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ABSTRACT Identifying crop species and varieties adaptable to climate change impacts is one of the main
aspects of climate vulnerability assessments. This estimation involves processing, integrating, and analyzing
many information sources to provide accurate and timely responses. However, designing this evaluation,
examine the information gathered, and reaching agreements among all stakeholders and experts, often
requires considerable effort in time, money, and people. In this study, we propose a data fusion strategy to
support climate vulnerability assessments by identifying the adaptability of crops in a territory in the short
term. This strategy follows the Joint Directors of Laboratories’ data fusionmodel guidelines. It was evaluated
and validated through a case study in Colombia’s upper Cauca river basin. For this purpose, we identified
Climate, Soil, Water Quality, Productive Alliances, and Production as the most relevant data sources to be
integrated, and using metrics such as Mean IR, SCUMBLE, TCS, among others, we evaluated the combined
datasets according to their theoretical complexity. The adaptability of crops in a territory was addressed as a
multi-label learning problem, assessing the performance of differentmulti-label classification andmulti-view
multi-label classificationmodels with both test and actual data. Comparing the predicted cropswith the actual
ones, we obtained a 98% similarity without considering crop ranking using the Binary Relevance approach
and the Random Forest and XGBoost algorithms. Using a more exhaustive test involving order, we obtained
a maximum similarity of 67% applying Binary Relevance and Random Forest.

INDEX TERMS Climate vulnerability assessment, climate change, crop production, data processing, data
fusion, machine learning, multi-label classification, multi-label dataset, sustainable agriculture.

I. INTRODUCTION
Identify crop species and varieties adaptable to climate
change impacts is one of the most economical and envi-
ronmentally friendly strategies for food security [1]. This
concept promotes the interaction between four essential ele-
ments: food availability, food access, food utilization, and
vulnerability [2]. In the agricultural context, the latter aspect
refers to the degree of a system’s susceptibility to climate
change’s adverse effects and measuring it is essential for exe-
cuting sustainable actions and making decisions to develop
food security scenarios [3]. In this sense, different areas
and disciplines have involved experts such as scientists,
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decision-makers, farmers, among others stakeholders, to pro-
pose a large number of Climate Vulnerability Assessments
(CVA). These stakeholders are responsible for designing a
CVA to understand three important questions: who or what
is vulnerable to climate variability and change, why and how
they are vulnerable, and what opportunities exist to reduce
these vulnerabilities. CVAs are designed to meet the specific
needs of a strategy (globally or at a country level), project
(at regional or sectoral level), or activity (specific organiza-
tions or sites) [4].

There exist several methods to conduct a CVA with dif-
ferent levels of complexity. Among the most widely used
methods are desk reviews, stakeholder and expert work-
shops, community-based approaches, and additional special-
ized analysis (vulnerability indexes, simulations, modeling,
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impact analysis, map generation, among others) [3]. These
methods comprise stages such as conduct literature reviews;
identify stakeholders; evaluate the information needs of
stakeholders; evaluate the roles and capacities of stakehold-
ers; select data, methods, and tools adjusted to the spatial
and temporal scales; and design evaluations on different
Climate-Smart Agriculture (CSA) objectives [5].

The aforementioned methods have shown significant con-
tributions such as identifying entry points to address climate
stress factors, highlighting opportunities to take advan-
tage of in a changing climate, and determining adaptation
measures [4]. However, designing these assessments often
requires enormous efforts in time, money, and people. For
instance, the interaction between experts in different areas
makes it difficult to reach a consensus. Likewise, more spe-
cific problems have emerged, such as the variety of data
sources [5]. In agriculture, as in many other domains, data
inputs correspond to numerous sources such as sensors, struc-
tured and unstructured databases, plain text files, multimedia
files, and reports. Additionally, many of these data sources
have restricted access and are not freely available [6]. Given
these points, data fusion represents a non-trivial activity
in agricultural vulnerability assessments considering aspects
like quantity, diversity, and restrictions of access to data
sources.

As can be seen, the use of simple and robust scientific tools
to guide stakeholder decision-making on a seasonal and long-
term basis, are essential for planning climate-smart strategies,
projects, and activities [4], [5]. In this sense, this research
work strengthens the additional specialized analyzes carried
out in a CVA. It is fundamental to note that this work does not
replace an agricultural vulnerability assessment; instead, this
is a tool to support and automate data-driven processes that
are inherent in such evaluations. In this study, we propose
a data fusion strategy to determine, in the short term, the
adaptability of crops in a territory, which is determined from
the information available on different agricultural vulnera-
bility dimensions. Furthermore, the data fusion strategy was
evaluated and validated through a case study in the upper
Cauca river basin in Colombia, and we addressed the follow-
ing contributions: i) a formal multi-dimensional process for
preparing the gathered data sources, ii) a method for com-
bining and labeling data sources of different dimensions, and
iii) a scheme for training multi-label classification models
and determining crop adaptability.

The remainder of this paper continues as follows.
Section 2 presents the related works around data fusion and
multi-label classification applied to CVAs and crop predic-
tion. Section 3 exposes the components of the proposed data
fusion strategy. Section 4 shows the results obtained from the
data fusion strategy applied to a case study. Finally, section
5 provides the conclusions of this research.

II. RELATED WORKS
This section exposes the related works around Data fusion
(DF) [7] and Multi-Label Classification (MLC) [8]. We also

identify interrelations among different approaches and short-
comings regarding this study.

