of principal components was 1,
the detection accuracy of the two models was low, indicating
that it is not reliable to extract only a single feature value
to describe the rice tiller characteristics. Both classification
models achieved the highest detection accuracy when the
number of principal elements was 4. Therefore, it was deter-
mined that it was optimal to reduce the number of princi-
pal components to 4 dimensions after principal component
extraction, at which point the cumulative principal compo-
nent contribution was as high as 99.5%.

2) THE EFFECT OF OPTIMIZING SVM MODEL HYPER-
PARAMETERS ON THE DETECTION ACCURACY
OF THE RICE TILLERING MODEL
WAS DETERMINED
Table 4 shows the detection results of the SVM model on the
test set of extracting ideal principal components at the two
processing stages.

Table 4 shows that the accuracy of the RTR-CPS model
with the optimal parameters of the LKF and the RBF was sig-
nificantly better than that with the default parameters. How-
ever, the BRF was the best. The Kappa coefficient calculated
using different kernel functions corresponding to the optimal
parameters increased significantly compared with that of the
default parameters, indicating that the hyper-parameters of
the 5-fold cross-validation optimization model improved the
classification ability of the RTR-CPS model.

C. SUPERIORITY OF THE RTR-CPS ALGORITHM FOR
DETECTING THE TILLERING STAGE OF RICE
In this paper, PCA and SVM algorithms were combined to
build a rice tiller detection model, and then the test data
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FIGURE 8. Sequence 4 original image and rice leaf segmentation results. (a) sequence 4 original images; (b) the
effect of rice leaf segmentation.

TABLE 5. Comparison of model test results.

TABLE 6. Comparison of automatic detection and human inspection records of the potted rice tillering period.

was input after extracting ideal principal component feature
parameters to test the trained SVM model. To verify the
superiority of combining the PCA and SVM algorithms,
as shown in Table 5, the results of the RTR-CPS algorithm
were compared with the detection results of other algorithms
in the test set.

Table 5 shows that when PCA is not used for data
dimensionality reduction, the preprocessed feature values are
input into a separate classification model for detection. The
RBF-SVM classification model of the optimal parameters
was better for processing a small amount of data in this
paper. However, the detection accuracy of the RBF-SVM
classificationmodel under the optimal parameters is far lower
than the detection accuracy of the model proposed in this
paper (marked in bold).

When using PCA to extract the ideal principal com-
ponent features, the detection effect of the classification
model changed. For other competitive models, the detec-
tion accuracy of the RF model was slightly reduced. How-
ever, the detection accuracy of K-nearest neighbors (KNN),
decision tree (DT), AdaBoost, and naive Bayes (NB) were
greatly improved. Nevertheless, the detection accuracy of
other competitive models was still lower than that of the
RBF-SVM classification model under the default parameters.
This showed that it is necessary to use PCA to reduce the
dimensionality of the preprocessed multidimensional data in

this paper to eliminate redundancy and noise. In summary,
the superiority of this method was verified.

D. RECOGNITION RESULT OF THE RICE TILLERING
PERIOD BASED ON THE RTR-CPS ALGORITHM
In this paper, the time series rice images obtained by con-
tinuous monitoring were used for classification and detec-
tion. The extracted image feature values from each day were
averaged before preprocessing, and then the ideal principal
component features were extracted and input into the rice
tiller detection model. Suppose the detection results of the
same day and the previous day have a positive jump from 0-1
(0 represents not in rice tillering stage, 1 represents entering
rice tillering stage). In that case, the date of the output is
the tillering period. Table 6 shows the comparison results of
human inspection and image-based automatic detection of the
tillering period of potted rice.

Table 6 shows that the errors of the automatic detection
results of the tillering stage of rice in image sequence 1 and
sequence 2 corresponding to the first stage of late rice are
1 day and 0 days, respectively, and the average error is
0.5 days. The results of automatic detection of the rice tiller-
ing stage of image sequence 3 and sequence 4 corresponding
to the second stage late rice were 1 day and 2 days, respec-
tively, with an average error of 1.5 days. Generally, the error
between the tillering date detected by this method and the

VOLUME 9, 2021 86851



Y. Zhang et al.: Automatic Identification Algorithm of Rice Tiller Period Based on PCA and SVM

FIGURE 9. Effect images and post-processing results under two surveillance cameras. (a) artificial transplanting seedlings; (b) rice leaves
in Fig. 9 (a); (c) skeleton binary image of rice leaves in Fig. 9 (b); (d) artificial throwing seedlings; (e) rice leaves in Fig. 9 (d); (f) skeleton binary
image of rice leaves in Fig. 9 (e).

TABLE 7. Classification accuracy of the rice tillering stage model and comparison of automatic detection and human inspection results in field rice.

observation date is not more than 2 days, and the average
error is 1 day. These results show that the automatic detec-
tion method is suitable for recognizing the tillering stage of
potted rice.