A. DATA FUSION
Agricultural Data Fusion groups different approaches
depending on the type of data sources, the crops involved, and
the integration aims. Most methods combine different types
of satellite imagery (including Landsat-8, Sentinel-2, STRM,
MODIS-EVI, and MODIS-NDVI) considering integration
objectives such as possible planting areas for rice, soybeans,
and corn [9]; estimation of cultivated areas for corn [10];
estimation of yield for corn, soybeans, and cotton [11]; and
classification of large crop areas [12]. Satellite images are
also combined with an in-situ, survey, or multi-sensor data
to identify areas of climate vulnerability [13], determine
variations in wheat production [14], detect areas suitable for
tomato cultivation [15], and estimate the high spatio-temporal
resolution land subsidence [16]. Other approaches integrate
multi-sensor and in-situ data for predicting wheat and other
crop yields [17], planning and monitoring of oil palm and
barley plantations [18], detecting crop diseases for fungicide
applications [19], and estimating climate variables from soil
and air data [20].

Likewise, some works are focused on integrating his-
torical data around crops such as production, yield, dis-
eases, among others, to solve problems such as detection of
genomic regions of pathogens in crops [21], management
of viticulture and winemaking processes [22], production
and yield estimation of sugarcane crops [23], and identifi-
cation of crop management areas for application of agricul-
tural inputs [24]. Other approaches integrate multispectral
images from Unmanned Aerial Vehicles (UAVs) to deter-
mine soybean harvested area and improve crop production
monitoring [25]. On the other hand, de Lange et al. [26]
propose the integration of socio-economic and biophysi-
cal data for overcoming spatial incompatibilities. Finally,
we highlight two theoretical works closely related to our
research. These studies propose to integrate climate, environ-
mental, social, economic, cultural, political, and institutional
data for decision making in smart farming contexts using Big
Data technologies [27], [28].

B. MULTI-LABEL CLASSIFICATION
Although MLC has addressed problems such as air pollu-
tion [29] and flood retention [30], research in agriculture
is focused on issues such as the classification of land uses.
Conventional classification models assign a single land use
label to each spatial unit. Therefore, several approaches clas-
sify this coverage unit with several labels simultaneously
(mixed use of land). Shendryk et al. [31] propose combin-
ing deep learning models with MLC to classify atmospheric
conditions and land use coverage from satellite images of the
Amazon forest. In the same research line, Omrani et al. [32]
developed an integrated modeling framework (multi-label
learning, cellular automata, and land transformation models)
to classify land uses in Luxembourg. Using data from this
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country, the same authors [33] proposed to solve the same
classification problem but using the K-Nearest Neighbors
(KNN) technique in the MLC paradigm.

On the other hand, the classification of diseases in crops
and leaves is another widely addressed problem. Con-
volutional Neural Networks (CNN) combined with MLC
algorithms are used to detect simultaneous diseases in
crops [34]. Likewise, Abd El-Aziz et al. [35] detected dis-
eases in apple fruit using the Multi-Label KNN (ML-KNN).
Finally, we highlight the approach of Doshi et al. [36],
which is the most related to our proposal. This approach
presents AgroConsultant, an intelligent system to assist
Indian farmers on which crop to plant depending on the
planting season, geographic location, soil characteristics,
and environmental factors such as temperature and rain-
fall. Algorithms such as Decision Trees (DT), KNN, Ran-
dom Forest (RF), and Neural Networks (NN) were used
for the prediction task. NN was selected for obtaining 91%
accuracy.

New approaches have emerged to enforce multi-label
classification such as multi-view multi-label classification.
This approach, in addition to relating an object to multi-
ple class labels simultaneously, assumes its representation
across multiple data views [37]. Although this approach
has not been applied to agriculture, it is important to men-
tion some of the most relevant works. Some studies pro-
pose feature selection methods in Binary Relevance to learn
specific features for missing [38], non-missing [39] and
class-dependent [40] labels. Other studies exploit the com-
plementarity between different views through multi-view
approaches with latent semantic awareness [41] and view-
specific information extraction [42]. Finally, Huang et al. [43]
propose a new framework for multi-view multi-label learning
with view-label specific features to identify contributions of
different features to each label.

III. DATA FUSION STRATEGY
This section describes our data fusion approach and its main
components. This strategy is based on the Joint Directors of
Laboratories (JDL) data fusion model [7], one of the most
widely used models for DF tasks. Unlike other models, JDL
is a functional model rather than a process model, the reason
why we select this one. JDL facilitates understanding data
fusion techniques and communication between stakeholders
to achieve common objectives. This premise implies that
the data fusion strategy’s actions do not always follow a
strict or canonical order to achieve the final goal. In this
sense, JDL categorizes the data fusion functions by levels
according to different types of problems. Based on these
assessments, our data fusion strategy was adapted as follows:
Level 0 - Data Assessment, Level 1 - Relationship Anal-
ysis, Level 2 - Data Integration, Level 3 - Data Analysis,
and Level 4 - Process Refinement. Fig. 1 presents an overview
of the data fusion strategy, and its levels are described
below.

FIGURE 1. General architecture of the data fusion strategy, adapted from
JDL data fusion model [7].

A. DATA SOURCES
The data fusion strategy uses open data as the primary
input for analysis tasks. Through the data collection process,
we identify different official public organizations related to
the CVA study area. These organizations usually allow con-
sulting freely accessible data through web portals according
to specific information requirements. However, the search
for these sources is not only limited to web portals, but it
also includes the reuse of CVA results. On the other hand,
private entities can provide access to supplementary data by
authorizing the corresponding permissions.

B. DATA ASSESSMENT (LEVEL 0)
This level evaluates the gathered data around the agricultural
vulnerability dimensions and defines a formal preparation
process to improve their quality. The components present
a modular scheme, where the results obtained in a module
allow feedback to the next one. It is composed of three
phases: data sources evaluation, data sources pre-processing,
and variables prioritization. The complete data preparation
process is detailed in [44].

C. RELATIONSHIP ANALYSIS (LEVEL 1)
In level 1, we identify the implicit relationships between data
sources by analyzing the temporal and spatial scales (sam-
pling intervals, producingmunicipalities, crops, and data cov-
erage area). For this purpose, we establish a spatio-temporal
characterization process where all possible relationships are
consolidated and analyzed to verify their relevance in the data
fusion strategy. Also, we build a relationship scheme to guide
the data sources integration at level 2. The components of
level 1 are presented in detail below.

1) SPATIO-TEMPORAL CHARACTERIZATION OF DATA
SOURCES
In this component, we identify possible spatio-temporal rela-
tionships between data sources. Meta-features determine the
temporal relationships in the data sources such as time win-
dow, temporal scale, and sampling intervals. On the other
hand, spatial relationships are focused on the area covered by
a territorial division. The spatial scales handle these divisions,
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including farms, villages, municipalities, states, regions, and
countries. Similarly, we also identify other types of rela-
tionships inherent to the data fusion objective. In our case,
crops in a specific area could be an indication of these possi-
ble additional relationships. Finally, all the Spatio-Temporal
Meta-Features (STMF) should be consolidated in a summary
table for further analysis.

2) DATA SOURCE RELATIONSHIP SCHEME
The data source relationship scheme corresponds to a matrix
that establishes the strength of the possible relationships. This
matrix is generated by comparing the STMF consolidated in
the previous component. The data source relationship scheme
is described below and presented in Fig. 2.

FIGURE 2. Relationship scheme. DS: Data Source, STMF: Spatial-Temporal
Meta-Feature, Val: Attribute Value.

(i) Creating the Relationship Scheme. The consolidated
table of STMF is shown on the left side of Fig. 2.
The rows represent the pre-processed data sources of
size N. The columns correspond to the STMF of sizeM.
We transform the table into a matrix of N x N dimen-
sions, where the color of each cell represents the rela-
tionship strength between the data sources (right side
of Fig. 2). To obtain the strength of a relationship,
we compare the STMF of one data source with the
others using a similarity function. This function returns
a value between 0 and 1. The values near 1 represent
a high similarity, and the values near 0 a low simi-
larity. We define the following ranges and colors to
assign the strengths of the relationships: 0 to 0.25 (light
blue, weak relationship), 0.25 to 0.75 (blue, interme-
diate relationship), and 0.75 to 1 (dark blue, strong
relationship).

(ii) Relationship Scheme Analysis.After obtaining the rela-
tionship scheme, we can integrate a table with guide-
lines about the possible relationships identified and
how the data sources are involved. These guidelines
indicate which STMFs we should consider at level 2
(data integration), for example, the resulting time win-
dows, the regularity of sampling intervals, and specific
attributes that would facilitate integration.

D. DATA INTEGRATION (LEVEL 2)
Level 2 corresponds to data integration, a reduction process
to generate new data sets (combined data sources) with a
more synthesized and reliable added value. At this level,
we select a data integration approach and apply a method
to combine the data sources based on Entity Matching [45].

Finally, we label the resulting datasets according to the final
objective of the data fusion strategy. In our case, identify
the crops produced per municipality to establish the set of
labels for each instance. Data integration steps are described
in detail below.

1) SELECTING THE INTEGRATION STATE
Depending on the nature of the datasets and the statisti-
cal problem to be solved, data from different sources can
be integrated into three different states: early, intermediate,
or late [46]. These states of data integration are described
below.
(i) Early Integration. In this state, a single feature space

groups the data sources’ attributes without changing
their format and nature. However, a disadvantage lies in
the increased dimensionality of the combined datasets.

(ii) Intermediate Integration. Before being combined,
intermediate integration transforms the attributes of
all data sources into a common feature space. Then,
a model learns a joint representation of several data sets
and merges them during a later stage of analysis.

(iii) Late Integration. Each dataset trains one or more mod-
els separately, and an assembly method combines the
final results. This state has advantages such as the free
choice of the best algorithm and the parallel analysis of
each dataset.

2) INTEGRATING DATA SOURCES
The basic idea is to ensure that the matching attributes have
the same structure and their content follows the same for-
mats. Next, we apply indexing or blocking to reduce the
computational effort when comparing record pairs, i.e., using
highly tolerant similarity measures to filter out those record
pairs that are ‘‘obvious’’ non-matches. After that, only those
not pruned by the indexing or blocking step are inspected
in record pair comparison. Finally, we apply a function to
combine the records that have been matched.

3) LABELING COMBINED DATA SOURCES
Each record in the combined datasets is finally labeled
with one (single label) or more (multi-label) target variables
or classes. This process depends on the specific problem
addressed in the data fusion strategy and must be guided
by expert knowledge. In this sense, we can apply labeling
techniques such as manual or automatic labeling. Manual
labeling requires the supervision of one or more experts in
the field, who assign the labels to the respective samples. This
process can also be supported by reviewing the literature in
the knowledge areas around the data sources. On the other
hand, in automatic labeling, different clustering algorithms
can be applied to find groups representing common labels or
classes.

4) EXPLORATORY ANALYSIS IN MULTI-LABEL DATASETS
After combining and labeling, data sources require
exploratory analysis to determine the effectiveness of data
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integration before to the last level of the data fusion strategy
(level 3 - data analysis). In the case of Multi-Label Datasets
(MLD), the exploratory analysis is based on [47] and [8],
which define a set of measures to describe the combined
data sources. These measures provide information about the
data distribution and the possible behavior of a classification
algorithm or a pre-processing technique. We used Discarded
Attributes, Number of Attributes, Number of Instances, Num-
ber of Inputs, Number of Labels, Number of Labelsets,
Number of Single Labelsets, Maximum Frequency, Cardi-
nality, Density, Imbalance Ratio of a Label (IRLbl), Mean
Imbalance Ratio, Score of ConcUrrence among iMBalanced
LabEls (SCUMBLE), SCUMBLE Variation Coefficient, and
Theoretical Complexity Score (TCS).