However, the average error of the second stage of late
rice is large, which may be due to low temperatures and
insufficient light during the second stage of late rice planting,
which prevents water evaporation and is conducive to the
growth of moss. The proportion of mosses will affect the
traditional visual segmentation algorithm designed in this
paper to a certain extent, thus reducing the accuracy of rec-
ognizing the tillering period. For example, in the image on
October 25, 2020, in sequence 4, excessive moss growth in
the background led to serious over-segmentation of the rice
leaf surface, making the extracted image feature value smaller
and resulting in a larger error for the automatic detection
of the rice tillering period. Figure. 8 shows the sequence
4 images collected at 8:00 on October 25 and the effect of
rice leaf segmentation.

When the background moss grew faster, the coverage ratio
was larger, or there was sometimes full coverage. As a result,
the influence of the moss was greater, making this method no
longer suitable. This is a limitation of traditional visual seg-
mentation methods. Semantic segmentation with deep learn-
ing could theoretically be considered to eliminate the effects
of moss, but the amount of manual annotation necessary for
fine-leaf rice is immense. In fact, from experience, whether in

pot or field rice cultivation, growers will actively take various
measures to inhibit moss growth and to avoid affecting the
growth and development of rice. Therefore, under normal rice
growth conditions, this method is efficient and accurate.

E. FURTHER VERIFY THE GENERALIZATION OF THE
RTR-CPS ALGORITHM
To verify whether the algorithm proposed in this paper is
generalizable, we deployed a field experiment. Two cameras
with a resolution of 1280 × 720 pixels were installed in the
field to monitor the rice tillering dynamics in two different
areas, and 10 images were captured and saved at regular inter-
vals from 8:00-17:00 each day for 15 days (28 March 2021-
12 April 2021), with 150 images collected from each field.
Fig. 9 shows an example of the results and processing of the
images taken under the cameras in the two monitoring areas.

Figure 9 (a) and (d) are the monitoring areas of two
different fields. The rice in (a) is planted by artificial trans-
planting, and the rice in (b) is planted by artificial throwing.
Figure 9 (b) and (e) are the rice leaf surfaces obtained
by image segmentation in (a) and (d), respectively, and
Figure 9 (c) and (f) are the skeleton binary images of (b) and
(e), respectively. In this paper, all the image feature values
of (a) and (d) for each day were extracted to calculate the
average value, preprocessed and extracted from the ideal
principal elements and then were input into the rice tiller-
ing stage detection model. The results of the classification

86852 VOLUME 9, 2021



Y. Zhang et al.: Automatic Identification Algorithm of Rice Tiller Period Based on PCA and SVM

accuracy and automatic detection compared to human inspec-
tion of the rice tillering model are shown in Table 7.

Table 7 shows that first, the manual seedling throwing
planting method in area (b) had a 1.58% lower model classifi-
cation accuracy than the manual seedling planting method in
area (a). The accuracy of both was slightly lower than that of
the potted planting method, but both were above 95%. This
is because rice in the field is more susceptible to the effects
of bad weather, such as rice leaf swaying in the wind and
curling when exposed to the sun, which can cause different
degrees of variation in the rice leaves under the camera, thus
reducing the accuracy of the model classification. Second,
the error between the automatic detection date and the human
inspection date of rice tillering in areas (a) and (b) are 0 and
1 day, respectively, with an average error of 0.5 days. At the
beginning of transplanting, most of the seedlings in area (b) of
the artificial throwing planting method showed a dumping
posture, and the coverage of the extracted seedlings was
larger than that of the other two planting methods. However,
after turning green, it will be in a standing posture, which
makes the coverage ratio of subsequent images obtained by
eigenvalue preprocessing smaller, which introduces errors in
the automatic detection of the rice tillering stage. In summary,
the experimental results show that the rice tillering stage
identification model proposed in this paper can be applied to
the field, which verifies that the algorithm proposed in this
paper is generalizable.

IV. CONCLUSION AND OUTLOOK
Based on a small sample of images taken before and after
the rice tillering stage, this paper proposed an automatic
rice tillering stage identification algorithm called RTR-CPS.
Experimental results showed that the accuracy of rice tillering
stage recognition by this method was 97.76%, which was
much higher than that of other traditional machine learning
classifiers. The maximum error between the automatic detec-
tion results of the tillering period of potted rice and the human
inspection date was no more than 2 days, and the average
error was 1 day, which shows the feasibility and superiority of
this method. Under the conditions of normal growth and rice
development, this method is efficient and accurate and can
meet the actual needs of agricultural meteorological obser-
vation. In addition, we deployed field experiments to verify
the generalization of the algorithm proposed in this paper.
Future research should include experiments using different
camera angles, field late rice, UAV-based image acquisition
and other factors to further verify and optimize the algorithm
in this paper.
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