E. DATA ANALYSIS (LEVEL 3)
In data analysis or Level 3, we apply several techniques or
machine learning algorithms to train a set of models and
estimate one or more target variables (predicted crops in a
municipality). In this sense, we use different metrics to eval-
uate the trainedmodels’ performance and select the best ones.
We apply an Analysis of Variance (ANOVA) [48], which
identifies statistically significant differences among model
performances. Finally, we validate the models’ results with
actual data, i.e., data from a real scenario (crop production
and yield trends in subsequent years).

1) MODEL TRAINING SCHEME
In this component, we generate several predictive models and
train them from both the Combined Data Sources (CDS) at
level 2 and a set of variations of those sources. These varia-
tions correspond to modified versions of a specific combined
DS, and these are mentioned below.
(i) Original CDS. An initial version of the combined data

source without modifications.
(ii) Decoupled CDS. A majority label frequently appears

in instances, while a minority label appears rarely.
When the majority and minority labels coincide in
the same instance, the minority labels are more diffi-
cult to classify due to the majority’s bias. To separate
the labels, we apply the REMEDIAL (REsampling
MultilabEl datasets by Decoupling highly ImbAlanced
Labels) [49] algorithm to the CDS obtaining a new
version of this source (Decoupled CDS). The number
of instances increases according to the proportion of
instances containing both majority and minority labels
through this technique. REMEDIAL is recommended
for datasets with a high SCUMBLE value.

(iii) Infrequent Positive Label Removal (IPLR). Com-
bined data sources excluding infrequent positive labels
(labels with value 1), we must define the number of
excluded labels according to the frequency distribution.

(iv) Skewness Labels Removal (SLR). Combined data
source excluding skewness labels, i.e., majority and
minority positive labels at a defined threshold accord-
ing to the frequency distribution.

After obtaining the CDS variations, we apply a combina-
tion of a multi-label classification strategy plus a machine
learning algorithm to each CDS. Through this combination,
we generate a set of trained models to estimate the values of
one (single label) or several target variables (multiple labels).
MLC strategies transform a dataset to apply a base algorithm.
These strategies include Binary Relevance (BR), Binary
Relevance Plus (BRPLUS), Ensemble of Classifier Chains
(ECC), Label Powerset (LP), Hierarchy Of Multi-label
classifiER (HOMER), and Random k-labelsets (RAKEL).
We also used two new multi-view multi-label classifica-
tion strategies such as incomplete Multi-View Weak-label
Learning (iMVWL) [37], Multi-View Weak-label Learning
(McWL) [50]. On the other hand, Random Forest (RF), Sup-
port Vector Machines (SVM), K Nearest Neighbor (KNN),
Sequential Minimal Optimization (SMO), C5.0 Decision
Trees (C5.0), Naive Bayes (NB), eXtreme Gradient Boosting
(XGB), Classification and Regression Trees (CART), Major-
ity Class Prediction (MAJORITY), and Random Prediction
(RANDOM) represent the base algorithms. Fig. 3 presents
the generation and training of S models from the combined
data sources (1 to N CDS), the CDS variations (1 to M
variations), the MLC strategies (1 to P strategies), and the
basic machine learning algorithms (1 to Q algorithms), where
the number of models is represented by S = N∗M∗P∗Q.

FIGURE 3. Model generation and training scheme for combined data
source variations applying different multi-label classification strategies
and base algorithms.

2) MODEL PERFORMANCE EVALUATION
To evaluate model performance with test data, we use dif-
ferent metrics for both traditional supervised learning and
multi-label learning [51]. Metrics such as Accuracy, Recall,
Precision, F1-score, among others, are included in supervised
learning. While multi-label learning involves metrics such
as Hamming-Loss, Ranking-Loss, One-Error, among others.
On the other hand, the above metrics could eventually gen-
erate very approximate results between models. To address
this issue, we apply an analysis of variance (ANOVA) [48],
which allows us to determine possible significant differences
in model evaluation results. We considered several aspects
such as metrics distribution (normality test), homogeneity of
variance across groups (homoscedasticity), paired tests, and
post-hoc comparisons to apply the ANOVA model.
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3) MODEL VALIDATION
To determine if the data fusion strategy is applicable in a
real agricultural environment, we validate the models’ best
estimates with actual data. These data can be obtained in the
first stage of the fusion strategy (data collection) or later,
depending on the mentioned strategy’s objectives. Finally,
different techniques for comparing results must be defined
in this validation component, again emphasizing the fusion
strategy’s objective.

F. PROCESS REFINEMENT (LEVEL 4)
Process refinement is a transversal level to monitor each of
the components (or levels) in the data fusion strategy. Level 4
represents the planning, control, and allocation of resources
to tasks. This refinement also includes experts in different
knowledge domains around agricultural vulnerability, which
provide constant feedback to validate the data fusion strategy.
In this sense, we can also use CVAs’ results in this validation
process as a benchmark.

G. DATABASE MANAGEMENT
This component manages two databases, the support
data-base and the fusion database. The first one stores the
raw and processed data sources (data on different dimen-
sions of agricultural vulnerability). The second one stores
the combined and labeled data sources. The storage also sup-
plies additional information about the datasets, dimensional
characteristics, characterization of the agricultural area, and
model calibration. Similarly, this component manages the
data ingestion, i.e., the process of flowing data from its
origin to one or more data stores such as a data lake, rela-
tional databases, search engines, among others. This study
is oriented to the development of an innovative data fusion
strategy using new technologies. Therefore, we managed
the databases by implementing a Data Lake [52], which is
described in detail in [53].

H. HUMAN/COMPUTER INTERFACE
This component presents the information obtained from the
analysis of the different datasets. This software tool allows the
user to consult the results according to the objective, which
has been initially defined in the data fusion strategy. The
information must be presented considering each user type
as a farmer, technician, extensionist, researcher, or decision-
maker. We must orient the tool towards how the user can take
advantage of all the information visualized in the respective
knowledge domain.

IV. RESULTS
In this section, we present the main findings from the instan-
tiation of the proposed data fusion strategy. Through a case
study, we show the results step by step at each level and
component. Initially, we describe the study area, its char-
acteristics, and its previous Climate Vulnerability Assess-
ment (CVA) to contextualize the subsequent data analyses.

A. STUDY AREA
The Cauca River is the primary water source in the western
region of Colombia. This river extends from the Macizo
Colombiano area (approximately 3,200 meters above sea
level - m.a.s.l.) to the Magdalena River in the north of
the country, covering about 1,360 km through nine regions
from south to north. The Upper Cauca River Basin (UCRB)
has approximately 23,000 km2, of which 32% corresponds
to Cauca, 47% to Valle del Cauca, 13% to Risaralda,
and 8% to Quindío. In this research, we focused specifi-
cally on the Cauca zone, where the altitude varies between
4,700 m.a.s.l. at the summit of the Puracé volcano, and
950 m.a.s.l. in the Cauca River’s alluvial valley (approximate
area of 7,368 km2).

In this sub-basin, agriculture represents a significant per-
centage of the Colombian economy and benefits about 23
municipalities. Even the country’s food security, in a certain
percentage, is directly affected by agricultural production in
this area. The food demand of urban centers is largely sup-
plied by small-scale commercial farms of coffee, beans, corn,
cassava, fruit trees, vegetables, medicinal plants, livestock,
and fish farming. In social and economic terms, the rural
economy is significant and a primary source of food security
both in the region and in the country [54].

B. DATA SOURCES
We considered several data sources as the fundamental input
of this study. In this case, we extracted 16 datasets from
different web portals of official public organizations (details
about these data sources can be consulted in [44]). We also
used the results of previous climate vulnerability assessments
developed at the UCRB as inputs.

C. DATA ASSESSMENT (LEVEL 0)
Level 0 developed a diagnosis of the initial data sources
and tries to improve their quality through pre-processing.
Initially, we grouped the data sources into the four dimensions
defined in AVA (biophysical, economic-productive, socio-
cultural, and political-institutional). Subsequently, their main
meta-features were extracted and analyzed to build an
overview of all datasets. Then, we identified the leading
data quality problems through a statistical analysis of data
distributions. Finally, we identify the most relevant attributes
of each data source. The complete and detailed data sources
evaluation (level 0) is referenced in [44].

D. RELATIONSHIP ANALYSIS (LEVEL 1)
At this level, we identify spatio-temporal relationships among
data sources. First, we selected the meta-features at the tem-
poral and spatial level, such as the time window, the temporal
scale, the sampling interval, and the spatial scale. We also
extract additional meta-features for guiding the data integra-
tion process, in this case, information about crops, such as
the spatial units of sowing, production, or commercialization.
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TABLE 1. Spatio-temporal Meta-features of data sources. A: Annual, BA: Biannual, M: Monthly, Mu: Municipality, De: Department. Group and subgroup
represent hierarchical crop categories such as fruit trees, vegetables, among others.

Table 1 summarizes the above meta-features for each of the
16 data sources.

From Table 1, we compare the meta-features of one data
source with the other 15 to obtain the strength of each
relationship. We use a function to compare, one by one,
the temporal and spatial attributes among two data sources.
The similarity intervals used were: 0 - 0.25 (weak rela-
tionship), 0.25 - 0.75 (intermediate relationship), 0.75 - 1
(strong relationship). Subsequently, we averaged the strength
of all spatio-temporal attributes for each compared tuple of
datasets. For example, if we compare the attribute ‘‘time
scale’’ in the datasets bp_sivicap and bp_corpoica, the
strength of this relationship will be 1 (100%) considering the
same scale (annual) in both datasets. While the strength will
be 0.5 (50%) if the compared datasets are bp_sivicap (annual)
and bp_ideam (annual, monthly). Finally, we generated the
Data Source Relationship Matrix shown in Fig. 4. Accord-
ing to these relationships’ strengths, we established the fol-
lowing best combinations among the datasets: bp-ideam +
(bp-sivicap or bp-corpoica); ep-agronet + (bp-sivicap,
bp-corpoica, or bp-ideam); ep-minagricultura+ ep-agronet;
ep-dane-sipsa + (ep-agronet or ep-minagricultura); pi-dnp-
pa + (bp-corpoica or ep-agronet); sc-dane-hh + bp-ideam;
sc-dane-h + (bp-ideam or sc-dane-hh).

E. DATA INTEGRATION (LEVEL 2)
In this level, we generate new data sets with a more synthe-
sized and reliable added value through a reduction process.
To develop the integration, we first identify the most related
data to the data fusion strategy objective. In our case, consid-
ering attributes on production and crop yield per municipal-
ity, we identified the ep-agronet as the central data source.
We applied entity matching to associate the selected data
sources based on ep-agronet and the relationshipmatrix infor-
mation (Fig. 4). We used the Jaro-Winkler similarity func-
tion [55] to identify the matches between municipality names
in each tuple of data sources. We selected this similarity

FIGURE 4. Data source relationship matrix.

algorithm by considering two key aspects such as good per-
formance comparing short strings and the name-comparison
oriented design. Once Jaro-Winkler was applied, we obtained
4 combined data sources, CDS1 (bp-ideam + ep-agronet),
CDS2 (bp-corpoica + ep-agronet), CDS3 (bp-sivicap + ep-
agronet), and CDS4 (pi-dnp-pa+ ep-agronet). We discarded
other combinations considering the low number of resulting
instances (between 4 and 15). Furthermore, it was possible
to combine five data sources (bp-ideam + bp-corpoica +
bp-sivicap + pi-dnp-pa + ep-agronet) to obtain a Combined
Global Dataset (CGD), which represents the combination of
the maximum possible number of data sources. It is worth
mentioning that a conventional multi-label approach can be
transformed into a multi-view multi-label approach using
two strategies such as independent and integrated views [43].
In our case, we consider the four combined datasets as inde-
pendent views and the CGD dataset as their integration.
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On the other hand, we labeled each of the five combined
datasets according to the data fusion strategy’s objective, i.e.,
to predict the crops that can best adapt in an area in the
short term. This objective induces a multi-label classification
problem, where a label represents a crop. Based on ep-agronet
dataset yield data, we identify the crops in a municipality
by assigning binary labels to each instance in the combined
datasets. Therefore, if a municipality produces a crop in a
specific year, the value one is assigned, and 0 otherwise.
To determine the datasets integration quality, we applied a
preliminary exploratory analysis. In Table 2, we considered
the metrics previously mentioned in section 3.4.4 to identify
the most appropriate datasets to apply the MLC algorithms
used in level 3.

TABLE 2. Spatio-temporal meta-features.

The results presented in Table 2 indicate acceptable quality
in all five combined data sources for the next level of the
data fusion strategy (Level 3). This finding is based on three
key metrics, such as TCS, SCUMBLE, and Mean IR. The
first corresponds to a low value in Theoretical Complex-
ity Score (TCS) compared to more complex MLDs used
in different studies [56]. The TCS values for the combined
data sources were between 9.71 and 12.42, indicating less
complexity in learning a predictive model. The second refers
to the global level of unbalanced labels (Mean IR), with
values between 8.78 and 19.56, which indicates an acceptable
average level of imbalance in all combined data sources
compared to other well-known MLDs [57]. Finally, the third
metric indicates the Score of ConcUrrence among iMBal-
anced LabEls (SCUMBLE) with values between 0.21 and
0.29, which indicates a low concurrence among minority and
majority labels, considering that this measure is in the range
[0,1] [58].

F. DATA ANALYSIS (LEVEL 3)
In Level 3, we explore different MLC strategies and machine
learning algorithms to generate models that predict one or
more target variables. We trained these models according to
the data fusion strategy’s objective, from the combined data
sources in Level 2 for predicting the crops produced at a
specific site in the short term. Following themodel generation

scheme, previously defined in Fig. 3, we trained 2,430models
(S = N∗M∗P∗Q, S = 5∗9∗6∗9) and evaluated them using the
metrics presented in Table 3.

Tab. 3 summarizes the best models for each MLC Strat-
egy (MLCS) applied to the combined data sources.We did not
consider the results obtained from the combined data sources’
variations since they did not exceed the original combined
data sources’ results. In the case of the accuracy, precision,
recall, and F1-score metrics, we have highlighted the highest
values in each combined data source. On the other hand, for
hamming-loss, ranking-loss, and one-error metrics, we have
highlighted the lowest values considering that these are loss
functions, i.e., the best results correspond to the lowest values.
These results showed two crucial findings in the performance
of predictive models. From the point of view of conventional
performancemeasurements (Accuracy, Precision, Recall, and
F1-measure), the Label Powerset (LP) strategy obtained the
best results when combined with the C5.0 and Naïve Bayes
algorithms in the CDS1, CDS4, and CGD datasets, while the
RAKEL strategy performed well with a broader set of algo-
rithms such as RF, C5.0, NB, and SVM. On the other hand,
from the perspective of MLC-oriented metrics (Hamming-
Loss, Ranking-Loss, and One-Error), we only observed a
similar behavior of Hamming-Loss concerning conventional
metrics for the same combined datasets. However, for special-
ized label ranking evaluation metrics such as Ranking-Loss
andOne-Error, the best performances were obtained using the
BR and BRPLUS strategies pre-dominantly in conjunction
with the Random Forest algorithm. Regarding the multi-view
multi-label classification strategies (iMVWL and McWL),
these showed acceptable performances in all measures, how-
ever, these were below the best values.

Although previous results showed better performance in
some MLC strategies, it is impossible to establish a signif-
icant difference among methods at first sight. Considering
the above, we performed a test of statistical significance
using an Analysis of Variance (ANOVA) [48]. We identified
the total variance from the variance among sample groups
(in this case, the groups correspond to each applied MLC
strategy). We evaluated the Hamming-Loss metric for the
classification task and the Ranking-Loss metric for the rank-
ing task. We selected Hamming-Loss considering relevant
aspects such as its behavior similar to conventional metrics
and also because it is a metric oriented to MLC approaches.
Also, Ranking-Loss was selected because it is the main
MLC-oriented metric for evaluating label rankings. Further-
more, we also applied several a priori and a posteriori tests
of the ANOVA to determine those groups with significant
differences. The first of these analyses was the normality test,
where we checked an adequate metrics distribution in each
group. We used the Shapiro-Wilk normality test [59] because
it is the most used, efficient, and useful when the samples are
small. This test showed high levels of normality in the group
distributions for both Hamming-Loss and Ranking-Loss met-
rics. After checking the normality, we verified the homogene-
ity of variances by applying a homoscedasticity test. One of
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TABLE 3. Performance metrics for the best predictive models in the MLC approach. CDS: Combined Data Source, MLCS: Multi-Label Classification
Strategy, Alg: Machine Learning Algorithm.

TABLE 4. Results of normality (percentage of groups with a normal distribution), homoscedasticity (p-value), and ANOVA (p-value) analyses.

the most used is Levene’s test [60]. We identified variations
in the sample groups through this test, considering a p-value
lower than 0.05 in the CDS1, CD2, and CGD datasets. After
these two analyses, we applied linear ANOVA models for
each combined data source. Table 4 summarizes the results
of normality, homoscedasticity, and ANOVA analyses.

Although the homoscedasticity test showed variations in
the CDS1, CD2, and CGD datasets, Tab. 4 indicates varia-
tions in all datasets, considering that the ANOVA p-values
were less than 0.05. To accurately determine such vari-
ations, we analyzed each group or model independently
in each combined data source. For this purpose, we used

the ANOVA results and two additional analyses, such as
the Pairwise t-test [61] and the Tukey’s test [62]. From
these tests, we observed those specific groups (MLC strate-
gies) where variations occurred (p-value < 0.05 for both
Hamming-Loss and Ranking-Loss metrics), and we identi-
fied two predominant patterns. The former was the combina-
tion of the MAJORITY and RANDOM algorithms with all
the tested MLC strategies. The latter was the combination
of the HOMER strategy with all the applied algorithms.
The significant differences correspond mainly to the
worst-performing MLC strategies but not to the best models.
Therefore, there were no significant differences among the
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best performing MLC strategies. At this point, we could
not establish which models were the most suitable for crop
prediction. For this reason, we validated the crop rankings
predicted by all models except those with significant differ-
ences previously mentioned.

We validated the MLC models with actual data from the
Colombian Agriculture Ministry through the Agronet web
platform. Predictive models were trained with data from
2012 to 2015 and validated with data from 2016 to 2018.
These data were obtained from the production trends and
yield of different crops by the site in Colombia. To transform
the validation data into actual rankings comparable to the
predicted ones, we converted crop yield data into annual
growth rates from 2016 to 2018.We then averaged the growth
rates by crop and ranked these averages from highest to
lowest in each municipality. To compare rankings, we ini-
tially focused on conventional correlation indices such as
Pearson, Spearman, and Kendall. However, these indexes had
some disadvantages for our work. For example, they only
compare rankings of equal length, and they also work with
a homogeneous weight distribution regardless of the position
of the items.

Considering the above, we used two similarity measures
for comparing indefinite ranked and unranked lists. For
unranked lists, we used a simple similarity measure that
indicates the percentage of items from the actual ranking
contained in the predicted one. We refer to this measure as
Unranked Lists’ Similarity (ULS). Furthermore, for ranked
lists, we used the Rank Biased Overlap (RBO) [63], which is
a similarity measure that assumes that the top rank is more
important than the bottom rank. In other words, exchanges or
perturbations in the top rank are more significant and more
strongly penalized than those in the bottom rank. The RBO
range varies from 0 to 1, where 1 corresponds to identi-
cal rankings, and 0 represents disjointed rankings. We can
also adjust weight ranking positions through the p parameter
(between 0 and 1). For RBO, a low p represents a high
weighting in the top-ranking items (top-weighted). On the
other hand, when p is equal to 0, only the top-k items are
considered (k is the evaluation depth parameter). Finally,
when p is close to 1, weights are arbitrarily flat, and the
evaluation is arbitrarily deeper in the rankings. To determine
the similarity between the predicted and actual crop rankings,
we extracted the ULS and RBO values for eachmodel applied
in each municipality, and then averaged them to obtain an
overall value. To display these values for a particular dataset,
Fig. 5 shows the global ULSs and RBOs of each MLC model
for the CDS1 dataset.

In the same line, Table 5 summarizes the best MLC mod-
els validated with actual crop rankings. We obtained ULS
values above 90% for most of the combined data sources.
These results indicate a good performance of the predic-
tive models without considering the crop ranking. However,
we prioritized the RBO measure for being more exhaustive
in evaluating the position of each element within the ranking.
The maximum average RBO value was 0.67 for the CDS1

TABLE 5. Five highest overall RBO (Rank Biased Overlap) and its
respective ULS (Unranked Lists’ Similarity) values for each MLC model
across all combined data sources.

FIGURE 5. Global similarities (percentage values) for each MLC model in
the CDS1 dataset using RBO (Rank Biased Overlap) and ULS (Unranked
Lists’ Similarity) metrics.

dataset with the BR-RF model. On the other hand, CDS3
obtained a maximum average of 0.56 using the BR-CART
model. At first sight, we could consider these values at a low
level of similarity concerning to the actual rankings; however,
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FIGURE 6. Comparison of crop rankings by municipality in the (a) CDS1
and (b) CGD datasets applying the BR-RF model. The first ranking
corresponds to the actual ranking, while the second is the predicted
ranking.

these values could be acceptable considering that the test data
correspond to data unknown for the MLC models. Further-
more, although the difference was not significant between
these models, BR-RF obtained a high and more generalized
performance in the 5 datasets. This finding allows consider-
ing the application of this unique model in the crop prediction
contemplated in our proposal. As an example of the rankings
predicted by the BR-RF model, Fig. 6 presents a comparison
of the actual and predicted rankings for the municipalities of
Totoro (Fig. 6(a)) and Santander de Quilichao (Fig. 6(b)) in
Cauca, Colombia.

As shown in the examples in Fig. 6, the selected model
is correct for most of the crops in the top-rank. Although
these crops’ order was not the same as the actual order (which
is difficult to obtain in practical terms), the model matched
in the first or second position. Furthermore, the predicted
ranking gets additional crops in the bottom-rank, which could
be considered by experts for further analysis of new crops’
adaptation in a territory. We obtained similar results with the
other municipalities considered in this study. On the other
hand, we performed a final test comparing RBO values with
both training and actual data. We identify similarities in the
predicted crops using known and unknown data for the model
through this test. Fig. 7 presents the RBO values obtained
in all municipalities using training and actual data in the
CGD dataset. The other datasets showed similar behavior,
with most municipalities retaining the same trend according

FIGURE 7. Global RBO values for all municipalities using the BR-RF
model in the CDS1 dataset.

TABLE 6. Variation and correlation between RBOs obtained with training
and actual data in all combined data sources.

to the results presented in Table 6. These results indicate a
low difference between the RBO obtained with training data
and actual data (Training Data RBO - Actual Data RBO).
Likewise, Pearson’s correlation coefficient reaffirms a high
level of agreement between these two trends (correlation
coefficient close to 1 and p-value < 0.05).

G. HUMAN/COMPUTER INTERFACE
We developed IoT-Agro (https://www.iot-agro.com/ servi-
cios/cropmodel), a software prototype to deploy the predicted
crops in amunicipality from all the previous results. This plat-
form allows the user to select the municipality, the combined
data source, and its related variables to consult the crop’s
planting probability in the short term. We used a combination
of three programming languages to implement this tool. The
R language was used to generate the predictive models, Java
for the deployment of web services, and php to build the
web site.

V. CONCLUSION
In this study, we proposed a data fusion strategy to support
Climate Vulnerability Assessments (CVA), specifically in
the study case of predicting the adaptability of crops in a
territory in the short term, where three main contributions
are highlighted: a multi-dimensional data preparation pro-
cess specifically oriented towards CVAs, an adaptation of
the JDL data fusion model to define a strategy for merging
data from different agricultural vulnerability dimensions, and
the modeling and implementation of a multi-label classifi-
cation approach for crop prediction. Through our proposal,
the policy-makers can establish public policy decisions on
the risks and vulnerabilities in a region with an acceptable
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certainty level. However, replicating these analyses usually
requires complex and organized processes, where all stake-
holders make their decisions through coordinated efforts. Our
approach can guide CVAs in both land use and crops located
in non-optimal areas for growth and production.

From a data-driven perspective, we analyzed the data
source meta-features before and after preparation. It repre-
senting a reduction of time and effort in the training and
application of many predictive models, which, in many cases,
will not be applied in a real environment. By consolidat-
ing meta-features, we established an overview of data qual-
ity and strategies to improve it. These strategies can be
defined by analyzing each meta-feature with expert knowl-
edge. Similarly, we identify the most relevant attributes in
a data source through a mixed approach (algorithms and
expert knowledge). However, prioritization methods are not
the same for all data sources. If they are labeled, we can
apply logistic regression or random forest techniques, while
for unlabeled data sources, we use correlations among
variables.

On the other hand, a key finding was to identify a central
dataset (Agronet) for labeling all Combined Data Sources
(CDS). It allowed us to adjust the CDS to our crop pre-
diction objective, considering that the central dataset was
related to information about production and crop yield per
municipality. Therefore, the labeling process should be done
in parallel with the integration, considering the target vari-
ables. In our case, such target variables corresponded to
the crops associated with a municipality. The multi-label
approach was selected because the agricultural production
of a territory focuses on a wide variety of crops, and the
relationship between them is relevant for this type of analysis.
The exploratory analysis in MLDs provided key metrics such
as Theoretical Complexity Score (TCS) to identify those CDS
that might be most appropriate to train subsequent predictive
models. We identified Climate, Soil, Water Quality, Pro-
ductive Alliances, and Production as the most relevant data
sources to be integrated.

We used the BR-RF (Binary Relevance - Random For-
est) model to perform the crop prediction considering two
important findings. The first is related to prediction and
classification tasks. Although we found models with better
prediction performance, such as Label Powerset (LP) and
Random k-label sets (RAKEL), the results were poor in crop
probability ranking. Statistical significance tests proved no
significant differences in classification task applying the best
models for ranking. These tests and the validation with actual
crop production data allowed us to select the BR-RF model
as the best performance for our final prediction objective. The
performance of the appliedmulti-labelmulti-viewmulti-label
classification models was not superior to the performance
of the conventional multi-label models in any of the com-
bined datasets. Furthermore, the performance of the applied
multi-view multi-label classification models was not better
than the performance of the conventional multi-label mod-
els in any of the combined datasets. These results can be

explained by considering issues such as the low number of
instances in such datasets.

The ULS (Unranked Lists’ Similarity) exceeded 90%
regardless of the order of elements in both the predicted
and actual rankings, RBO (Rank Biased Overlap) similarity
reached a maximum of 67% strictly considering the order.
Nevertheless, these results indicates that for more exhaustive
ranking comparisons, the last similarity percentage is accept-
able, considering the difficulty in comparing the position of
each element within the ranking. In this sense, we can use the
predicted rankings to provide crop recommendations at the
same level of relevance, i.e., which crops could be produced
in the short term without considering the probability (ranking
positions). On the other hand, if we provide a ranking of
crops, we require a strategy to improve the RBO similarity
in the predictive models.
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